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Efficient Probabilistic Group Testing Based on Traitor Tracing

Thijs Laarhoven∗

July 10, 2013

Abstract
Inspired by recent results from collusion-resistant traitor trac-
ing, we provide a framework for constructing efficient proba-
bilistic group testing schemes. In the traditional group testing
model, our scheme asymptotically requires T ∼ 2K lnN tests
to find (with high probability) the correct set of K defectives
out of N items. Several other models are also considered, such
as some noisy group testing and threshold group testing models,
but we emphasize that this framework can be applied to many
other variants of the classical model as well, both in adaptive
and in non-adaptive settings.

1 Introduction

1.1 Group testing
Suppose a large population has to be tested for a certain illness,
to determine which people are ill. One way to do this is to take
blood samples from each person and test these samples one by
one. However, if only few people are ill, many tests are wasted
on non-infected people. It may then be advantageous to test
bigger pools of several blood samples with group tests. If one
of the tested people in a pool is ill, the test will come back pos-
itive and further tests are required, but if the test comes back
negative, we may conclude that none of the people in the tested
group are ill and many tests are saved. Group testing concerns
the efficient identification of a small subset of K bad items (de-
fectives) hidden amongN total items, using the aforementioned
group tests. The goal of group testing is to minimize the num-
ber of group tests T required to identify the defective items, by
carefully choosing the groups to be tested.

Adaptive group testing In 1943, Dorfman [15] published a
seminal paper studying practical ways of testing many blood
samples of soldiers for syphilis, which is widely regarded as
the first work on group testing. In the decades to follow, a lot of
research was done in the area of adaptive group testing, where
many sequential rounds of testing are considered, and the se-
lection of samples for the next pool may be influenced by the
results of the previous group test. In this adaptive setting, us-
ing a binary search, T = Kdlog2Ne tests suffice to detect K
defectives in a sample of size N . Up to a constant factor, this
number of tests is optimal.

Non-adaptive group testing For practical and economical
reasons, the focus of later work in group testing shifted more
∗T. Laarhoven is with the Department of Mathematics and Computer Sci-

ence, Eindhoven University of Technology, The Netherlands.
E-mail: mail@thijs.com.

towards the non-adaptive setting, where many tests are run in
parallel in one or few rounds. With certain combinatorial de-
signs it is possible to find all K defectives in one round with
T = O(K2 log(N/K)) tests [16], while a lower bound of
T = Ω(K2 logN/ logK) [17] shows that this number of tests
is nearly optimal, when one round of tests is done and when
the group testing algorithm always has to identify the correct
subset of defectives. If we allow for a small positive probabil-
ity ε of not detecting the right set of defectives, then even in
one round of tests, T = O(K logN) parallel tests suffice to
isolate all defectives with high probability. Together with the
lower bound of T ≥ K log2N for large N [27], this shows
that T = Θ(K logN) is optimal. Chan et al. [8] recently gave
a computationally efficient algorithm that belongs in the lat-
ter category that uses T = eK log(N/ε) tests to get a success
probability of at least 1− ε.

Variants Besides the pure group testing model, variants have
also been studied, such as noisy group testing [3,4,8,10,11,28]
and threshold group testing [9, 13, 24]. In these models a posi-
tive outcome of a test is not equivalent to at least one defective
being present in the tested group, as there may be a small prob-
ability of making a mistake in the testing procedure, or because
the test might not come back positive if very few defectives are
present in the tested group. The trivial adaptive group testing al-
gorithm of doing a binary search does not work in these models,
and so even finding an efficient adaptive group testing scheme
in these models not so easy.

1.2 Collusion-resistant traitor tracing

A completely different, but in fact closely related area of re-
search is that of collusion-resistant traitor tracing. To pro-
tect digital content from unauthorized redistribution, copyright
holders embed watermarks in the content such that, if an illegal
copy is made and distributed, the watermark can be linked to
the responsible user. Things become more complicated when
several pirates collude, and start mixing their copies to create a
new pirated copy of the content that does not match any of their
copies of the content exactly. If in some segment of the data
all pirates receive the same watermarked version, the marking
assumption says that they are forced to output this version of
the content. However, if they receive several different versions,
they may choose any of them to output. Traitor tracing con-
cerns assigning watermarks to N users in such a way that, even
if K users mix their copies as described above, we may still be
able to find the colluders. The goal of traitor tracing is to min-
imize the number of segments T needed to trace (part of) the
coalition, by carefully choosing which watermarked versions
of each segment to send to each user.
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Static (non-adaptive) traitor tracing Work on traitor tracing
started only in the late 20th century. In many of the early con-
structions, the number of segments required was polynomial in
N , until Boneh and Shaw [7] gave an efficient construction that
uses T = O(K4 log(N/ε)) segments to find at least one of the
colluders with high probability in the static (non-adaptive) set-
ting. Upper and lower bounds on T were further improved until
in 2003, Tardos [31] showed that T = O(K2 log(N/ε)) seg-
ments are both necessary and sufficient. In the same paper he
presented an efficient scheme that achieves this lower bound up
to a constant factor. Later research focused on establishing the
exact (asymptotic) lower bound [19], which turned out to be
T & 2K2 lnN , and decreasing the upper bounds by improv-
ing Tardos’ scheme [6, 20, 26, 29], which eventually lead to an
asymptotic bound of T ∼ 1

2π
2K2 ln(N/ε).

Dynamic (adaptive) traitor tracing While the above results
are based on the static setting where the assignment of water-
marks is fixed in advance, some work was also done on dy-
namic (adaptive) schemes. Besides the well-known determinis-
tic scheme of Fiat and Tassa [18] which requires a large band-
width, Tassa [32] constructed a low bandwidth dynamic scheme
with a length of O(K4 logN). Recently, Laarhoven et al. [22]
gave a more efficient dynamic scheme where the number of seg-
ments is onlyO(K2 logN), and in [21] a trade-off construction
was given to build schemes that require a higher bandwidth but
with a smaller constant T . In these schemes, all colluders are
caught with high probability, whereas in non-adaptive schemes,
at least one is caught with high probability.

Relation to group testing Oosterwijk et al. [26] recently con-
sidered optimizing Tardos’ scheme to the scenario where the pi-
rate strategy is known, e.g., when the pirates always randomly
choose one of their versions (the interleaving attack) or when
the pirates always output the same watermarked version if at
least one of them received this version (the all-1 attack). The
latter pirate strategy corresponds to getting an output of 1 if and
only if at least one traitor is present in the set of users who re-
ceived a 1. This directly corresponds to the traditional group
testing game, where the test output is a 1 (positive) if at least
one of the defectives has a 1 (is included in the test). Group
testing can be seen as a special case of traitor tracing with a spe-
cific pirate strategy, and so traitor tracing results that are tailored
specifically against certain strategies (such as those from [26])
may also be useful to group testing.

1.3 Contributions
In this paper, we will show that combining and improving sev-
eral of the aforementioned results from traitor tracing [22, 23,
26, 31] leads to a group testing framework that can deal with
many different group testing models efficiently. The resulting
group testing algorithms we present are computationally effi-
cient and, for sufficiently largeK, require fewer tests than many
known algorithms from the literature. For large N , the number
of tests required in our schemes scales as follows, depending on
the model. Here r is a noise-parameter, which informally cor-
responds to the probability of not getting the expected result.

• Traditional group testing: T ∼ 2K lnN .
• Noisy group testing (dilution): T ∼ 2K lnN/(1− r).

• Noisy group testing (additive): T ∼ 2K lnN/(1−
√

2r).
• Noisy group testing (subtractive): T ∼ 2K lnN/(1− r).
• Noisy group testing (symm.): T ∼ 2K lnN/(1−

√
2r).

• Threshold group testing (majority): T ∼ πK lnN .
• Threshold group testing (Bernoulli gap): T ∼ 4K lnN .
• Threshold group testing (linear gap): T ∼ 2K2 lnN .
• Threshold group testing (unknown gap): T ∼ 2K2 lnN .

These asymptotics apply to both adaptive and non-adaptive
group testing, but the first order terms are considerably smaller
in adaptive group testing than in non-adaptive group testing.
Although we have worked out the details for several models,
this paper also aims to provide a framework to efficiently deal
with any group testing model. For instance, for threshold group
testing with small gaps we did not provide explicit formulas,
but one may derive them as we will explain below.

Besides these improvements and this framework, one goal
of this paper is to further stimulate a cooperation between the
areas of group testing and traitor tracing, as these areas are sur-
prisingly similar. Much work has been done in both areas in
similar directions (combinatorial designs, probabilistic analy-
sis, information-theoretic lower bounds), and although the con-
nection between the two areas has been made a few times be-
fore (e.g., [12, 25, 30]), a further exchange of ideas may lead to
improved results in both areas.

The outline of this paper is as follows. In Sect. 2 we provide
the aforementioned framework to deal with arbitrary group test-
ing models. Then, in Sect. 3, 4, and 5 we apply our results to
some previously considered models and present our results. Fi-
nally, in Sect. 6 we conclude by mentioning an important open
problem in traitor tracing that might be of interest to the group
testing community. All proofs and many details are omitted due
to space limitations, but will appear in the full version.

2 Score-based group testing
In this section, we will look at a framework for probabilistic
group testing with average-case errors. We will cover both
adaptive and non-adaptive group testing. Before introducing
this framework, we first introduce some more notation. We
write X to denote the group testing matrix, or code matrix, in-
dicating which items are included in which tests. We denote its
length by T , which we will also call the code length. We de-
note test outcomes with y. Throughout, we will generally index
items with j and tests with i, i.e., yi is the outcome of the ith
test, and Xj,i = 1 if and only if item j is included in the ith
test. Finally, we write ε1 for an upper bound on the probability
that one or more non-defective items are marked as defective
by our algorithm (getting one or more false positives), and ε2
for an upper bound on the probability that some defective item
is not marked defective (a false negative).

2.1 Non-adaptive group testing
In 2003, Tardos [31] introduced a collusion-resistant traitor
tracing scheme, which he showed to be order-optimal in the
number of segments needed. In group testing terminology, this
scheme relies on assigning test scores to items based on the re-
sults of each test, such that if we add up all test scores for each
item, defective items will eventually get much higher scores
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Constructing the group test matrix X:

• For each i, j, set Xj,i = 1 with probability p.

Finding the defectives, given the test results y:

• For each i, j, calculate a score Sj,i = h(Xj,i, yi).
• For each j, compute the total score Sj =

∑
i Sj,i.

• Mark item j as defective if and only if Sj > Z.

Figure 1: The general outline of non-adaptive score-based group testing. The
parameters p, h, Z, and T depend on the model and will be discussed later.

than non-defective items. Given a certain probability p, a score
function h, and a threshold Z, this scheme works as described
in Fig. 1. Here i refers to the ith test, and j refers to the jth
item. 1

For the time being we develop the theory for a generic score
function h, but it is generally chosen such that it assigns posi-
tive scores to matches (Xj,i = yi) and negative scores to differ-
ences, and gives large positive (negative) scores to the matches
(differences) that were the least likely. For each test, the ex-
pected score for a non-defective item is usually 0, while for
defective items it is strictly positive. Therefore, by running suf-
ficiently many tests, with high probability we are able to dis-
tinguish between the scores of non-defective items (which have
mean 0) and the scores of defective items (which have a large
positive mean).

To analyze the performance of score-based schemes, we need
to estimate the probabilities that (a) a non-defective item is still
marked as defective, and (b) a defective item is not marked as
defective. To do this, first note that for each item j, the scores
for each test i are independently and identically distributed. For
convenience, let us introduce the following notations for the
mean and variance of the scores of non-defective items and de-
fective items for each test. Below, we omit subscripts i on y,
and we use x (x̃) to denote the symbol Xj,i for non-defectives
(defectives). Throughout, we will consistently use tildes to in-
dicate variables corresponding to defective items.

µ = E[h(x, y)], µ̃ = E[h(x̃, y)], (1)

σ2 = Var[h(x, y)], σ̃2 = Var[h(x̃, y)]. (2)

Now, the total score for an item j is given by Sj =
∑
i Sj,i,

where Sj,i = h(Xj,i, yi). This is a sum of many i.i.d. random
variables, and due to the Central Limit Theorem, for large T we
expect Sj to be approximately normally distributed with mean
µT (µ̃T ) and variance σ2T (σ̃2T ). So if we look at the average
score per test S∗j =

Sj

T , non-defective items (defective items)
will have a mean of µ (µ̃) and a standard deviation of σ∗ =
σ√
T

(σ̃∗ = σ̃√
T

), as shown in Fig. 2. Therefore, when µ < µ̃

and σ and σ̃ are sufficiently small, increasing T will make both
curves more narrow, and allow us to distinguish between the
two curves with high probability. Working out the details, this
leads to the following result about T and Z. The proof, as well
as many other details, can be found in the full version of this

1In traitor tracing, one actually has to use varying values of p for different
tests, as otherwise an adversary could gain knowledge about p and use this
knowledge to build a strong attack that can beat the system. However, in group
testing there is no adversary, and therefore there is no reason to vary p for
different tests.

µ

σ∗

µ̃

σ̃∗

Z∗
S∗j

Figure 2: The Gaussian approximation of the score curves S∗j = Sj/T , for
non-defectives (left) and defectives (right). The means µ and µ̃ do not depend
on T , but σ∗ = σ√

T
and σ̃∗ = σ̃√

T
decrease when T increases. For suffi-

ciently large T , choosing Z∗ appropriately between µ and µ̃ guarantees that
the left (right) marked area has size at most ε2

K
( ε1
N

).

paper.

Theorem 1. Suppose we use the score-based non-adaptive
group testing scheme described in Fig. 1, and the average item
scores for each item follow a perfect Gaussian curve. Then, to
guarantee that (i) a non-defective item is marked defective with
probability at most ε1

N , and (ii) a defective is marked as non-
defective with probability at most ε2K , the following parameters
suffice:

T =
2

(µ̃− µ)2

[
σ

√
ln

(
N

ε1

)
+ σ̃

√
ln

(
K

ε2

)]2
, (3)

Z =

σµ̃
√

ln
(
N
ε1

)
+ σ̃µ

√
ln
(
K
ε2

)
σ

√
ln
(
N
ε1

)
+ σ̃

√
ln
(
K
ε2

)
 · T. (4)

In particular, it then follows that with probability at least 1−ε1,
all non-defectives are correctly classified as non-defective, and
with probability at least 1− ε2, all defective items are correctly
marked as defective.

For notational convenience, let us write

A =
2σ2

(µ̃− µ)2
, B =

σ̃

σ
, ηnon =

√
ln(K/ε2)

ln(N/ε1)
, (5)

so that the formula for the parameter T in Thm. 1 can be con-
cisely expressed as

T = A ln

(
N

ε1

)
[1 +Bηnon]

2
. (6)

We generally have ηnon ≤ 1, while for smallK and largeN , the
value of η will be very small. In fact, for K = No(1) and N →
∞ we have ηnon = o(1), leading to the following corollary.

Corollary 1. Suppose thatK = No(1), that ε1 and ε2 are fixed,
and that B = O(1). Then, for large N we have

T ∼ A lnN, Z ∼ Aµ̃ lnN. (7)

To minimize the number of tests, we are therefore mostly
aiming to minimize the value of A. This parameter depends on
the choices of p and h, and the model of how the test result y is
produced.

3



Constructing X and finding the defectives:
For each i = 1, . . . , T , sequentially do the following.
(Initially A = {1, . . . , N} and Sj(0) = 0 for all j.)

• For each j ∈ A, set Xj,i = 1 with probability p.
• Run the test, and obtain the test output yi.
• For each j ∈ A, do the following:

– Compute Sj,i = h(Xj,i, yi).

– Update Sj(i) = Sj(i− 1) + Sj,i.

– Mark j as defective if Sj(i) > Z.

• Remove all items marked defective from A.
Figure 3: How to adapt the non-adaptive score-based group testing schemes to
the adaptive setting, and gain the factor

√
K in the first order error term.

2.2 Adaptive group testing
The procedure described in Fig. 1 can be adapted to the adap-
tive setting by making the following small modification: in-
stead of only marking items defective if their final scores ex-
ceed Z, we mark an item defective (and do not include it in any
of the remaining group tests) as soon as its score exceeds the
threshold Z. This modification was recently proposed in [22]
to build efficient adaptive traitor tracing schemes from Tardos’
non-adaptive scheme, but can also be used to make score-based
group testing work even more efficiently. The modified scheme
is presented in Fig. 3.

It was shown in [22, 23] that with this modification, prov-
ing that the average defective item score exceeds Z is roughly
enough to prove that all defective items are found. This means
that instead of looking at scores of single defective items, we
should now look at the average score of all defective items.
Compared to the right curve in Fig. 2, this curve has the same
mean µ̃, but because it is an averaged score over K individual
scores, the normalized standard deviation σ∗ will be

√
K times

smaller. This leads to the following result, a proof of which can
be found in the full version.

Theorem 2. Suppose that we use the score-based adaptive
group testing scheme described in Fig. 3, and suppose that
the average item scores of all items follow a perfect Gaus-
sian curve. Then, to guarantee that (i) a non-defective item
is marked defective with probability at most ε1/N , and (ii) a
defective item is not marked defective with probability at most
ε2/K, the following parameters suffice:

T =
2

(µ̃− µ)2

[
σ

√
ln

(
N

ε1

)
+

σ̃√
K

√
ln

(
K

ε2

)]2
(8)

Z =

σµ̃
√

ln
(
N
ε1

)
+ σ̃√

K
µ

√
ln
(
K
ε2

)
σ

√
ln
(
N
ε1

)
+ σ̃√

K

√
ln
(
K
ε2

)
 · T. (9)

Similar to the non-adaptive group testing setting, we now

write ηada =
√

ln(K/ε2)
K ln(N/ε1)

so that the formula for the param-
eter T in Thm. 2 can be concisely expressed as

T = A ln

(
N

ε1

)
[1 +Bηada]

2
. (10)

The parameter ηada is generally really small due to the factor√
K. So without making any assumptions on K and N , we

may already claim that for large K and/or N , the parameter
ηada will go to 0.

Corollary 2. Suppose that ε1 and ε2 are fixed, and that B =
O(1). Then, for large N , we have

T ∼ A lnN, Z ∼ Aµ̃ lnN (11)

To summarize, the asymptotics of T will generally be the
same as in the non-adaptive model, but the convergence to this
limit will be much faster due to the extra factor

√
K. Also, as

noted in [22], the actual number of tests needed to find all defec-
tives is generally much less than the theoretical upper bounds
suggest.

2.2.1 Dealing with unknown K

In [22], a scheme is discussed to effectively deal with adaptive
scenarios where the number of defectives is not known in ad-
vance (the universal Tardos scheme), while maintaining equiv-
alent asymptotics on T . This roughly comes down to using
several thresholds Z, and the same idea may also be applied to
adaptive group testing with an unknown number of defectives.
For details, see [22, Sect. V].

2.2.2 Reducing the number of stages

In [22], a setting somewhere between non-adaptive and adap-
tive traitor tracing is also discussed (the weakly dynamic Tardos
scheme), and how one could adapt the adaptive scheme to such
a setting effectively. Translating those results to group testing,
the same asymptotics on T hold even if the number of stages is
reduced to O(K) (with O(T/K) tests in each stage). But re-
ducing the number of rounds does lead to larger first order terms
and larger practical code lengths. For details, see [22, Sect. IV].

2.3 Optimal score functions h

Recently, Oosterwijk et al. [26] studied the score functions used
in traitor tracing, and showed that if the attack strategy of the
pirates is known, then the score function h that minimizes A is
given as follows. This choice of h is such that it is both centered
(µ = 0) and quasi-normalized (σ2 = µ̃).

Lemma 1. [26, Cor. 6] The optimal, centered (µ = 0) and
quasi-normalized (σ2 = µ̃) score function h that minimizes A
under the Gaussian assumption is given by

h(x, y) =
1

K

∂ ln
(
py|p0,p1

)
∂px

∣∣∣∣∣
p1=1−p0=p

, (12)

where py = P (yi = y) and px = P (Xj,i = x).

For several attack strategies explicit formulas for h were de-
rived in [26], some of which we will encounter later. For one
particular strategy they obtained a score function that turned out
to achieve capacity in the non-adaptive traitor tracing game.

4



2.4 Optimal probabilities p

Once the model (in traitor tracing: attack) is fixed, we can now
compute the optimal score function h as described above, and
we are almost done. To finalize the scheme, we then only need
to choose a parameter p. Since the parameters A and B, and
therefore a Gaussian-based estimate of the code length T , can
be explicitly computed as a function of p, what remains is a
straightforward optimization of p minimizing the estimate of
T . Asymptotically, as shown in Cor. 1 and 2, we would like to
choose p so as to minimize A, but in practice there is a trade-
off between minimizing A and minimizing B. We will further
discuss this below.

3 Traditional group testing

With the framework in place, we are ready to start building
group testing schemes in arbitrary models, and we will dis-
cuss the results in the next few sections. We will naturally start
with the most often considered, traditional group testing model,
where the outcome of a test is positive if and only if at least one
defective item is present in the tested pool. We will first give
a scheme based on a straightforward optimization of h and p,
and then discuss how the score function can be slightly refined
in this particular model, leading to smaller constants T .

3.1 The direct approach

First, Oosterwijk et al. [26, Cor. 22] showed that the following
centered and quasi-normalized score function is optimal in the
ordinary group testing model, in that it minimizes A under the
Gaussian assumption.

h(x, y) =


+p/(1− p) (x, y) = (0, 0)

−p(1− p)K−1/(1− (1− p)K) (x, y) = (0, 1)

−1 (x, y) = (1, 0)

+(1− p)K/(1− (1− p)K) (x, y) = (1, 1)

(13)

Using this score function, we can compute the parameters A
and B as a function of p, and find the optimal value of p that
minimizes T . For arbitrary values of K, these parameters are
somewhat ugly functions of p, but the optimization of p is just a
straightforward procedure. We will hide these less pretty details
in a full version, and focus on the cleaner asymptotics of T here.
Note that “asymptotics” here refers to considering large K, al-
though the results may already provide good approximations of
the actual value of T when K is small.

First, as is well known in group testing, one generally has
to use small values of p and sparse matrices X . It is generally
assumed that p = α

K for some α which is constant or almost
constant in K. Using the same parametrization here, we obtain
the following asymptotics for the code length constants A and
B:

A =
2(eα − 1)

α
K +O(1), (14)

B =

√
1

eα − 1
+O

(
1

K

)
. (15)

Here, it should be noted that the leading term of A is a strictly
increasing function of α, while the leading term of B is strictly
decreasing as α increases. There is a clear trade-off here be-
tween A and B, and the optimal choice of α depends on the ex-
act set of parameters K, N , ε1 and ε2. We mention two simple
choices of α and therefore p, and their respective code lengths:

p =
1

K
⇒ T = 2(e− 1)K ln

(
N

ε1

)[
1 +

η√
e− 1

]2
, (16)

p =
ln 2

K
⇒ T = 2K log2

(
N

ε1

)
[1 + η]

2
. (17)

If we focus on the regime of large K, we see that α → 0 is
optimal to minimize A, in which case we get

T = 2K ln

(
N

ε1

)(
1 +O

(
α+

η√
α

))
. (18)

Setting α = O(η2/3) balances the order terms, and leads to a
first order term of the order O(η2/3). But the important thing to
note here is the leading term of T :

T ∼ 2K lnN. (19)

For sufficiently large K, this improves upon results of Chan et
al. [8]. It has to be noted that in their schemes, there are never
any false positives (i.e., ε1 = 0), which is not true with the
above construction. But if a small margin of error is present
anyway (e.g., due to errors in the testing procedure), marked
items may have to be tested individually anyway to confirm that
the items are defective. In that case, allowing ε1 > 0 makes
sense. Note that the asymptotics of T are only a factor 2 ln 2 <
1.39 above the information-theoretic lower bound [27, Thm. 2].

To give an idea of how the scheme actually works, an exam-
ple is given in Fig. 4 with toy parameters K = 10, N = 1000,
and ε1,2 = 10−2. For the non-adaptive scheme, optimizing p
then gives us p ≈ 0.091 leading to T ≈ 941 and Z ≈ 37, while
for the adaptive scheme we get p ≈ 0.055 with T ≈ 486 and
Z ≈ 29. 2

3.2 Fine-Tuning the Score Function
Taking a step back from the score-based construction and look-
ing at the group testing model, we know that if an item is in-
cluded in a test (x = 1) while the test result is negative (y = 0),
this item is certainly not defective. So in those cases, instead
of assigning this item a somewhat negative score of −1 (which
may not be enough to guarantee that the item is not marked de-
fective), we may also assign items a score of−∞when they are
included in a test which comes back negative. So we may fine-
tune h by setting h(1, 0) = −∞. Then in each segment with
probability q = p(1 − p)K a non-defective item is assigned a
score of −∞, so with probability 1− (1− q)T a non-defective
has a score of −∞ after T segments. Setting p = 1

K maxi-
mizes the latter probability, as was previously noted in [8], and
eventually leads to an asymptotic code length of

T ∼ 2e(e− 1)K lnN

2e− 1
≈ 2.11K lnN. (20)

2Note that in noiseless group testing, a trivial binary search leads to a much
better adaptive scheme with ε1,2 = 0 and T = Kdlog2Ne = 100 tests.
However, in noisy settings (Sect. 4) and several other models (Sect. 5) such
trivial algorithms do not exist, and in those cases our adaptive construction may
also be of interest.
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(a) Non-adaptive traditional group testing

(b) Adaptive traditional group testing

Figure 4: An example of the score-based scheme in action, in the non-adaptive
setting and in the adaptive setting. The green marked area shows the range of
all non-defective item scores, the red lines show the scores of defective items,
the horizontal blue line shows the threshold Z, and the purple bold line shows
the average score of defective items. As one can see, in non-adaptive group
testing we need this purple line to really exceed Z, while in the adaptive setting
it suffices to let this average hit Z.

So also for p = 1
K we end up with improved asymptotics for T ,

compared to the T = eK ln
(
N
ε1

)
of [8].

4 Noisy group testing

We saw in Sect. 3.2 that we may use the fact that the result of a
test is never positive when one of the defective items is present
in the pool, to fine-tune the score function and find all defec-
tives even more efficiently. However, such certainties generally
do not exist, as tests may have a small probability of not return-
ing the correct result. Here we discuss two noisy group testing
models previously considered in the literature, and show what
the asymptotics on T become.

4.1 Dilution model

In the dilution model [3, 4, 10, 11, 28], we assume that a test
may not come back positive even if a defective item is present
in the tested pool, because this defective item may be inactive
with a small probability r. This means that the probability that
a defective item contributes a 1 to the test result is now not p,
but p′ = p(1 − r). In this model, optimizing h leads to the
centered and quasi-normalized score function given in Table 1.
To minimize A, we again need to take α close to 0, in which

case the asymptotic code length becomes

T ∼ 2K lnN

1− r
. (21)

This is somewhat comparable to a result of [4] which has a fac-
tor 1

(1−r)2 ≈
1

1−2r in the denominator.

4.2 Additive model
Another commonly considered model is that of additive
noise [3, 4, 28], where the final extraction of the test result may
not always be correct. In particular, we assume that we are in
the ordinary group testing model, but the output y may also be
1 with probability r if no defectives were actually present in the
test. For this model, after fine-tuning h we get the score func-
tion given in Table 1. Again, for small r, the optimum choice
of α (minimizing A) will be close to 0. However, in this case α
will not approach 0 for fixed r > 0, as choosing α� r leads to
large values of A. In fact, to optimize the leading term of A for
fixed r > 0, one should choose α to satisfy eα(1−α) = 1− r,
which approximately corresponds to α ≈

√
2r+O(r). For the

asymptotics of the code length we then get

T ∼ 2K lnN

1−
√

2r +O(r)
. (22)

Note that Atia and Saligrama [4] showed that a code length of
the order O(K logN

1−r ) is already sufficient, and that our result,
although practical, does not achieve this bound.

4.3 Subtractive model
If instead of flipping zeros to ones as in the additive model,
a one is flipped to a zero with probability r (which one may
call the subtractive model), the optimal asymptotic code length
would be comparable to the dilution model with parameter r, as
shown in Table 1. In particular, we should again let α → 0 to
minimizeA, and the asymptotic code length then becomes T ∼
2K lnN
1−r . Although this model seems very similar to the additive

model, in this case the asymptotic code length is better when
r is small. Together with the results from the dilution model,
this motivates an earlier remark of [28] that dealing with false
positives is apparently harder than dealing with false negatives.

4.4 Symmetric model
Finally, if the noisy “channel” that the test outcome passes
through is symmetric [8], i.e. if any test result y may be
wrong with probability r, then doing the above analysis leads
to asymptotics comparable to the additive model, as shown in
Table 1. In particular, we should not let α → 0 but choose
α ≈

√
2r to minimize A, and we again get an asymptotic code

length of T ∼ 2K lnN
1−
√
2r+O(r)

.

5 Threshold group testing
Finally, a model that has also been considered before is thresh-
old group testing [9, 13], where a test result may only be posi-
tive if sufficiently many defective items are present in the tested
pool. We will restrict our attention to the case where the test
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result is a (non-deterministic) function only of the number of
defectives in a tested pool. This means that all positives are
treated symmetrically, and the test result does not depend on
how many non-defectives were present in the tested group. In
all models, it is assumed that: if at most ` defectives are present
in a test, the output will be negative; if at least u defectives are
present, the test result is positive; and if the number of defec-
tives β in a group test lies between ` + 1 and u − 1, the result
depends on the specific model.

5.1 Majority group testing

This model was introduced in [24], and considers the case
where y = 1 if and only if more than half the defectives are
present in the tested pool. This corresponds to ` = K−1

2 and
u = K+1

2 . In this case, the score function h becomes a mess,
but not if we immediately set p to its optimal value, which we
find to be p = 1

2 . In that case, the score function reduces to
the trivial function of +1 for matches and −1 for differences,
as shown in Table 1. This score function is centered (µ = 0)
and normalized (σ2 = 1), and working out the details for large
K leads to an asymptotic code length of

T ∼ πK lnN. (23)

Interpolating between the ordinary group testing model and ma-
jority group testing, one may expect that if ` = u − 1 with
0 < ` < K−1

2 , the optimal value of p is around `
K and the

asymptotics on T are between 2K lnN and πK lnN .

5.2 Bernoulli model

The Bernoulli gap model was previously considered in [9], and
says that if the number of defectives in a pool is between `+ 1
and u−1, the probability that the test outcome is positive equals
q = 1

2 . We will focus on the extreme case of ` = 0 and u = K,
although a similar analysis may be done for other values of `
and u. First, the optimal (centered, quasi-normalized) score
function follows from [26, Cor. 22] and is given in Table 1.
As in ordinary group testing, the optimal value of p lies close to
0, and for large K the asymptotic scaling of T is given by

T ∼ 4K lnN. (24)

This can be generalized to arbitrary values of q, by replacing
the 4 above by 2

1−q . And again, interpolating between several
results, if the gap between ` and u decreases, we expect the
constant T to go down from 4K lnN to 2K lnN if `→ u = K
or u→ ` = 0, and from 4K lnN to πK lnN if `, u→ K

2 .

5.3 Linear model

In the linear gap model [9, 14], the probability of the test re-
sult to be positive scales linearly with the number of defectives
in the tested pool. We will again only focus on the case of
an extreme gap (` = 0 and u = K) for ease of computation.
First, the optimal centered and normalized score function fol-
lows from [26, Prop. 9] and is given in Table 1. As shown
in [26, Prop. 10], for this model we have µ̃ = 1

K regardless of
p, so the best we can do is choose p such that σ̃2 is minimized.

This leads to p = 1
2 and σ̃2 = 1− 1

K2 , and the asymptotic code
length becomes

T ∼ 2K2 lnN. (25)

For largeN this slightly improves upon a previous result of Del
Lungo et al. [14], who gave an adaptive scheme with a code
length of T ∼ 2K2 log2N > 2.88K2 lnN .

5.4 Unknown model
Finally, if we assume that the output will be a 0 if no defec-
tives are present, the output is 1 if all defectives are present,
and we do not know what happens when some defectives are
included in the test, then we are back at the traitor tracing game.
For this game it is known that in the non-adaptive setting, the
capacity-achieving choice is to use the same score function as
in the linear gap model, but to vary p for each test by indepen-
dently drawing it each time from the arcsine distribution (with
distribution function F (p) = 2

π arcsin
√
p on (0, 1)). This leads

to the so-called interleaving defense, discussed in [23, 26], and
leads to an asymptotic code length of

T ∼ 2K2 lnN. (26)

This asymptotic result is the same as in the linear gap model,
which motivates why the linear gap model is the hardest group
testing model to deal with.

6 Conclusion
In this paper we considered a new framework for probabilis-
tic non-adaptive and adaptive group testing schemes, based on
combining several results from traitor tracing. This lead to effi-
cient group testing schemes for various models.

Although in this work we applied results from traitor tracing
to group testing, one may wonder whether something can be
done in the other direction as well. With the recent traitor trac-
ing result of [26] achieving capacity in the non-adaptive traitor
tracing game, the latter game seems kind of “solved”. For
the adaptive traitor tracing game one important open question
remains, which is establishing the adaptive (dynamic) traitor
tracing capacity. Not much is known about this yet, but per-
haps combining previous techniques from adaptive group test-
ing [1, 5] and non-adaptive traitor tracing [19] may bring us
closer to a solution.
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Table 1: Optimal parameter choices for several group testing models, together with the resulting asymptotics on T . The plots on the left sketch P (y = 1 | β)
against β, where β is the number of defectives included in a group test, for each of the given models. The different cases for h always correspond to (x, y) =
(0, 0), (0, 1), (1, 0), and (1, 1) respectively.

Model Optimal score function h Optimal p Asymptotics T

Standard model

h(x, y) =


+p/(1− p)
−p(1− p)K−1/(1− (1− p)K)

−∞
+(1− p)K/(1− (1− p)K)

p =
O(η2/3)

K
T ∼ 2K lnN

(
p =

1

K
, T ∼ 2.11K lnN

)
Noise: Dilution

h(x, y) =


+p(1− r)/(1− p(1− r))
−p(1− r)(1− p(1− r))K−1/(1− (1− p(1− r))K)

−1 + r/(1− p(1− r))
+(1− p(1− r))K−1(1− p)(1− r)/(1− (1− p(1− r))K)

p =
O(η2/3)

K
T ∼ 2K lnN

1− r

Noise: Additive

h(x, y) =


+p/(1− p)
−p(1− p)K−1(1− r)/(1− (1− p)K(1− r))
−∞
+(1− p)K(1− r)/(1− (1− p)K(1− r))

p ≈
√
2r

K
T ∼ 2K lnN

1−
√
2r

Noise: Subtractive

h(x, y) =


+p(1− p)K−1(1− r)/(r + (1− p)K(1− r))
−p(1− p)K−1/(1− (1− p)K)

−1 + r/(r + (1− p)K(1− r))
+(1− p)K/(1− (1− p)K)

p =
O(η2/3)

K
T ∼ 2K lnN

1− r

Noise: Symmetric

h(x, y) =


+p(1− p)K−1(1− 2r)/((1− p)K(1− 2r) + r)

−(1− p)K−1p(1− 2r)/(1− r − (1− p)K(1− 2r))

−1 + r/((1− p)K(1− 2r) + r)

(1− 2r)/((1− p)−K(1− r)− (1− 2r))

p ≈
√
2r

K
T ∼ 2K lnN

1−
√
2r

Threshold: Majority

h(x, y) =


+1

−1
−1
+1

p =
1

2
T ∼ πK lnN

Threshold: Bernoulli h(x, y) =
(
pK−1 + (1− p)K−1

)
p =

O(η2/3)

K
T ∼ 4K lnN

×


+p/(1− pK + (1− p)K)

−p/(1 + pK − (1− p)K)

−(1− p)/(1− pK + (1− p)K)

+(1− p)/(1 + pK − (1− p)K)

Threshold: Linear

h(x, y) =


+p/(1− p)
−1
−1
+(1− p)/p

p =
1

2
T ∼ 2K2 lnN

Threshold: Unknown

h(x, y, p) =


+p/(1− p)
−1
−1
+(1− p)/p

p ∼ F , T ∼ 2K2 lnN

?? F (p) =
2

π
arcsin

√
p
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