
HAL Id: hal-00907670
https://hal.inria.fr/hal-00907670

Submitted on 21 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhanced Blind Decoding of Tardos Codes with New
Map-Based Functions

Mathieu Desoubeaux, Cédric Herzet, William Puech, Gaetan Le Guelvouit

To cite this version:
Mathieu Desoubeaux, Cédric Herzet, William Puech, Gaetan Le Guelvouit. Enhanced Blind Decoding
of Tardos Codes with New Map-Based Functions. MMSP: Multimedia Signal Processing, Sep 2013,
Pula, Italy. pp.283-288. �hal-00907670�

https://hal.inria.fr/hal-00907670
https://hal.archives-ouvertes.fr


ENHANCED BLIND DECODING of TARDOS
CODES

with NEW MAP-BASED FUNCTIONS

Mathieu Desoubeaux #1, Cédric Herzet ∗2, William Puech #, Gaëtan Le Guelvouit o
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Abstract—This paper presents a new decoder for probabilistic
binary traitor tracing codes under the marking assumption. It
is based on a binary hypothesis testing rule which integrates a
collusion channel relaxation so as to obtain numerical and simple
accusation functions. This decoder is blind as no estimation
of the collusion channel prior to the accusation is required.
Experimentations show that using the proposed decoder gives
better performance than the well-known symmetric version of
the Tardos decoder for common attack channels.

I. INTRODUCTION

Active fingerprinting, also known as traitor tracing, first

introduced in [1], aims at finding the leak of an illegal redis-

tribution of copyrighted digital contents. This goal requires to

personalize each delivered content by embedding a sequence

of symbols associated to each user.

Recent trends to generate such sequences focus on prob-

abilistic codes since they allow for low error probabilities

(namely the sum of the false alarm probability and the false

negative probability) with affordable code lengths and small

alphabet’s sizes. The performance of the probabilistic codes

is usually measured in terms of the minimum code length

required to achieve a given error probability.

One of the most efficient probabilistic codes have been

proposed by Tardos in [3]. These codes rely on the so-called

“marking assumption”, first introduced by Boneh and Shaw

in [4]. In particular, the Tardos code was the first one proposed

in the literature whose length, say m, scales as O(c2 ln(ϵ−1
1 )),

where ϵ1 represents the false alarm probability and c is the

maximum number of colluders. Tardos code gets therefore

very close to the lower bound on the code length proved in

[5] and [3], which states that m = Ω(c2 ln(ϵ−1
1 )) for random

codes and any number of users n with n ≥ c+ 1 users.

Since Tardos seminal work, many efforts have been devoted

to further improve the efficiency and the effectiveness of

his code. First, the authors of [6], [7] aimed at reducing

the constant appearing in the code-length bound. In [8],
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[9], the authors respectively focussed on the improvement

of the memory consumption and the decoding complexity.

Finally, other contributions [10], [11] addressed the problem

of characterizing probabilistic codes in terms of achievable

capacity from an information-theoretical point of view. The

latter results have led to several improvements of the decoding

functions, see [12], [13].

In this paper, we are concerned with “simple” decoders

such as the original one proposed by Gabor Tardos which

provides a theoretical proof of performance under threshold-

based decisions. Such decoders have a decoding complexity

scaling as O(n). Joint decoders, requiring to analyze subsets

of (up to) c possible traitors among n users lead to better

performance [11] but for higher complexity. This type of

decoder will therefore be out of the scope of this paper.

The original “simple” Tardos decoder is known to be

suboptimal if the collusion channel, i.e., the coalition strategy

and the coalition size, is known at the decoding side. However

as it is unknown in practice, an approach given in [13]

solved this problem with an estimated collusion channel. Even

though better effectiveness is achieved for small coalition, this

approach remains complex for large coalitions. Additionnaly

the bound on the false alarm probability is not ensured as the

authors of [13] have not solved the threshold based decision

issue.

As the original Tardos decoder, our decoder is “agnostic”

because it does not need to estimate the collusion channel. Our

decoder addresses the traitor tracing problem under the mark-

ing assumption and solves a test under a specific Maximum

a Posteriori (MAP) decision rule. In particular, the decision

rule is devised under the assumption that the densities of

probability of both the traitors strategy and the coalition size

follow a non-informative law.

We compare our decoder with the symmetric version of

the Tardos decoder given in [7]. Generating the receiver

operating characteristic (ROC) by Monte Carlo simulation,

we show that better result can be obtained with the proposed

methodology in all the considered settings. In particular, the

efficiency of our proposal is presented for common collusion



channels presented in the literature and different code lengths.

The improvement of the performance is however at the cost

of a small increase of the decoding complexity. Indeed the

complexity of our decoder scales as O(nc) and, unlike Tardos

decoding, varies therefore linearly with the maximum number

of colluders.

The rest of the paper is organized as follows: Section

2 provides the probabilistic model of the problem. Section

3 presents the rationale of our decoding approach and the

details of the proposed decoder. Section 4 is concerned with

the experimental evaluation. Finally Section 5 gives some

concluding remarks.

II. NOTATIONS

Throughout the paper, we will use the following notations.

We use uppercase letters for random variables, lowercase

letters for their individual values, and boldface fonts for

sequences (or vectors). PX(x) will denote the probability of

random variable X evaluated at x. However, when there is

no possible ambiguity, we often use the shorthand notation:

P(x) , PX(x). The binomial coefficient indexed by n and k
is denoted

(

n
k

)

.

III. PROBABILISTIC MODEL

Let X ∈ {0, 1}m×n define a length-m binary code for n
users. In practical systems, a different column of the code

X denoted xj is hidden in the multimedia content delivered

to each user j. We assume that c users (referred to as the

colluders) combine their contents to form a new sequence y ∈
{0, 1}m. In the sequel, we will identify the users participating

to the collusion by a vector s ∈ {0, 1}n defined as follows:

sj = 1 if the jth user is a colluder and sj = 0 otherwise.

Clearly, we have the following relation between c and s:

c =
∑

i

si.

For a given size of collusion c, we assume that all the

repartition of the colluders within the users are equally likely,

that is

P(s|c) = 1/

(

n

c

)

. (1)

Moreover, it is commonly assumed that the ith element of y

only depends on the number of 1’s appearing in the colluder’s

codewords at position i. More formally, let t ∈ {0, . . . , c}m

be a vector whose ith element is the number of symbols “1”

in the colluder sequences at position i, 1 ≤ i ≤ m. We have

therefore

t = Xs. (2)

Given t, the probability of the sequence y generated by the

colluders is totally characterized by the following conditional

probability

P(y|t,G) =
∏

i

P(yi|ti,G), (3)

where

PYi|Ti,G(yi|ti = k,G) ∼ Ber(gki).

Hence, the choice of the matrix G of Bernoulli parameters

fully characterizes the collusion strategy of a coalition of size

c. For clarity, we do not specify the parameter c in the notation

of the matrix G of size m × c. The elements of G can be

arbitrary except for the elements gik with k ∈ {0, c} which

should obey the so-called “marking assumption” [4], that is

gi0 = 0 and gic = 1 ∀ i.
In practice, the ability of any system to identify the colluders

(i.e., the vector s) from the observed sequence y strongly

depends on the code X used to protect the content. In his

seminal paper [3], Tardos proposed to construct the code in a

probabilistic manner as follows:

P(X|p) =
m
∏

i=1

n
∏

j=1

P(xij |pi), (4)

where

PXij |Pi
(xij |pi) ∼ Ber(pi),

and p denotes the secret vector collecting the Bernoulli pa-

rameters pi. Moreover, Tardos proposed a specific distribution

to generate the latter parameters:

P(p) =
m
∏

i=1

P(pi), (5)

with1

PPi
(pi) ∼ (1/(π

√

pi(1− pi))), with pi ∈]0, 1[.

In conclusion, we have that the joint probability of the

different quantities entering into play in the conception of the

observed sequence y by the colluders defined in s can be

expressed as follows:

P(y, t,X,p, s|c,G) =P(y|t,G)P(t|X, s)P(s|c)P(X|p)P(p),
(6)

where the different conditional probabilities appearing in the

right-hand side of (6) have been defined in (1), (2), (3),

(4) and (5). In the next section, we will exploit this sound

probabilistic characterization of the system to derive a new

colluder detector.

IV. DECODING DESCRIPTION

The ultimate goal of any fingerprinting system is to accu-

rately identify the users responsible of the release of the pirated

content. More formally, this requires to properly estimate

the “accusation” vector s from the observed sequence y. In

practice, it is sufficient to accuse at least one guilty user

while innocent users are deemed guilty with sufficiently low

probability. This task often results in a compromise between

accuracy and computational complexity. This section is ded-

icated to the derivation of a novel decoder offering a good

1We omit here the cutoff parameter for the sake of simplicity.



trade-off between these two contradicting goals. In section

IV-A, we first replace our contribution in the existing literature.

Then, in section IV-B, we derive the accusation functions

defining our decoder.

A. Connections with previous contributions

This section is dedicated to linking our approach with

existing “simple” decoders. The identification of such decoders

is related to a score σj which gives sufficient information about

the involvement of a user j in the forgery of y. The sources

of information available at the decoder for the evaluation

of one user’s score are the forgery y, the sequence of the

user xj and the secret vector p. In such a context, in order

to prevent accusation of innocent users, two scenarios are

possible: either all users with a score above a threshold are

accused or only the user with the biggest score above the

threshold is accused. The decoder is evaluated in terms of

soundness and completeness. The decoder is said to be ϵ1-

sound if the false alarm probability is bounded by ϵ1, and said

to be ϵ2-complete if the false negative probability is bounded

by ϵ2 for a maximum coalition size.

Two kinds of simple decoders exist. The first ones adapt

their scores computation to the collusion channel as in [13].

The worst case attacks are still unknown for such decoders and

the false alarm probability is not bounded for any coalition

sizes. Their effectiveness is experimentally assessed. On the

contrary, the second class of decoders is independent of the

collusion channel as in [3]. Theoretical proofs of soundness

and completeness are given in [3] by using Chernoff bounds.

In an informed setup, where the decoder knows the collusion

channel and the size of the collusion, the Neyman-Pearson

theorem tells us that the optimal discriminative score, say σNP
j ,

to test whether user j pertains to the collusion or not is as

follows:

σNP
j =

P(y|xj , sj = 1,G,p, c)

P(y|xj , sj = 0,G,p, c)
. (7)

However this scoring is out of reach since the collusion

channel is unknown to the decoder. Some class of agnostic

decoders exist where scoring functions are independent of the

collusion size c and the collusion strategy G. In [14], the

authors proposed a symmetric version of the original Tardos

approach. This decoder computes a score for each user as

σt
j =

m
∑

i=1

U(yi, xij , pi), (8)

with

U(1, 1, pi) =
√

(1− pi)/pi, U(0, 0, pi) =
√

pi/(1− pi)

and

U(1, 0, pi) = −U(1, 1, pi), U(0, 1, pi) = −U(0, 0, pi).

This scoring function ensures some kind of separation

between the distributions of scores of the innocent and traitor

users for any collusion channel compliant with the marking

assumption. It then permits to derive an appropriate threshold

which guarantees to bound the false alarm probability for a

given code length m.

However the authors of [13] have shown the huge gap

between the symmetric Tardos decoder and the informed

decoder of equation (7). Hence, as the collusion channel is

unknown in practice, they have proposed to estimate it. Their

approach is based on the so-called Expectation-Maximization

algorithm. The authors assume that the collusion strategy is

constant for all positions i for the sake of simplifying the

mathematical model. Our assumption on the collusion channel

is more general in the sense that our decoder considers all

possible strategies at each ith position.

B. MAP Decoding with Non-informative Priors

The challenge of robust and effective detection procedures

stands in the fact that some parameters (namely G and c)
of the model are actually unknown to the decoder. Now,

a very common approach in Bayesian statistics consists in

defining non-informative priors on the unknown quantities and

marginalize them out from the joint probability characterizing

the system. By “non-informative” prior, it is usually under-

stood a probability distribution not favoring any of the possible

realizations of the considered random variable.

More specifically, our approach consists in exploiting the

following joint probability to derive our decoder:

P(y, t,X,p, s) =
∑

c

(
∫

P(y, t,X,p, s|c,G)P(G)dG

)

P(c),

where P(y, t,X,p, s|c,G) has been specified in (6) and

P(c), P(G) are non-informative priors which will be defined

hereafter. In turn, these joint probabilities can be marginalized

to compute the following likelihood ratio

σMAP
j ,

P(sj = 1|y,xj ,p)

P(sj = 0|y,xj ,p)
=

P(y,xj ,p, sj = 1)

P(y,xj ,p, sj = 0)
.

At the decoding side, for a given code length, it is illusive to

chase more than say cmax colluders. The size of the collusion

is seen as a discrete random variable ranging from 1 to cmax.

Therefore, its non-informative prior distribution is the uniform

law, that is

P(c) =
1

cmax

. (9)

As for the collusion channels, we first assume the statistical

independence of the parameters:

P(G) =
∏

i,k

P(gik).

We then enforce the marking assumption: gi0 = 1 − gic =
0, ∀i. The other parameters Gik are seen as continuous random

variables ranging in [0, 1]. Not favoring any of the possible

realizations of Gik, we set the intuitive uniform law as a non-

informative prior distribution. Then marginalizing over gik for



k ∈ {1, ..., c− 1} leads to:

P(yi|ti = k) =

∫ 1

0

P(gik)g
y
ik(1− gik)

1−ydgik (10)

=

∫ 1

0

gyik(1− gik)
1−ydgik = 1/2. (11)

Notice that all Beta law Beta(α,β) of equal parameters, such

as the well known Jeffreys prior of parameters α = β = 1/2,

give an equivalent result as in (11). Indeed if

P (gik) =
gα−1
ik (1− gik)

β−1

B(α, β)
, (12)

with

B(α, β) =

∫ 1

0

vα−1(1− v)β−1dv

and if α = β,

P(yi|ti = k) = 1/2. (13)

The uniform law is then just a Beta law of parameters α =
β = 1 in (12).

Let us note that if the realizations of c and G obeyed

probabilities P(c) and P(G), c- and G-blind optimal Neyman-

Pearson test would result in a simple thresholding of σMAP
j .

Let us then particularize the expression of σMAP
j to the

particular hypotheses introduced in (9) and (13). We have

σMAP
j =

∑cmax

c=1 P(y|sj = 1,xj, c)P(sj = 1|c)
∑cmax

c=1 P(y|sj = 0,xj, c)P(sj = 0|c)
, (14)

where

P(sj = 1|c) = c/n,

P(sj = 0|c) = (n− c)/n,

P(y|sj ,xj , c) =
∏

i

P(yi|sj , xij , c)

=
∏

i

c
∑

ti=0

P(yi, ti|sj , xij)

=
∏

i

c
∑

ti=0

P(yi|ti)P(ti|sj , xij , c)

and

P(ti|sj = 1, xij , c) =

(

c− 1

ti − xij

)

p
ti−xij

i (1− pi)
c−1−ti+xij ,

P(ti|sj = 0, xij , c) =

(

c

ti

)

ptii (1− pi)
c−ti .

Particularizing these expressions to (13), we obtain after some

algebraic manipulations:

P(yi|sj = 1, xij) = 1/2× (1 + (−1)yi((1− xij)

× (1− pi)
c−1 − xijp

c−1
i )),

P(yi|sj = 0, xij) = 1/2× (1 + (−1)yi((1− pi)
c − pci )).

C. Numerical solution

The evaluation of the large products appearing in equa-

tion (14) suffers from numerical problems w.r.t. machine

finite precision. The logarithm translates products into sums.

However taking the logarithm of our test does not give a simple

formulation due to the sum over the possible coalition sizes.

We resort to generalized maximum function Mg as shown

in [15]:

Mg(a, b) , log(exp(a) + exp(b))

= max(a, b) + log(1 + e−|a−b|),

Mg(a, b, c) , log(exp(a) + exp(b) + exp(c))

= Mg (Mg(a, b), c) .

The test (14) can be formulated as follows in the logarithmic

domain:

σMAP
j = log

(

cmax
∑

c=2

eA1c

)

− log

(

cmax
∑

c=2

eA2c

)

,

with

A1c = log
c

n
+

m
∑

i=1

logP(yi|sj = 1, xij , c),

A2c = log
n− c

n
+

m
∑

i=1

logP(yi|sj = 0, xij , c).

The generalized maximum function gives the following recur-

sive expression of the test:

σMAP
j = Mg(Mg(...), A1cmax

)−Mg(Mg(...), A2cmax
).

V. SIMULATION RESULTS

The experimental investigation is composed of two parts.

The first one presents the effectiveness of the method for

different collusion channels. The second part presents the

effectiveness of the method for different code lengths. We

used the classical Monte Carlo estimator to estimate the

performance.

We compared our approach with two decoders. The first

decoder is the symmetric version of the Tardos decoder given

in (8). The second decoder is the informed decoder given

in (7).

Receiver Operating Characteristics (ROC) curves plots are

used to compare the three decoders. Deterministic or random

strategies are considered as follows. “Minority” and “Major-

ity” are deterministic strategies where the less or the most

frequent symbol is put in the pirated sequence. “Uniform”,

“Coin flip” and ‘Worst case attack” are random strategies.

In the “Uniform” strategy, the colluders uniformly-randomly

choose one of their symbols. In the “Coin flip” strategy, the

colluders flip a fair coin to choose a symbol. Finally in the

“Worst case attack” (wca) strategy, the colluders minimize the

mutual information between the symbols of the pirated copy

and each of their codewords. It is considered to be the worst

attack against the best achievable simple decoder from an

information-theoretical viewpoint. This strategy is obtained by
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Fig. 1. ROC curves of the informed decoder, the MAP blind decoder and the
symmetric Tardos decoder for 4 different collusion channels with m = 300,
c = 6 and n = 1000 users.

a minimization algorithm described in [16]. This minimization

gives a stationary attack channel as introduced in section IV-A.

In [3], the efficiency of the code in term of error bound

is proved over all random choices of the code, i.e., for all

random choices of the secret vector p, the dictionary of users

X and the strategy G. In our experiment, for one realization

of the Monte Carlo, all these variables are randomly sampled.

For one realization we use n = 103 users, with c fixed before

running the experiment. We then compute the scores with three

decoders. At each realization we store 2×3 scores, as we keep

only the biggest score of the colluders and the biggest score

of the innocents. Each run encompasses 104 realizations.

The false positive is related to σxinn
, the vector of all

innocent-user scores as

pfa = P(max(σxinn
) ≥ τ).

Hence a false alarm event occurs when at least one innocent

user is accused, i.e., one innocent-user score is above the

considered threshold τ .

The false negative is related to σxcoll
, the vector of all

colluder scores, as

pfn = P(max(σxcoll
) < τ).

The false negative event occurs when all colluders are missed,

i.e., when all colluder scores are below the considered thresh-

old τ .

A. Stability over different collusion channels

Figure 1 shows the ROC curves for the symmetric Tardos

decoder, the informed decoder and our MAP blind decoder. We

consider a fingerprinting code of length m = 300, a maximum

number of colluders cmax = 10 and a true number of colluders

c = 6. The legend of Figure 1 is set as follows. The uppercase

letters “T”, “I”, “M” are used in this order for the Tardos

decoder, the Informed decoder and the MAP blind decoder.
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Fig. 2. ROC curves of the informed decoder, the MAP blind decoder and the
symmetric Tardos decoder for 3 different code lengths and the wca strategy
with c = 6 and n = 1000 users.

The lowercase letters “r”,“fc”,“wca”,“m” states for random,

flip coin, worst-case attack and minority strategies.

For all strategies our decoder leads to enhanced performance

as compared to Tardos decoder. Not surprisingly, the informed

decoder gives the best performance for all strategies. The

stability of the Tardos decoder performance is shown for this

set of collusion strategies: unlike the informed and MAP

blind decoders, its performance does not vary a lot with

the considered strategy. For some strategies, this stability is

however achieved at the expense of a loss of performance

with respect to the informed and the MAP blind decoders. In

particular, the largest gap between the performance of Tardos

and informed/MAP blind decoders is reached for the minimum

strategy which appears to be the more damaging for Tardos

approach [13]. The wca strategy is the worst strategy against

the Informed decoder. It is also the worst strategy against our

MAP blind decoder for this set of strategies. However it is

important to mention that the wca strategy has not been proved

to be the worst attack against the MAP blind decoder.

Even if the MAP blind decoder is not quite as good as the

informed decoder for the flip coin strategies, its performance

is very closed to the informed decoder, the ROC curves are

almost overlapped in this case. This is consistent with the coin

flip strategy, because only the true coalition size is unknown

for the MAP blind decoder. Notice that the performance of

the MAP blind decoder against the flip coin attack is a little

bit better than the performance of the informed decoder for

the random strategy. Nevertheless, these last three considered

configurations lead almost to the same performance. It is also

the case for the worst case attack against the informed decoder

and for the random attack against the MAP Blind decoder.

B. Evaluation over different code lengths

Figure 2 presents the ROC curves for the symmetric Tardos

decoder, the informed decoder and our MAP blind decoder



for different code lengths. We evaluate the performance of the

decoders for the wca attack since it is the worst attack against

our MAP blind decoder among the considered strategies. We

use the same set of parameters as in Figure 1 with the same

legend terminology. The probability of false alarm and the

probability of false negative are set in logarithmic scale in

Figure 2.

For all lengths, our decoder results in less decoding errors

compared to the symmetric Tardos decoder. In particular,

our decoder performance is closer to the informed decoder

performance than Tardos decoder. Moreover, the gap between

the performance of the Tardos and the MAP blind decoders

increases as the length of the code increases.

VI. CONCLUSION

Our blind Maximum A Posteriori approach works for

any probabilistic codes under the marking assumption with

acceptable complexity. Promising results compared to the

symmetric Tardos decoder are presented. The preliminary

results presented here open however some important questions:

1) What is the behaviour of our decoder if the true coalition

size is above the maximum coalition size set to the

decoder?

2) Is our decoder better than estimation-based decoders,

such as in [13], against time varying attacks and sta-

tionary attacks?

3) How is linked our decoder functions with the Tardos

ones? Some preliminary numerical results, not presented

here, gives some correlations in particular asymptotic

cases.

These three last issues will be addressed in our future

research as the study of the setting of a proper threshold so

as to bound false alarm probability.

ACKNOWLEDGMENT

The authors thank Teddy Furon for his valuable help in

writing this paper.

REFERENCES

[1] N. Wagner, “Fingerprinting,” in Symposium on Security and Privacy,
IEEE Computer Society, 1983, pp. pp. 18–22.

[2] G. R. Blakley, C. Meadows, and G. B. Purdy, “Fingerprinting long for-
giving messages,” in Advances in Cryptology CRYPTO 85 Proceedings,
1985, vol. 218, pp. 180–189.

[3] G. Tardos, “Optimal probabilistic fingerprint codes,” J. ACM, vol. 55,
no. 2, p. 10:110:24, 2008.

[4] D. Boneh and J. Shaw, “Collusion-secure fingerprinting for digital data,”
IEEE Transactions on Information Theory, vol. 44, pp. 1897–1905,
1998.

[5] C. Peikert, A. Shelat, and A. Smith, “Lower bounds for collusion-secure
fingerprinting,” in Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, 2003, pp. 472–479.

[6] O. Blayer and T. Tassa, “Improved versions of tardos fingerprinting
scheme,” Designs, Codes and Cryptography, vol. 48, pp. 79–103, 2008.

[7] B. Skoric, T. U. Vladimirova, M. Celik, and J. C. Talstra, “Tardos finger-
printing is better than we thought,” IEEE Transactions on Information
Theory, vol. 54, pp. 3663–3676, 2008.

[8] K. Nuida, S. Fujitsu, M. Hagiwara, T. Kitagawa, H. Watanabe,
K. Ogawa, and H. Imai, “An improvement of tardos’s collusion-secure
fingerprinting codes with very short lengths,” in Proceedings of the 17th
international conference on Applied algebra, algebraic algorithms and
error-correcting codes, ser. AAECC’07, 2007, p. 8089.

[9] M. Kuribayashi, N. Akashi, and M. Morii, “On the systematic generation
of tardos’s fingerprinting codes,” in 2008 IEEE 10th Workshop on
Multimedia Signal Processing, 2008, pp. 748 –753.

[10] P. Moulin, “Universal fingerprinting: Capacity and random-coding expo-
nents,” in IEEE International Symposium on Information Theory, 2008.
ISIT 2008, 2008, pp. 220 –224.

[11] E. Amiri and G. Tardos, “High rate fingerprinting codes and the finger-
printing capacity,” in Proceedings of the twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, ser. SODA ’09, 2009, p. 336345.

[12] P. Meerwald and T. Furon, “Towards joint tardos decoding: The Don
quixote algorithm,” in Information Hiding. Springer Berlin Heidelberg,
2011, vol. 6958, pp. 28–42.

[13] T. Furon and L. Perez-Freire, “EM decoding of tardos traitor tracing
codes,” in Proceedings of the 11th ACM workshop on Multimedia and
security, 2009, pp. 99–106.

[14] B. Skoric, S. Katzenbeisser, and M. U. Celik, “Symmetric tardos
fingerprinting codes for arbitrary alphabet sizes,” Designs, Codes and
Cryptography, vol. 46, p. 137166, 2008.

[15] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,” in
ICC ’95 Seattle, ’Gateway to Globalization’, 1995 IEEE International
Conference on Communications, 1995, vol. 2, 1995, pp. 1009–1013.

[16] T. Furon and L. Perez-Freire, “Worst case attacks against binary proba-
bilistic traitor tracing codes,” in Proceedings of First IEEE International
Workshop on Information Forensics and Security, 2009, pp. 46–50.


