23 research outputs found

    Discrete Distributions in the Tardos Scheme, Revisited

    Full text link
    The Tardos scheme is a well-known traitor tracing scheme to protect copyrighted content against collusion attacks. The original scheme contained some suboptimal design choices, such as the score function and the distribution function used for generating the biases. Skoric et al. previously showed that a symbol-symmetric score function leads to shorter codes, while Nuida et al. obtained the optimal distribution functions for arbitrary coalition sizes. Later, Nuida et al. showed that combining these results leads to even shorter codes when the coalition size is small. We extend their analysis to the case of large coalitions and prove that these optimal distributions converge to the arcsine distribution, thus showing that the arcsine distribution is asymptotically optimal in the symmetric Tardos scheme. We also present a new, practical alternative to the discrete distributions of Nuida et al. and give a comparison of the estimated lengths of the fingerprinting codes for each of these distributions.Comment: 5 pages, 2 figure

    Enhanced blind decoding of Tardos codes with new map-based functions

    Get PDF
    This paper presents a new decoder for probabilistic binary traitor tracing codes under the marking assumption. It is based on a binary hypothesis testing rule which integrates a collusion channel relaxation so as to obtain numerical and simple accusation functions. This decoder is blind as no estimation of the collusion channel prior to the accusation is required. Experimentations show that using the proposed decoder gives better performance than the well-known symmetric version of the Tardos decoder for common attack channels

    Dynamic Traitor Tracing Schemes, Revisited

    Get PDF
    We revisit recent results from the area of collusion-resistant traitor tracing, and show how they can be combined and improved to obtain more efficient dynamic traitor tracing schemes. In particular, we show how the dynamic Tardos scheme of Laarhoven et al. can be combined with the optimized score functions of Oosterwijk et al. to trace coalitions much faster. If the attack strategy is known, in many cases the order of the code length goes down from quadratic to linear in the number of colluders, while if the attack is not known, we show how the interleaving defense may be used to catch all colluders about twice as fast as in the dynamic Tardos scheme. Some of these results also apply to the static traitor tracing setting where the attack strategy is known in advance, and to group testing.Comment: 7 pages, 1 figure (6 subfigures), 1 tabl

    Dynamic Traitor Tracing for Arbitrary Alphabets: Divide and Conquer

    Get PDF
    We give a generic divide-and-conquer approach for constructing collusion-resistant probabilistic dynamic traitor tracing schemes with larger alphabets from schemes with smaller alphabets. This construction offers a linear tradeoff between the alphabet size and the codelength. In particular, we show that applying our results to the binary dynamic Tardos scheme of Laarhoven et al. leads to schemes that are shorter by a factor equal to half the alphabet size. Asymptotically, these codelengths correspond, up to a constant factor, to the fingerprinting capacity for static probabilistic schemes. This gives a hierarchy of probabilistic dynamic traitor tracing schemes, and bridges the gap between the low bandwidth, high codelength scheme of Laarhoven et al. and the high bandwidth, low codelength scheme of Fiat and Tassa.Comment: 6 pages, 1 figur

    Asymptotically false-positive-maximizing attack on non-binary Tardos codes

    Full text link
    We use a method recently introduced by Simone and Skoric to study accusation probabilities for non-binary Tardos fingerprinting codes. We generalize the pre-computation steps in this approach to include a broad class of collusion attack strategies. We analytically derive properties of a special attack that asymptotically maximizes false accusation probabilities. We present numerical results on sufficient code lengths for this attack, and explain the abrupt transitions that occur in these results

    Efficient Probabilistic Group Testing Based on Traitor Tracing

    Get PDF
    Inspired by recent results from collusion-resistant traitor tracing, we provide a framework for constructing efficient probabilistic group testing schemes. In the traditional group testing model, our scheme asymptotically requires T ~ 2 K ln N tests to find (with high probability) the correct set of K defectives out of N items. The framework is also applied to several noisy group testing and threshold group testing models, often leading to improvements over previously known results, but we emphasize that this framework can be applied to other variants of the classical model as well, both in adaptive and in non-adaptive settings.Comment: 8 pages, 3 figures, 1 tabl

    Optimal symmetric Tardos traitor tracing schemes

    Get PDF
    For the Tardos traitor tracing scheme, we show that by combining the symbol-symmetric accusation function of Skoric et al. with the improved analysis of Blayer and Tassa we get further improvements. Our construction gives codes that are up to 4 times shorter than Blayer and Tassa's, and up to 2 times shorter than the codes from Skoric et al. Asymptotically, we achieve the theoretical optimal codelength for Tardos' distribution function and the symmetric score function. For large coalitions, our codelengths are asymptotically about 4.93% of Tardos' original codelengths, which also improves upon results from Nuida et al.Comment: 16 pages, 1 figur
    corecore