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Abstract—We give a generic divide-and-conquer approach
for constructing collusion-resistant probabilistic dynamic traitor
tracing schemes with larger alphabets from schemes with smaller
alphabets. This construction offers a linear tradeoff between the
alphabet size and the codelength. In particular, we show that
applying our results to the binary dynamic Tardos scheme of
Laarhoven et al. leads to schemes that are shorter by a factor
equal to half the alphabet size. Asymptotically, these codelengths
correspond, up to a constant factor, to the fingerprinting ca-
pacity for static probabilistic schemes. This gives a hierarchy
of probabilistic dynamic traitor tracing schemes, and bridges
the gap between the low bandwidth, high codelength scheme of
Laarhoven et al. and the high bandwidth, low codelength scheme
of Fiat and Tassa.

I. INTRODUCTION

In this day and age of digital technology, protecting digital

data from unauthorized copying and redistribution is an in-

creasingly relevant problem. By embedding unique and imper-

ceptible fingerprints in each copy of the content, distributors of

digital content can trace pirated copies to the pirate. However,

a more difficult scenario arises when several users who have

purchased a copy collude to form a coalition. When receiving

their fingerprinted content, colluders can compare their copies

to detect parts of the fingerprints: with the content being the

same for all colluders, the differences they detect must be part

of the fingerprints. Then, just assigning unique fingerprints to

each user is not sufficient anymore, as the colluders may output

a forgery that does not match any of their copies exactly.

For this, we need collusion-resistant traitor tracing schemes,

consisting of a way to assign fingerprints to users, and an

algorithm to trace a forged copy to the colluders.

A. Model

Several models have been considered for this fingerprinting

game. We will focus on the restricted digit model, where

for each segment of the content, colluders always output one

of their fingerprinted segments. This means that if, in some

segment, all colluders receive the same fingerprint, they are
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forced to output this version of the content. In the literature,

this is usually called the marking condition or marking as-

sumption. Depending on the application, we also consider two

different types of schemes. In static schemes, for each user, the

distributor generates all fingerprinted segments at once. After

the pirates generate a forged copy of the whole content, the

accusation algorithm has to trace this single forged copy to the

colluders. In this scenario, it is impossible to guarantee that

all colluders are caught, so we only require that at least one

colluder is caught. In dynamic schemes however, the content

owner is more powerful, as after every single content segment

he can try to catch and disconnect pirates, and adjust the

fingerprints for the next segments based on the previous pirate

output. When a colluder is disconnected, he no longer receives

content, and we assume the other colluders continue outputting

watermarked content. With dynamic schemes we are therefore

able to catch all colluders, so we only say a dynamic scheme

is successful if all colluders are traced. For static schemes,

think of DVDs and CDs, while the dynamic setting applies to

pay-tv and other live broadcasts.

A further classification of the schemes depends on the

notion of security we want the scheme to achieve. For prob-

abilistic schemes we demand that (i) with probability at most

ε1 one or more of the innocent users are caught, and (ii) with

probability at most ε2 we do not catch any colluder (static

schemes) or all colluders (dynamic schemes). For deterministic

schemes, we demand that ε1 = ε2 = 0.

B. Notation

For convenience, we introduce some more notation. We

write C for the set of colluders, and denote the number of

colluders by c = |C|. We write U for the set of all users, and

we denote its size by n = |U |. For each segment i, at most q
different robust versions can be generated. We denote these by

the alphabet Q = {0, 1, . . . , q− 1}. We denote the number of

successive segments that the scheme needs by the codelength

ℓ. We put the fingerprints in a matrix X , where each row

corresponds to a user j and each column to a segment i. To

avoid confusion, throughout the paper we will consequently

reserve j for indexing users and i for indexing positions or

240978-1-4673-2287-4/12/$31.00 ©2012 IEEE WIFS 2012



segments. After the code matrix X is generated, the colluders

get together to form a pirated copy ~y, which due to the marking

condition satisfies yi ∈ {Xj,i : j ∈ C}. Then, the distributor

detects this pirate output, and uses some tracing algorithm σ on

the pirate output ~y and code matrix X to accuse a set of users

C ′ = σ(~y) ⊆ U . A probabilistic scheme is then successful if

P (C ′ 6⊆ C) ≤ ε1, and P (C ′ ∩ C = ∅) ≤ ε2 (static schemes)

or P (C 6⊆ C ′) ≤ ε2.

C. Related work

The results in this work are related to probabilistic dynamic

traitor tracing schemes, but we will also compare our results

with other dynamic or probabilistic schemes. Fiat and Tassa [7]

describe a deterministic dynamic scheme, using an alphabet of

size q = 2c+1 and achieving a codelength of ℓ = c log2 n+c.
Since any deterministic (dynamic) scheme requires the use

of an alphabet of size q ≥ c + 1, Berkman et al. [1]

then investigated whether with q = c + 1 one could also

efficiently catch all colluders. They showed that this can be

done with a codelength of ℓ = O(c2 + c log2(n)). In the

area of probabilistic static schemes, the scheme of Boneh and

Shaw [4] was the first breakthrough, achieving a codelength

polynomial in the number of colluders, with an alphabet size of

q = 2. A further improvement was given by Tardos [15], who

constructed a binary (q = 2) scheme achieving codelengths

ℓ = 100c2⌈ln(n/ε1)⌉. This scheme is widely known as the

Tardos scheme. Several papers [2], [13], [14] then showed

how the constant 100 can be further reduced, and Laarhoven

and De Weger [10] finally showed how to achieve the optimal

codelength of the binary symmetric Tardos scheme, given by

ℓ = (π
2

2 + O(c−1/3))c2 ln(n/ε1). Building upon this optimal

static Tardos scheme, Laarhoven et al. [11] showed how to

construct an efficient binary dynamic Tardos scheme, which

has the same asymptotic codelength (for c → ∞) as the

optimal static Tardos scheme, but is able to catch all colluders

with high probability. This scheme improved upon the earlier

scheme of Tassa [16], which uses codelengths quartic in c.
Besides constructions of traitor tracing schemes, several

papers have also investigated theoretical bounds on the code-

length needed to catch a certain number of colluders. So

far, these have all focused on probabilistic static schemes.

Tardos [15] showed that his codelength is optimal up to a

constant factor. Huang and Moulin [9] gave the exact capacity

of the binary fingerprinting game, by showing that for large

c, a codelength of ℓ = 2 ln(2)c2 ln(n/ε1) is both necessary

and sufficient. This was then extended to the q-ary setting

independently by Boesten and Škorić [3] and Huang and

Moulin [8], showing that the q-ary capacity corresponds to

2 ln(q) c2

q−1 ln(n/ε1) bits of information, or a codelength of

ℓ = 2 ln(2) c2

q−1 ln(n/ε1) symbols from a q-ary alphabet.

D. Contributions and outline

In this paper, we give a generic divide-and-conquer ap-

proach for constructing probabilistic dynamic traitor tracing

schemes with large alphabets from schemes with small al-

phabets. This construction provides a linear tradeoff between

the alphabet size q and the codelength ℓ; increasing the

alphabet size by a factor k leads to codes that are a factor

k shorter. This construction can be applied to any low-

bandwidth probabilistic dynamic traitor tracing scheme, and in

particular to the (binary) dynamic Tardos scheme of Laarhoven

et al. [11]. We show that for arbitrary alphabet sizes q, we

obtain schemes with codelengths ℓ = (π2 + O((c/q)−1/3 +

(c ln( q
ε2
)/q)−1/2)) c

2

q ln(n/ε1), matching the fingerprinting

capacity for static q-ary traitor tracing schemes up to constant

factors. Letting q = O(c1−γ) for some γ > 0, we get

asymptotic codelengths of ℓ = (π2+O(c−γ/3))c1+γ ln(n/ε1),
improving upon the codelengths (and alphabet size) of Berk-

man et al. [1] for large c. As γ → 0, these codelengths also

approach the asymptotic codelengths of Fiat and Tassa [7].

The outline of the paper is as follows. In Section II, we

describe the divide-and-conquer technique to build schemes

with larger alphabets from schemes with smaller alphabet

sizes. Then, in Section III, we apply the results to the binary

dynamic Tardos scheme to obtain an efficient q-ary dynamic

Tardos scheme, and we compare our results with previous

results from the literature. Finally, in Section IV, we give a

brief summary and discussion of the results, and we mention

some directions for future research.

II. CONSTRUCTION

First, let us assume that for a given alphabet size q0, we

have some construction mechanism Sq0 for generating q0-ary

dynamic traitor tracing schemes (consisting of a code X and

a tracing algorithm σ) for any given maximum number of

colluders c, total number of users n, and for given upper

bounds ε1 and ε2 on the false positive and false negative error

probabilities respectively. Now, to efficiently combat collusion

attacks with an alphabet of size q = 2q0, we follow a two-stage

process. First, we divide (see Subsection II-A) the colluders in

two groups of roughly equal size, and generate q0-ary traitor

tracing schemes for each group separately. Then we show

how to combine these codes, such that we can conquer (see

Subsection II-B) the whole coalition using short q-ary codes.

Finally, in Subsection II-C we show how to generalize this

approach to arbitrary divisions, where q = kq0 for some k ≥ 2.

A. Divide

Before we even start thinking about traitor tracing schemes,

we consider the following problem: How can we divide the

set of users U in two groups U (1), U (2), such that each group

contains the same number of colluders? Since we have no

idea which of the users are the colluders, it is impossible to

always do this correctly. However, if we allow some room for

error, this problem can be solved quite easily. Assuming n is

even, we first randomly divide the set of users U in two groups

U (1) and U (2) of size n/2. Let the number of colluders in each

group be denoted by C(t), for t = 1, 2. Then, the number of

colluders C(1) in U (1) follows a hypergeometric distribution,

i.e., we are taking n/2 samples from a population of size

n with c successes without replacement. To prove that both

groups contain roughly the same number of colluders, note
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that maxt=1,2 C
(t) > c/2+ a if and only if |C(1) − c/2| > a.

To bound the probability of the latter event, we apply a result

of Chvátal [6], which is very similar to Chernoff’s bound [5]

for estimating tail probabilities of binomial distributions. For

arbitrary values of a > 0, we get

P
(

C(1) >
c

2
+ a
)

≤ e−2a2/c. (1)

Furthermore, by symmetry we have P (|C(1) − c
2 | > a) =

2P (C(1) > c
2 + a). So for any ε2 > 0 and α2 =

√

ln 4
ε2

, we

can take a = α2

√

c
2 to get

P

(

max
t=1,2

C(t) >
c

2
+ α2

√

c

2

)

≤
ε2
2
.

Hence, each group contains n/2 users in total, and with

probability at least 1 − ε2
2 each group contains at most

c
2 + α2

√

c
2 colluders.

After splitting the users in groups, for each group t = 1, 2,

we independently generate a q0-ary dynamic traitor tracing

scheme (X(t), σ(t)), using Sq0 . For each scheme, we use

a different set of q0 symbols, e.g., the symbols Q(1) =
{0, . . . , q0 − 1} for U (1), and Q(2) = {q0, . . . , q − 1} for

U (2). The parameters to use for generating these schemes are

given below:










c(t) =
c

2
+ α2

√

c

2
, ε

(t)
1 =

ε1
2
,

n(t) =
n

2
, ε

(t)
2 =

ε2
4
.











(t = 1, 2)

Here, c(1) is the number of colluders the scheme for U (1)

should be resistant against, etc. This leads to two code matrices

X(1,2) with respective codelengths ℓ(1,2), and two tracing

algorithms σ(1,2).

B. Conquer

Having finished the preprocessing, we now show how to

weave the two q0-ary codes X(1,2) and tracing algorithms

σ(1,2) into a single q-ary code X and tracing algorithm σ.

We start by setting i = i(1) = i(2) = 1, where i denotes the

current position in the code X , and i(1,2) denote the current

positions in X(1,2).

Now, at each position i and for both t = 1, 2, we send to

each user j ∈ U (t) his ith symbol Xj,i = X
(t)

j,i(t)
∈ Q(t). If

i(t) > ℓ(t), we expect to have caught all colluders in group

U (t) already, so we then assign all active users in U (t) the

empty fingerprint, denoted by λ.

Then, after sending the ith symbols to all users, the coalition

chooses an output symbol yi. The distributor then detects this

forgery, and does the following.

• If yi ∈ Q(1), we apply σ(1) to yi and the users in U (1).

This may involve calculating accusation scores, discon-

necting users etc. For users in U (2), nothing happens.

When this is done, we increase i(1) by 1.

• If yi ∈ Q(2), we apply σ(2) to yi and the users in U (2).

For users in U (1), we do not do anything. Afterwards, we

increase i(2) by 1.

• If yi = λ, we terminate, and we say the scheme has

failed.

Finally, we increase i by 1 and we start with sending the

new round of symbols to the users. This continues until either

i > ℓ(1) + ℓ(2), or no pirate output is detected anymore and

all colluders are caught. Theorem 1 tells us that when the

scheme terminates, with high probability we will be in the

latter scenario. Before we state the theorem, we will illustrate

the construction with an example.

Example 1: Let U = {1, . . . , 8} and Q = {0, . . . , 3}, and

suppose we want to find the (hidden) coalition C = {1, 3, 7, 8}
of size c = 4. First, we divide the group of users into two

groups U (1) = {1, . . . , 4} and U (2) = {5, . . . , 8}, and we

hope each group now contains 2 colluders. Next, we use a

construction mechanism S2 which allows us to generate binary

dynamic traitor tracing schemes for c = 2 for each group,

resulting in the following codes X(1,2) of length ℓ(1,2) = 5:

X(1) =









0 1 0 1 1
0 0 1 1 0
1 0 1 0 1
1 1 0 0 0









, X(2) =









2 2 3 2 2
3 2 2 3 3
3 3 3 3 2
2 3 2 2 3









.

We are now ready to conquer the coalition. One by one we

send the symbols, and respond to the coalition as described in

Section II-B. This leads to the following code matrix X and

pirate output y.

X =

























0 0 1 1 1 0 1 1 1 1 −
0 0 0 0 0 1 1 1 1 0 λ
1 1 0 0 0 1 0 0 0 1 −
1 1 1 1 1 0 0 0 0 0 λ
2 2 2 3 2 2 2 2 λ λ λ
3 2 2 2 3 3 3 3 λ λ λ
3 3 3 3 − − − − − − −
2 3 3 2 2 2 2 3 − − −

























y =
(

3 0 3 3 1 1 2 3 0 1 −
)

The dashes represent disconnected users. In this case, at the

end all four colluders have been caught and no innocent users

were harmed in the process. Note that the bold half-columns,

corresponding to segments i where the pirate output yi is a

symbol from that half of the alphabet, together form the codes

X(1) and X(2).

Theorem 1: Let the q-ary traitor tracing scheme be con-

structed as described earlier. Then, with probability at most

ε1 at least one innocent user is caught, and with probability

at most ε2 not all pirates are disconnected after at most

ℓ = ℓ(1) + ℓ(2) segments.

Proof: First, note that for innocent users, nothing really

changes compared to the original q-ary scheme. For innocent

users j ∈ U (t) (for some t = 1, 2) and positions i where

yi /∈ Q(t), the accusation algorithm does not do anything, so

we only have to consider the positions i where yi ∈ Q(t). On

these positions, we use the algorithm σ(t) as in the original

q0-ary scheme. But for the original scheme we know that if we
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use at most ℓ(t) symbols, the probability that no innocent users

in group t are accused is at least 1 − ε
(t)
1 . So the probability

that none of the innocent users in any group is disconnected

is at least (1− ε
(1)
1 )(1− ε

(2)
1 ) ≥ 1− ε1, as was to be shown.

For guilty users, we also use a reduction-argument to prove

that with high probability, all colluders are caught. First, with

probability at least 1 − ε2
2 the number of colluders in each

group is bounded from above by c
2 +α2

√

c
2 . If this is indeed

the case, then the analysis of the original schemes tells us that

after at most ℓ(t) positions, with probability at least 1 − ε2
4

all colluders in any one of these groups is caught. Since at

each segment, either i(1) or i(2) increases, at some point one

of them, say i(t), will exceed ℓ(t). Then we know that we

will have caught all colluders with probability at least 1− ε2
4 .

So the only remaining active colluders are in the other group

U (t′), for which we also know that with probability at least

1 − ε2
4 we will catch all colluders before i(t

′) exceeds ℓ(t
′).

So with probability at least (1 − ε2
2 )(1 −

ε2
4 )

2 ≥ 1 − ε2, the

division and both schemes are successful, and we will catch

all pirates after at most ℓ(1) + ℓ(2) symbols.

It follows that if we have a construction mechanism Sq0 that

produces schemes with codelengths ℓq0(c, n, ε1, ε2) quadratic

in c and logarithmic in n, ε−1
1 , ε−1

2 , then the divide-and-

conquer technique provides us with q-ary schemes (with

q = 2q0) achieving codelengths of

ℓq(c, n, ε1, ε2) = 2ℓq0

(

c

2
+ α2

√

c

2
,
n

2
,
ε1
2
,
ε2
4

)

≈ 2ℓq0

( c

2
, n, ε1, ε2

)

≈
1

2
ℓq0(c, n, ε1, ε2).

The first approximation follows from c
2 +O(

√

c
2 ) ≈

c
2 . So the

codelength decreases by a factor of approximately 2, while the

alphabet size increases by the same factor 2.

C. Arbitrary divisions

For simplicity, and for explaining the divide-and-conquer

technique, in Subsection II-A we divided the set of users in 2
groups of roughly equal size. This can easily be generalized

to splitting the users in k ≥ 2 groups. For simplicity, let

us assume that both n and q are divisible by k, and that

q = kq0 for some q0. Let us denote the random variable

describing the distribution of colluders among the groups by a

vector ~C = (C(1), . . . , C(k)), with C(t) being the number of

colluders assigned to group U (t). Then, for each t, the random

variable C(t) follows a hypergeometric distribution with mean
c
k and variance less than c

k .

Similar to the fact that the tails of the hypergeometric

distribution are smaller than the tails of the binomial distribu-

tion, it can be shown that the probability that max1≤t≤k C
(t)

exceeds some value a is smaller than the probability that the

maximum entry max1≤t≤k M
(t) of a uniform multinomial

random variable ~M = (M (1), . . . ,M (k)) exceeds the same

value a. This allows us to apply a result from Raab and

Steger [12, Theorem 1], which says that for values k such that

k ln k = o(c), this maximum max1≤t≤k M
(t) is always very

close to its mean c
k . More precisely, for αk = O

(√

ln k
ε2

)

for

some ε2 > 0, with high probability the group with the largest

number of colluders will not contain more than c
k + αk

√

c
k

colluders:

P

(

max
1≤t≤k

C(t) >
c

k
+ αk

√

c

k

)

≤
ε2
2
.

So after splitting the users in k groups of size n
k , we know that

with probability at least 1 − ε2
2 each group contains at most

c
k +αk

√

c
k colluders. Then, for each group we independently

generate q0-ary traitor tracing schemes (X(t), σ(t)) using Sq0 ,

with parameters










c(t) =
c

k
+ αk

√

c

k
, ε

(t)
1 =

ε1
k
,

n(t) =
n

k
, ε

(t)
2 =

ε2
2k

.











(t = 1, . . . , k)

The probability that the splits go well and the tracing of traitors

in each group goes well, is at least (1 − ε2
2 )(1 − ε2

2k )
k ≥

1−ε2. The conquer-phase can then analogously be generalized

to k groups, weaving k codes X(t) together to a big code X .

We then end up with a q-ary traitor tracing scheme with the

following properties.

Theorem 2: Let the q-ary traitor tracing scheme be as

described above. Then, with probability at most ε1 at least

one innocent user is caught, and with probability at most ε2
not all pirates are disconnected after at most ℓ =

∑k
t=1 ℓ

(t)

segments.

So if we can construct q0-ary schemes with codelengths

ℓq0(c, n, ε1, ε2) quadratic in c, then the divide-and-conquer

technique provides us with q-ary schemes (q = kq0) with

codelengths

ℓq(c, n, ε1, ε2) = kℓq0

(

c

k
+ αk

√

c

k
,
n

k
,
ε1
k
,
ε2
2k

)

≈ kℓq0

( c

k
, n, ε1, ε2

)

≈
1

k
ℓq0 (c, n, ε1, ε2) .

So the codelength decreases by a factor of approximately k,

while the alphabet size increases by the same factor k. In

particular, using a binary scheme with a codelength of ℓ2
quadratic in c as a starting point, we obtain q-ary traitor tracing

schemes with codelengths satisfying

ℓq(c, n, ε1, ε2) ≈
2

q
ℓ2(c, n, ε1, ε2). (2)

Remark: For explaining the divide-and-conquer method, we

assumed the smaller codes X(t) were generated in advance,

i.e., during the divide-phase. This is not necessary, as one

could also generate the new symbols for users on the fly,

once they are needed. In practice, one may not want to

generate all codewords in advance, but let them depend on the

previous pirate ouput. Then, only when yi−1 ∈ Q(t) for some

t is known, the distributor generates new symbols for users

j ∈ U (t). This means that this divide-and-conquer method

works for any probabilistic dynamic traitor tracing scheme,

even when the codewords cannot be generated in advance.
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III. THE q-ARY DYNAMIC TARDOS SCHEME

Recently, Laarhoven et al. [11] showed that one can effi-

ciently turn the binary static Tardos scheme [15], or any variant

thereof [13], [2], [10], into a dynamic scheme that is able to

catch all colluders with a codelength that is quadratic in c.
More precisely, for q = 2 and parameters c, n, ε1, ε2, one can

create schemes (X,σ) with codelengths L2 satisfying

L2(c, n, ε1, ε2) =

[

π2

2
+O

(

3

√

1

c

)]

c2 ln

(

n

ε1

)

. (3)

Note that the codelength does depend on ε2, but ε2 only

appears in lower order terms; see Laarhoven et al. [11] for

details. Using this construction as our ‘base construction’ S2,

the divide-and-conquer construction allows us to construct q-

ary dynamic Tardos schemes with the following codelengths

Lq .

Theorem 3: For arbitrary (even) q satisfying q ln q = o(c),
we can construct q-ary dynamic Tardos schemes with code-

lengths Lq given by

Lq(c, n, ε1, ε2)

=



π2 +O





3

√

q

c
+

√

q log q
ε2

c









c2

q
ln

(

n

ε1

)

. (4)

Proof: Let q = 2k be even. Combining Equation (3) with

Theorem 2, we get

Lq(c, n, ε1, ε2) = kL2

(

c

k
+ αk

√

c

k
,
n

k
,
ε1
k
,
ε2
2k

)

= k

[

π2

2
+O

(

(

c

k
+ αk

√

c

k

)−1/3
)]

·

[

c

k
+ αk

√

c

k

]2

ln

(

n/k

ε1/k

)

Since ln k = o( ck ), we have
√

c
k ln k

ε2
= o

(

c
k

)

, so the order

term above simplifies to O

(

3

√

k
c

)

. Expanding the square,

and observing that the product of the order-terms is small

compared to the cross-terms, we get

Lq(c, n, ε1, ε2)

=

[

π2

2
+O

(

3

√

k

c

)]





c2

k
+O



c

√

c ln k
ε2

k







 ln

(

n

ε1

)

=

[

π2

2
+O

(

3

√

q

c

)]



2 +O





√

q ln q
ε2

c









c2

q
ln

(

n

ε1

)

=



π2 +O





3

√

q

c
+

√

q ln q
ε2

c









c2

q
ln

(

n

ε1

)

.

This is exactly Equation (4).

binary static Tardos

O(ln q) [13]

��

binary dynamic Tardos

O(q) (this work)

��

q-ary static Tardos q-ary dynamic Tardos

O(1)

[11]
//

Fig. 1. Known variants of the Tardos scheme, and a comparison of
their asymptotic codelengths. For static Tardos schemes, current methods to
construct q-ary schemes [13] lead to codelengths that are a factor O(ln q)
shorter than binary schemes. For dynamic Tardos schemes, we showed that
with the divide-and-conquer approach, the codelength decreases by a factor
of O(q). From any static Tardos scheme, one can obtain a dynamic Tardos
scheme with the same alphabet size and the same order codelengths [11].

Remark: In Equation (4), the first order term contains two

terms. For small values of q compared to c, the first of these

terms O( 3
√

q
c ) dominates, as the third root is larger than the

square root term. However, for q ln q close to O(c) and large q

and c, the second term O

(
√

q ln q

ε2

c

)

will start to dominate.

So which of these terms is bigger depends on the relation

between q and c.
Asymptotically, the codelengths Lq in Equation (4) are a

factor q/2 shorter than the codelengths of the binary dynamic

Tardos scheme. These codelengths also match the static finger-

printing capacity as obtained by Boesten and Škorić [3] and

Huang and Moulin [8], up to a constant factor. Since we are

considering a dynamic setting, this does not mean that these

codelengths are optimal, but it does show that converting any

q-ary static Tardos scheme to a q-ary dynamic Tardos scheme

via Laarhoven et al.’s construction [11] will at best lead to the

same asymptotic codelengths. Figure 1 shows variants of the

Tardos scheme, and ways to construct them. To construct a

q-ary dynamic Tardos scheme from the optimal binary static

Tardos scheme of Laarhoven and De Weger [10], one has to (i)

make the scheme dynamic, and (ii) go from a binary to a q-ary

alphabet. First applying (ii) from Škorić et al. [13] and then

applying (i) using the construction of Laarhoven et al. [11]

leads to codes that are a factor O(ln q)·O(1) = O(ln q) shorter.

We showed that first applying (i) using the construction of

Laarhoven et al. [11] and then applying (ii), we get codes that

are a factor O(1) ·O(q) = O(q) shorter.

A. Large-q asymptotics

Instead of considering the asymptotic behaviour of fixed q
and large c, one could also consider the asymptotic behaviour

of large q and c. For instance, if we let q = O(c1−γ) we get

the following corollary.

Corollary 1: Let q = O(c1−γ) for some γ > 0. Then by

Theorem 3, we can construct q-ary dynamic Tardos schemes

achieving asymptotic codelengths of

Lq(c, n, ε1, ε2) =
[

π2 +O(c−γ/3)
]

c1+γ ln

(

n

ε1

)

. (5)

For γ → 0, we get alphabet sizes q almost linear in c, so it

makes sense to compare this construction to the deterministic

schemes of Fiat and Tassa [7] and Berkman et al. [1]. The
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optimal scheme of Berkman et al. uses an alphabet size of q =
c+1, and requires a codelength of ℓq(c, n) = O(c2+c log2 n).
For large c, this scheme therefore requires longer codes and

larger alphabets than the q-ary dynamic Tardos scheme. The

scheme of Fiat and Tassa uses an alphabet of size q = 2c+1,

and requires a codelength of only ℓq(c, n) = c log2 n+ c. Our

scheme approaches this asymptotic codelength as γ → 0, but

the constants of our scheme are larger, and of course Fiat and

Tassa’s scheme is deterministic. So, if one can afford using an

alphabet of size q = 2c+1, Fiat and Tassa’s scheme is clearly

the way to go, but for lower values of q, the q-ary dynamic

Tardos scheme seems to be the best asymptotic scheme known

so far.

B. The universal Tardos scheme

Besides the dynamic Tardos scheme, Laarhoven et al. [11,

Section V] also show how to efficiently catch coalitions of a

priori unknown sizes c, using a variant of the dynamic Tardos

scheme known as the universal Tardos scheme. With slightly

longer codelengths and maintaining multiple accusation scores

per user, one can guarantee that small coalitions are caught

much faster. The divide-and-conquer construction can trivially

be applied to this variant as well. In this case, the practical

difficulty of bounding the number of colluders in each group

even disappears, since the universal Tardos scheme does not

require the distributor to provide values of c anymore. One

simply divides the set of users in k groups, and assigns the

parameters (n, ε1, ε2)
(t) = (nk ,

ε1
k , ε2

k ) to each group. Then,

one can easily show that the scheme will catch any coalition

with a codelength quadratic in the actual number of colluders.

IV. SUMMARY

We have shown that with the divide-and-conquer approach,

we can obtain schemes for alphabet sizes q = kq0 which

have codelengths approximately equal to the sum of k times

the codelength of a q0-ary traitor tracing scheme. Applying

this to the binary dynamic Tardos scheme of Laarhoven et

al. [11], this leads to codelengths which are quadratic in the

number of colluders c and decreasing linearly in the alphabet

size q. Thus, the codelengths of this construction match the

q-ary static fingerprinting capacity of Boesten and Škorić [3]

and Huang and Moulin [8], up to a constant factor. For q
growing almost linearly in c, the codelengths approach the

asymptotic codelengths of Fiat and Tassa [7], and improve

upon the codelengths of Berkman et al. [1].

There are several interesting open problems for future

research in this area. We mention some below.

1) The capacity of the dynamic fingerprinting game:

To the best of our knowledge, no one has yet investigated

whether the fingerprinting capacity game can be extended

to the dynamic traitor tracing setting. Above, we compared

our codelengths obtained from the dynamic Tardos scheme

to the static fingerprinting capacity, but it would be more

interesting to be able to compare these codelengths to (bounds

on) the dynamic capacity. The above construction does make

a start in this direction, by showing that the q-ary dynamic

fingerprinting capacity is at least a factor q/2 higher than the

binary dynamic fingerprinting capacity.

2) The q-ary static Tardos scheme: Škorić et al. [13] gave

a construction for q-ary Tardos codes, which are roughly a

factor O(ln q) shorter than binary Tardos codes. It would be

interesting to see if it is possible to construct q-ary Tardos

codes which are a factor O(q) shorter and approach the q-ary

fingerprinting capacity. With the dynamic Tardos construction

of Laarhoven et al. [11] and our current results, this may then

also lead to better dynamic traitor tracing schemes.

3) Application to different schemes: Above we showed that

our construction can be applied to the binary dynamic Tardos

scheme, but we can also apply our results to q0-ary dynamic

Tardos schemes, or a completely different binary dynamic

traitor tracing scheme. If someone finds better binary dynamic

schemes, combined with our construction this would immedi-

ately lead to better q-ary dynamic traitor tracing schemes.

4) Variants of the divide-and-conquer construction: One

can think of many variants of the divide-and-conquer scheme,

but these seem harder to analyze. For example, instead of

using disjoint sets of symbols for each group, one could let the

different alphabets overlap in a few symbols. Or, instead of

always using the same division of colluders in groups, one may

want to redo the division of users in groups for every position,

or every time a user is disconnected. Analyzing these variants

may lead to further improvements.
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