58 research outputs found

    Emergence of Symmetry in Complex Networks

    Full text link
    Many real networks have been found to have a rich degree of symmetry, which is a very important structural property of complex network, yet has been rarely studied so far. And where does symmetry comes from has not been explained. To explore the mechanism underlying symmetry of the networks, we studied statistics of certain local symmetric motifs, such as symmetric bicliques and generalized symmetric bicliques, which contribute to local symmetry of networks. We found that symmetry of complex networks is a consequence of similar linkage pattern, which means that nodes with similar degree tend to share similar linkage targets. A improved version of BA model integrating similar linkage pattern successfully reproduces the symmetry of real networks, indicating that similar linkage pattern is the underlying ingredient that responsible for the emergence of the symmetry in complex networks.Comment: 7 pages, 7 figure

    Symmetry based Structure Entropy of Complex Networks

    Full text link
    Precisely quantifying the heterogeneity or disorder of a network system is very important and desired in studies of behavior and function of the network system. Although many degree-based entropies have been proposed to measure the heterogeneity of real networks, heterogeneity implicated in the structure of networks can not be precisely quantified yet. Hence, we propose a new structure entropy based on automorphism partition to precisely quantify the structural heterogeneity of networks. Analysis of extreme cases shows that entropy based on automorphism partition can quantify the structural heterogeneity of networks more precisely than degree-based entropy. We also summarized symmetry and heterogeneity statistics of many real networks, finding that real networks are indeed more heterogenous in the view of automorphism partition than what have been depicted under the measurement of degree based entropies; and that structural heterogeneity is strongly negatively correlated to symmetry of real networks.Comment: 7 pages, 6 figure

    Algebraic and Topological Indices of Molecular Pathway Networks in Human Cancers

    Full text link
    Protein-protein interaction networks associated with diseases have gained prominence as an area of research. We investigate algebraic and topological indices for protein-protein interaction networks of 11 human cancers derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We find a strong correlation between relative automorphism group sizes and topological network complexities on the one hand and five year survival probabilities on the other hand. Moreover, we identify several protein families (e.g. PIK, ITG, AKT families) that are repeated motifs in many of the cancer pathways. Interestingly, these sources of symmetry are often central rather than peripheral. Our results can aide in identification of promising targets for anti-cancer drugs. Beyond that, we provide a unifying framework to study protein-protein interaction networks of families of related diseases (e.g. neurodegenerative diseases, viral diseases, substance abuse disorders).Comment: 15 pages, 4 figure

    Evolutionary Algorithms for Community Detection in Continental-Scale High-Voltage Transmission Grids

    Get PDF
    Symmetry is a key concept in the study of power systems, not only because the admittance and Jacobian matrices used in power flow analysis are symmetrical, but because some previous studies have shown that in some real-world power grids there are complex symmetries. In order to investigate the topological characteristics of power grids, this paper proposes the use of evolutionary algorithms for community detection using modularity density measures on networks representing supergrids in order to discover densely connected structures. Two evolutionary approaches (generational genetic algorithm, GGA+, and modularity and improved genetic algorithm, MIGA) were applied. The results obtained in two large networks representing supergrids (European grid and North American grid) provide insights on both the structure of the supergrid and the topological differences between different regions. Numerical and graphical results show how these evolutionary approaches clearly outperform to the well-known Louvain modularity method. In particular, the average value of modularity obtained by GGA+ in the European grid was 0.815, while an average of 0.827 was reached in the North American grid. These results outperform those obtained by MIGA and Louvain methods (0.801 and 0.766 in the European grid and 0.813 and 0.798 in the North American grid, respectively)

    Dimensionality reduction and spectral properties of multilayer networks

    Full text link
    Network representations are useful for describing the structure of a large variety of complex systems. Although most studies of real-world networks suppose that nodes are connected by only a single type of edge, most natural and engineered systems include multiple subsystems and layers of connectivity. This new paradigm has attracted a great deal of attention and one fundamental challenge is to characterize multilayer networks both structurally and dynamically. One way to address this question is to study the spectral properties of such networks. Here, we apply the framework of graph quotients, which occurs naturally in this context, and the associated eigenvalue interlacing results, to the adjacency and Laplacian matrices of undirected multilayer networks. Specifically, we describe relationships between the eigenvalue spectra of multilayer networks and their two most natural quotients, the network of layers and the aggregate network, and show the dynamical implications of working with either of the two simplified representations. Our work thus contributes in particular to the study of dynamical processes whose critical properties are determined by the spectral properties of the underlying network.Comment: minor changes; pre-published versio

    Correlation of Automorphism Group Size and Topological Properties with Program-size Complexity Evaluations of Graphs and Complex Networks

    Get PDF
    We show that numerical approximations of Kolmogorov complexity (K) applied to graph adjacency matrices capture some group-theoretic and topological properties of graphs and empirical networks ranging from metabolic to social networks. That K and the size of the group of automorphisms of a graph are correlated opens up interesting connections to problems in computational geometry, and thus connects several measures and concepts from complexity science. We show that approximations of K characterise synthetic and natural networks by their generating mechanisms, assigning lower algorithmic randomness to complex network models (Watts-Strogatz and Barabasi-Albert networks) and high Kolmogorov complexity to (random) Erdos-Renyi graphs. We derive these results via two different Kolmogorov complexity approximation methods applied to the adjacency matrices of the graphs and networks. The methods used are the traditional lossless compression approach to Kolmogorov complexity, and a normalised version of a Block Decomposition Method (BDM) measure, based on algorithmic probability theory.Comment: 15 2-column pages, 20 figures. Forthcoming in Physica A: Statistical Mechanics and its Application
    corecore