6 research outputs found

    Symmetries and exponential error reduction in Yang-Mills theories on the lattice

    Full text link
    The partition function of a quantum field theory with an exact symmetry can be decomposed into a sum of functional integrals each giving the contribution from states with definite symmetry properties. The composition rules of the corresponding transfer matrix elements can be exploited to devise a multi-level Monte Carlo integration scheme for computing correlation functions whose numerical cost, at a fixed precision and at asymptotically large times, increases power-like with the time extent of the lattice. As a result the numerical effort is exponentially reduced with respect to the standard Monte Carlo procedure. We test this strategy in the SU(3) Yang--Mills theory by evaluating the relative contribution to the partition function of the parity odd states.Comment: 18 pages, 4 figures. Few typos corrected, data sets added, Appendix A added. To appear on Comput. Phys. Commu

    Domain decomposition and multilevel integration for fermions

    Full text link
    The numerical computation of many hadronic correlation functions is exceedingly difficult due to the exponentially decreasing signal-to-noise ratio with the distance between source and sink. Multilevel integration methods, using independent updates of separate regions in space-time, are known to be able to solve such problems but have so far been available only for pure gauge theory. We present first steps into the direction of making such integration schemes amenable to theories with fermions, by factorizing a given observable via an approximated domain decomposition of the quark propagator. This allows for multilevel integration of the (large) factorized contribution to the observable, while its (small) correction can be computed in the standard way.Comment: 14 pages, 6 figures, v2: published version, talk presented at the 34th annual International Symposium on Lattice Field Theory, 24-30 July 2016, University of Southampton, U

    A non-perturbative study of massive gauge theories

    Get PDF
    We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light.Comment: 1+22 pages, 8 figures, 1 table and 1 appendix. Few typos corrected and references added. Conclusions unchanged. Version accepted for publication in JHE

    A novel approach for computing glueball masses and matrix elements in Yang-Mills theories on the lattice

    Get PDF
    corecore