5 research outputs found

    Event-based state estimation for a class of complex networks with time-varying delays: A comparison principle approach

    Get PDF
    The paper is concerned with the state estimation problem for a class of time-delayed complex networks with event-triggering communication protocol. A novel event generator function, which is dependent not only on the measurement output but also on a predefined positive constant, is proposed with hope to reduce the communication burden. A new concept of exponentially ultimate boundedness is provided to quantify the estimation performance. By means of the comparison principle, some sufficient conditions are obtained to guarantee that the estimation error is exponentially ultimately bounded, and then the estimator gains are obtained in terms of the solution of certain matrix inequalities. Furthermore, a rigorous proof is proposed to show that the designed triggering condition is free of the Zeno behavior. Finally, a numerical example is given to illustrate the effectiveness of the proposed event-based estimator

    Synchronization of Complex Networks via Aperiodically Intermittent Pinning Control

    No full text

    Robust Control

    Get PDF
    The need to be tolerant to changes in the control systems or in the operational environment of systems subject to unknown disturbances has generated new control methods that are able to deal with the non-parametrized disturbances of systems, without adapting itself to the system uncertainty but rather providing stability in the presence of errors bound in a model. With this approach in mind and with the intention to exemplify robust control applications, this book includes selected chapters that describe models of H-infinity loop, robust stability and uncertainty, among others. Each robust control method and model discussed in this book is illustrated by a relevant example that serves as an overview of the theoretical and practical method in robust control

    Finite-time sliding mode control strategies and their applications

    Get PDF
    In many engineering applications, faster convergence is always sought, such as manufacturing plants, defence sectors, mechatronic systems. Nowadays, most of the physical systems are operated in a closed-loop environment in conjunction with a controller. Therefore, the controller plays a critical role in determining the speed of the convergence of the entire closed-loop system. Linear controllers are quite popular for their simple design. However, linear controllers provide asymptotic convergence speed, i.e., the actual convergence is obtained when the time reaches an infinitely large amount. Furthermore, linear controllers are not entirely robust in the presence of non-vanishing types of disturbances. It is always important to design robust controllers because of the presence of model imperfections and unknown disturbances in almost all kinds of systems. Therefore, it is necessary to design controllers that are not only robust, but will also provide faster convergence speed. Out of many robust non-linear control strategies, a further development in sliding mode control (SMC) strategy is considered in this thesis because of its simplicity and robustness. There have been many contributions in the SMC field in the last decade. Many existingmethods are available for the SMC design for second-order systems. However, the SMC design becomes extremely complex if the system order increases. Therefore, the first part of this thesis focuses on developing arbitrary-order SMC strategies with a relatively simpler design while providing finite-time convergence. Novel methods are developed with both continuous and discontinuous control structures. The second part of this thesis focuses on developing algorithms to provide even faster convergence speed than that of finite-time convergent algorithms. Some practical applications need strict constraints on time response due to security reasons or to ameliorate the productiveness. For example, a missile or any aerial launch vehicle can be hugely affected by a strong wind gust deviating it from the desired trajectory, thus yielding a significant degree of initial tracking error. It is worth mentioning that the state convergence achieved in SMC during sliding can be either asymptotic or in finite-time, depending on the selection of the surface. Furthermore, it primarily depends on the initial conditions of the states. This provides a motivation to focus on developing SMC controllers where the convergence time does not depend on initial conditions, and a well-defined theoretical analysis is provided in the thesis regarding arbitrary-order fixed-time convergent SMC design. Subsequently, a predefined-time convergent second-order differentiator and observer are proposed. The main advantage of the proposed differentiator is to calculate the derivative of a given signal in fixed-time while the least upper bound of the fixed stabilisation time is equal to a tunable parameter. Similarly, the proposed predefined-time observer is robust with respect to bounded uncertainties and can also be used to estimate the uncertainties. The final part of the thesis is focused on the applications of the proposed algorithms. First of all, a novel third-order SMC is designed for a piezoelectric-driven motion systems achieving better accuracy and control performance. Later on, an experimental validation of the proposed controller is conducted on an induction motor setup. Later, a fixed-time convergent algorithm is proposed for an automatic generation control (AGC) of a multi-area interconnected power system while considering the non-linearities in the dynamic system. The final part is focused on developing fixed-time convergent algorithms in a co-operative environment. The reason for selecting such a system is the presence of the highest degree of uncertainties. To this end, a novel distributed algorithm is developed for achieving second-order consensus in the multiagent systems by designing a full-order fixed-time convergent sliding surface
    corecore