338 research outputs found

    On the Vector Broadcast Channel with Alternating CSIT: A Topological Perspective

    Full text link
    In many wireless networks, link strengths are affected by many topological factors such as different distances, shadowing and inter-cell interference, thus resulting in some links being generally stronger than other links. From an information theoretic point of view, accounting for such topological aspects has remained largely unexplored, despite strong indications that such aspects can crucially affect transceiver and feedback design, as well as the overall performance. The work here takes a step in exploring this interplay between topology, feedback and performance. This is done for the two user broadcast channel with random fading, in the presence of a simple two-state topological setting of statistically strong vs. weaker links, and in the presence of a practical ternary feedback setting of alternating channel state information at the transmitter (alternating CSIT) where for each channel realization, this CSIT can be perfect, delayed, or not available. In this setting, the work derives generalized degrees-of-freedom bounds and exact expressions, that capture performance as a function of feedback statistics and topology statistics. The results are based on novel topological signal management (TSM) schemes that account for topology in order to fully utilize feedback. This is achieved for different classes of feedback mechanisms of practical importance, from which we identify specific feedback mechanisms that are best suited for different topologies. This approach offers further insight on how to split the effort --- of channel learning and feeding back CSIT --- for the strong versus for the weaker link. Further intuition is provided on the possible gains from topological spatio-temporal diversity, where topology changes in time and across users.Comment: Shorter version will be presented at ISIT 201

    The Degrees of Freedom Region of Temporally Correlated MIMO Networks With Delayed CSIT

    Get PDF
    We consider the temporally-correlated Multiple-Input Multiple-Output (MIMO) broadcast channels (BC) and interference channels (IC) where the transmitter(s) has/have (i) delayed channel state information (CSI) obtained from a latency-prone feedback channel as well as (ii) imperfect current CSIT, obtained, e.g., from prediction on the basis of these past channel samples based on the temporal correlation. The degrees of freedom (DoF) regions for the two-user broadcast and interference MIMO networks with general antenna configuration under such conditions are fully characterized, as a function of the prediction quality indicator. Specifically, a simple unified framework is proposed, allowing to attain optimal DoF region for the general antenna configurations and current CSIT qualities. Such a framework builds upon block-Markov encoding with interference quantization, optimally combining the use of both outdated and instantaneous CSIT. A striking feature of our work is that, by varying the power allocation, every point in the DoF region can be achieved with one single scheme. As a result, instead of checking the achievability of every corner point of the outer bound region, as typically done in the literature, we propose a new systematic way to prove the achievability.Comment: Revised to IEEE Trans. Inf. Theory. A new simple and unified framework is proposed, allowing to attain optimal DoF region for general antenna configurations and current CSIT qualities. A striking feature is that, every corner point in the DoF region can be achieved with one single scheme, and hence a new systematic way is proposed to prove the achievability instead of checking every corner poin

    On the Two-User MISO Broadcast Channel With Alternating CSIT: A Topological Perspective

    Full text link
    corecore