6,330 research outputs found

    Degenerate Variational Integrators for Magnetic Field Line Flow and Guiding Center Trajectories

    Full text link
    Symplectic integrators offer many advantages for the numerical solution of Hamiltonian differential equations, including bounded energy error and the preservation of invariant sets. Two of the central Hamiltonian systems encountered in plasma physics --- the flow of magnetic field lines and the guiding center motion of magnetized charged particles --- resist symplectic integration by conventional means because the dynamics are most naturally formulated in non-canonical coordinates, i.e., coordinates lacking the familiar (q,p)(q, p) partitioning. Recent efforts made progress toward non-canonical symplectic integration of these systems by appealing to the variational integration framework; however, those integrators were multistep methods and later found to be numerically unstable due to parasitic mode instabilities. This work eliminates the multistep character and, therefore, the parasitic mode instabilities via an adaptation of the variational integration formalism that we deem ``degenerate variational integration''. Both the magnetic field line and guiding center Lagrangians are degenerate in the sense that their resultant Euler-Lagrange equations are systems of first-order ODEs. We show that retaining the same degree of degeneracy when constructing a discrete Lagrangian yields one-step variational integrators preserving a non-canonical symplectic structure on the original Hamiltonian phase space. The advantages of the new algorithms are demonstrated via numerical examples, demonstrating superior stability compared to existing variational integrators for these systems and superior qualitative behavior compared to non-conservative algorithms

    Symplectic integrators for classical spin systems

    Full text link
    We suggest a numerical integration procedure for solving the equations of motion of certain classical spin systems which preserves the underlying symplectic structure of the phase space. Such symplectic integrators have been successfully utilized for other Hamiltonian systems, e. g. for molecular dynamics or non-linear wave equations. Our procedure rests on a decomposition of the spin Hamiltonian into a sum of two completely integrable Hamiltonians and on the corresponding Lie-Trotter decomposition of the time evolution operator. In order to make this method widely applicable we provide a large class of integrable spin systems whose time evolution consists of a sequence of rotations about fixed axes. We test the proposed symplectic integrator for small spin systems, including the model of a recently synthesized magnetic molecule, and compare the results for variants of different order

    Discrete Routh Reduction

    Get PDF
    This paper develops the theory of abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J2J_2 correction, as well as the double spherical pendulum. The J2J_2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a nontrivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the noncanonical nature of the symplectic structure.Comment: 24 pages, 7 figures, numerous minor improvements, references added, fixed typo

    Fast spin dynamics algorithms for classical spin systems

    Full text link
    We have proposed new algorithms for the numerical integration of the equations of motion for classical spin systems. In close analogy to symplectic integrators for Hamiltonian equations of motion used in Molecular Dynamics these algorithms are based on the Suzuki-Trotter decomposition of exponential operators and unlike more commonly used algorithms exactly conserve spin length and, in special cases, energy. Using higher order decompositions we investigate integration schemes of up to fourth order and compare them to a well established fourth order predictor-corrector method. We demonstrate that these methods can be used with much larger time steps than the predictor-corrector method and thus may lead to a substantial speedup of computer simulations of the dynamical behavior of magnetic materials.Comment: 9 pages RevTeX with 8 figure

    Systems of Hess-Appel'rot Type and Zhukovskii Property

    Full text link
    We start with a review of a class of systems with invariant relations, so called {\it systems of Hess--Appel'rot type} that generalizes the classical Hess--Appel'rot rigid body case. The systems of Hess-Appel'rot type carry an interesting combination of both integrable and non-integrable properties. Further, following integrable line, we study partial reductions and systems having what we call the {\it Zhukovskii property}: these are Hamiltonian systems with invariant relations, such that partially reduced systems are completely integrable. We prove that the Zhukovskii property is a quite general characteristic of systems of Hess-Appel'rote type. The partial reduction neglects the most interesting and challenging part of the dynamics of the systems of Hess-Appel'rot type - the non-integrable part, some analysis of which may be seen as a reconstruction problem. We show that an integrable system, the magnetic pendulum on the oriented Grassmannian Gr+(4,2)Gr^+(4,2) has natural interpretation within Zhukovskii property and it is equivalent to a partial reduction of certain system of Hess-Appel'rot type. We perform a classical and an algebro-geometric integration of the system, as an example of an isoholomorphic system. The paper presents a lot of examples of systems of Hess-Appel'rot type, giving an additional argument in favor of further study of this class of systems.Comment: 42 page
    • …
    corecore