1,999 research outputs found

    On linear structure and phase rotation invariant properties of block 2(sup l)-PSK modulation codes

    Get PDF
    Two important structural properties of block 2(l)-ary PSK (phase shift keying) modulation codes, linear structure and phase symmetry, are investigated. For an additive white Gaussian noise (AWGN) channel, the error performance of a modulation code depends on its squared Euclidean distance distribution. Linear structure of a code makes the error performance analysis much easier. Phase symmetry of a code is important in resolving carrier phase ambiguity and ensuring rapid carrier phase resynchronization after temporary loss of synchronization. It is desirable for a code to have as many phase symmetries as possible. A 2(l)-ary modulation code is represented here as a code with symbols from the integer group. S sub 2(l) PSK = (0,1,2,...,2(l)-1), under the modulo-2(l) addition. The linear structure of block 2(l)-ary PSK modulation codes over S sub 2(l)-ary PSK with respect to the modulo-2(l) vector addition is defined, and conditions under which a block 2(l)-ary PSK modulation code is linear are derived. Once the linear structure is developed, phase symmetry of a block 2(l)-ary PSK modulation code is studied. It is a necessary and sufficient condition for a block 2(l)-PSK modulation code, which is linear as a binary code, to be invariant under 180 deg/2(l-h) phase rotation, for 1 is less than or equal to h is less than or equal to l. A list of short 8-PSK and 16-PSK modulation codes is given, together with their linear structure and the smallest phase rotation for which a code is invariant

    Multilevel Coded Modulation for Unequal Error Protection and Multistage Decoding—Part I: Symmetric Constellations

    Get PDF
    In this paper, theoretical upper bounds and computer simulation results on the error performance of multilevel block coded modulations for unequal error protection (UEP) and multistage decoding are presented. It is shown that nonstandard signal set partitionings and multistage decoding provide excellent UEP capabilities beyond those achievable with conventional coded modulation. The coding scheme is designed in such a way that the most important information bits have a lower error rate than other information bits. The large effective error coefficients, normally associated with standard mapping by set partitioning, are reduced by considering nonstandard partitionings of the underlying signal set. The bits-to-signal mappings induced by these partitionings allow the use of soft-decision decoding of binary block codes. Moreover, parallel operation of some of the staged decoders is possible, to achieve high data rate transmission, so that there is no error propagation between these decoders. Hybrid partitionings are also considered that trade off increased intraset distances in the last partition levels with larger effective error coefficients in the middle partition levels. The error performance of specific examples of multilevel codes over 8-PSK and 64-QAM signal sets are simulated and compared with theoretical upper bounds on the error performance

    On the BICM Capacity

    Full text link
    Optimal binary labelings, input distributions, and input alphabets are analyzed for the so-called bit-interleaved coded modulation (BICM) capacity, paying special attention to the low signal-to-noise ratio (SNR) regime. For 8-ary pulse amplitude modulation (PAM) and for 0.75 bit/symbol, the folded binary code results in a higher capacity than the binary reflected gray code (BRGC) and the natural binary code (NBC). The 1 dB gap between the additive white Gaussian noise (AWGN) capacity and the BICM capacity with the BRGC can be almost completely removed if the input symbol distribution is properly selected. First-order asymptotics of the BICM capacity for arbitrary input alphabets and distributions, dimensions, mean, variance, and binary labeling are developed. These asymptotics are used to define first-order optimal (FOO) constellations for BICM, i.e. constellations that make BICM achieve the Shannon limit -1.59 \tr{dB}. It is shown that the \Eb/N_0 required for reliable transmission at asymptotically low rates in BICM can be as high as infinity, that for uniform input distributions and 8-PAM there are only 72 classes of binary labelings with a different first-order asymptotic behavior, and that this number is reduced to only 26 for 8-ary phase shift keying (PSK). A general answer to the question of FOO constellations for BICM is also given: using the Hadamard transform, it is found that for uniform input distributions, a constellation for BICM is FOO if and only if it is a linear projection of a hypercube. A constellation based on PAM or quadrature amplitude modulation input alphabets is FOO if and only if they are labeled by the NBC; if the constellation is based on PSK input alphabets instead, it can never be FOO if the input alphabet has more than four points, regardless of the labeling.Comment: Submitted to the IEEE Transactions on Information Theor

    Optimum SHE for cascaded H-bridge multilevel inverters using: NR-GA-PSO, comparative study

    Get PDF
    Selective Harmonic Elimination (SHE) is very widely applied technique in the control of multilevel inverters that can be used to eliminate the low order dominant harmonics. This is considered a low frequency technique, in which the switching angles are predetermined based on solving a system of transcendental equations. Iterative techniques such as NR and Heuristic techniques such as GA and PSO have been used widely in literatures for the problem of SHE. This paper presents a detailed comparative study of these three techniques when applied for a 7-level CHB-MLI

    On the Asymptotic Performance of Bit-Wise Decoders for Coded Modulation

    Get PDF
    Two decoder structures for coded modulation over the Gaussian and flat fading channels are studied: the maximum likelihood symbol-wise decoder, and the (suboptimal) bit-wise decoder based on the bit-interleaved coded modulation paradigm. We consider a 16-ary quadrature amplitude constellation labeled by a Gray labeling. It is shown that the asymptotic loss in terms of pairwise error probability, for any two codewords caused by the bit-wise decoder, is bounded by 1.25 dB. The analysis also shows that for the Gaussian channel the asymptotic loss is zero for a wide range of linear codes, including all rate-1/2 convolutional codes

    On the symbol error probability of regular polytopes

    Get PDF
    An exact expression for the symbol error probability of the four-dimensional 24-cell in Gaussian noise is derived. Corresponding expressions for other regular convex polytopes are summarized. Numerically stable versions of these error probabilities are also obtained

    Codes for QPSK modulation with invariance under 90 degrees rotation

    Get PDF
    The new rate 1/2 nonlinear convolutional codes for quadrature phase shift keying (QPSK) modulation allow the achievement of full 90 degree rotational invariance of coded QPSK signal sequences at no significant loss in real coding gains when compared to linear codes. For mobile communication systems operating in a fading environment with frequent periods of low signal-to-noise ratio and the possibility of losses of carrier phase synchronization in the receiver, the invariance to 90 degree ambiguous demodulation should be a significant advantage
    • …
    corecore