26 research outputs found

    Active and Fast Tunable Plasmonic Metamaterials

    Get PDF
    Active and Fast Tunable Plasmonic Metamaterials is a research development that has contributed to studying the interaction between light and matter, specifically focusing on the interaction between the electromagnetic field and free electrons in metals. This interaction can be stimulated by the electric component of light, leading to collective oscillations. In the field of nanotechnology, these phenomena have garnered significant interest due to their ability to enable the transmission of both optical signals and electric currents through the same thin metal structure. This presents an opportunity to connect the combined advantages of photonics and electronics within a single platform. This innovation gives rise to a new subfield of photonics known as plasmonic metamaterials.Plasmonic metamaterials are artificial engineering materials whose optical properties can be engineered to generate the desired response to an incident electromagnetic wave. They consist of subwavelength-scale structures which can be understood as the atoms in conventional materials. The collective response of a randomly or periodically ordered ensemble of such meta-atoms defines the properties of the metamaterials, which can be described in terms of parameters such as permittivity, permeability, refractive index, and impedance. At the interface between noble metal particles and dielectric media, collective oscillations of the free electrons in the metal particles can be resonantly excited, known as plasmon resonances. This work considered two plasmon resonances: localised surface plasmon resonances (LSPRs) and propagating surface plasmon polaritons (SPPs).The investigated plasmonic metamaterials, designed with specific structures, were considered for use in various applications, including telecommunications, information processing, sensing, industry, lighting, photovoltaic, metrology, and healthcare. The sample structures are manufactured using metal and dielectric materials as artificial composite materials. It can be used in the electromagnetic spectrum's visible and near-infrared wavelength range. Results obtained proved that artificial composite material can produce a thermal coherent emission at the mid-infrared wavelength range and enable active and fast-tunable optoelectronic devices. Therefore, this work focused on the integrated thermal infrared light source platforms for various applications such as thermal analysis, imaging, security, biosensing, and medical diagnosis. Enabled by Kirchhoff's law of thermal radiation, this work combined the concepts of material absorption with material emission. Hence, the results obtained proved that this approach enhances the overall performance of the active and fast-tunable plasmonic metamaterial in terms of with effortless and fast tunability. This work further considers the narrow line width of the coherent thermal emission, tunable emission, and angular tunable emission at the mid-infrared, which are achieved through plasmonic stacked grating structure (PSGs) and plasmonic infrared absorber structure (PIRAs).Three-dimensional (3D) plasmonic stacked gratings (PSGs) was used to create a tunable plasmonic metamaterial at optical wavelengths ranging from 3 m to 6 m, and from 6m to 9 m. These PSGs are made of a metallic grating with corrugations caused by narrow air openings, followed by a Bragg grating (BG). Additionally, this work demonstrated a thermal radiation source customised for the mid-infrared wavelength range of 3 μm to 5 μm. This source exhibits intriguing characteristics such as high emissivity, narrowband spectra, and sharp angular response capabilities. The proposed thermal emitter consists of a two-dimensional (2D) metallic grating on top of a one-dimensional dielectric BG.Results obtained presented a plasmonic infrared absorber (PIRA) graphene nanostructure designed for a wavelength range of 3 to 14 μm. It was observed and concluded that this wavelength range offers excellent opportunities for detection, especially when targeting gas molecules in the infrared atmospheric windows. The design framework is based on active plasmon control for subwavelength-scale infrared absorbers within the mid-infrared range of the electromagnetic spectrum. Furthermore, this design is useful for applications such as infrared microbolometers, infrared photodetectors, and photovoltaic cells.Finally, the observation and conclusion drawn for the sample of nanostructure used in this work, which consists of an artificial composite arrangement with plasmonic material, can contribute to a highly efficient mid-infrared light source with low power consumption, fast response emissions, and is a cost-effective structure

    Novel applications of Maxwell's equations to quantum and thermal phenomena

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 229-244).This thesis is concerned with the extension of Maxwell's equations to situations far removed from standard electromagnetism, in order to discover novel phenomena. We discuss our contributions to the efforts to describe quantum fluctuations, known as Casimir forces, in terms of classical electromagnetism. We prove that chirality in metamaterials can have no appreciable effect on the Casimir force, and design an alternative metamaterial in which the structure can have a strong effect on the Casimir force. We present a geometry that exhibits a repulsive Casimir force between metallic objects in vacuum, and describe our efforts to enhance this repulsive force using the numerical techniques that we and others developed. We then show how our techniques can be extended to study the physics of near-field radiative heat transfer, computing for the first time the exact heat transfer and power flux profiles between a plate and non-spherical objects. We find in particular that the heat flux profile is non-monotonic in separation from the cone tip. Finally, we demonstrate how techniques to compute photonic bandstructures in periodic systems can be extended to certain types of quasi-periodic structures, termed photonic-quasicrystals (PQCs).by Alexander P. McCauley.Ph.D

    Fluctuation-induced interactions and nonlinear nanophotonics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 293-329).We present theoretical and numerical methods for studying Casimir forces and nonlinear frequency conversion in nanophotonic media consisting of arbitrary geometries and materials. The first section of the thesis focuses on the study of various geometry-enabled resonant effects leading to strong nonlinear interactions. The starting point of this work is a coupled-mode theory framework for modeling a wide range of resonant nonlinear frequency-conversion processes in general geometries, ameliorating the need for repeated and expensive finite-difference time-domain simulations. We examine the predictions of the theory for two particular nonlinear processes: harmonic generation and difference-frequency generation. Our results demonstrate strong enhancement of nonlinear interactions at a "critical" input power leading to 100% frequency conversion, among many other interesting dynamical effects. Using a quantum-mechanical description of light, based on cavity quantum electrodynamics, similar enhancement effects are demonstrated at the single-photon level, leading to the possibility of achieving all-optical switching of a single signal photon by a single gating photon in a waveguide-cavity geometry consisting of pumped four-level atoms embedded in a cavity. Finally, we describe how one may tailor the geometry of certain materials to enhance their nonlinear susceptibilities by exploiting a consequence of the Purcell effect. The second section of the thesis, the main contribution of this work, presents a new formulation for studying Casimir forces in arbitrary geometries and materials that directly exploits efficient and well-developed techniques in computational electromagnetism. To begin with, we present the step-by-step conceptual development of our computational method, based on a well-known stress tensor formalism for computing Casimir forces. A proof-of- concept finite-difference frequency-domain implementation of the stress-tensor method is described and checked against known results in simple geometries. Building on this work, we then describe the basic theoretical ingredients of a new technique for determining Casimir forces via antenna measurements in tabletop experiments. This technique is based on a (derived) correspondence between the complex-frequency deformation of the Casimir frequency-integrand for any given geometry and the real-frequency classical electromagnetic response of the same geometry, but with dissipation added everywhere. This correspondence forms the starting point of a numerical Casimir solver based on the finite-difference time-domain method, which we describe and then implement via an off-the-shelf time-domain solver, requiring no modifications. These numerical methods are then used to explore a wide range of geometries and materials, of various levels of complexity: First, a four-body piston-like geometry consisting of two cylinders next to adjacent walls, which exhibits a non-monotonic lateral Casimir force (explained via ray optics and the method of images); Second, a zipper-like, glide-symmetric structure that leads to a net repulsive force arising from a competition between attractive interactions. Finally, we examine a number of geometries consisting of fluid-separated objects and find a number of interesting results. These include: stable levitation and suspension of compact objects, dispersion-induced orientation transitions, and strong non-zero temperature Casimir effects.by Alejandro Rodriguez-Wong.Ph.D

    Extreme Mid-IR light control with SiC microstructures

    Get PDF
    In this thesis, we present our original theoretical investigations of SiC microstruc-tures for extreme light control in the Reststrahlen band of Silicon Carbide (SiC), that occurs in the Mid-IR spectral regime. In this frequency regime, most of the light will be reflected from bulk SiC, due to the extreme permittivity response of SiC. However, we demonstrate that it is possible to control light to be absorbed or ultra refracted within the microstructures constructed from SiC in the Reststrahlen band of SiC. In particular, we show that this high reflective behaviour of SiC can be over-come via different mechanisms: by achieving a Photonic Crystal (PC) band-edge reflectionless condition in a SiC terminated one-dimensional (1D)-PC, by tailoring the effective phonon-polariton gap in SiC-based effective metamaterials, or by cou-pling to cavity modes in SiC structures made of rectangular-cross-section pillars. Furthermore, we demonstrate that by varying the thickness of SiC layers and filling ratio throughout SiC 1D-PC structures or by using SiC pillars of different size in a pyramid arrangement, we can achieve a broad absorption bandwidth with the SiC microstructures. This absorption control provides insight for the design of efficient thermal emitters, which can be used in thermal conversion devices. Moreover, us-ing the concept of Bloch impedance, we find that translucent spectral regions can exist in SiC 1D-PCs. This possibility is highly desirable for constructing optical components in the Mid-IR spectrum where suitable bulk highly refractive materials are rare. In addition, we also present a complete theory of propagation in lossy 1D-PCs, by systematically extending the comprehensive theory for lossless 1D-PCs. Relying on this theory, we report superbending of light, beyond 90 0 in a judiciously designed superprism constructed with a SiC 1D-PC. Since, the findings reported in this thesis are in principle applicable to any polar material, we believe that our work will inspire the design of a variety of absorptive/emissive and ultra-refractive devices across the THz/Mid-IR spectrum.College of Engineering, Mathematics and Physical Sciences (CEMPS), University of Exete

    Geometric manipulation of light : from nonlinear optics to invisibility cloaks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 189-203).In this work, we study two different manipulations of electromagnetic waves governed by macroscopic Maxwell's equations. One is frequency conversion of such waves using small intrinsic material nonlinearities. We study conversion of an input signal at frequency w1 to frequency Wk due to second or third harmonic generation or four-wave mixing using coupled-mode theory. Using this framework, we show there is a critical input power at which maximum frequency conversion is possible. We study in depth the case of third harmonic generation, its solutions, and their stability analysis. Based on the dynamics of the system, we propose a regime of parameters that 100%- efficient frequency conversion is possible and propose a way of exciting this solution. We also look at same analysis for the case of degenerate four-wave mixing and come up with 2d and 3d designs of a device that exhibits high-efficiency second-harmonic generation. Second, we consider proposals for invisibility cloaks to change the path of electromagnetic waves in a certain way so that the object appears invisible at a certain frequency or a range of frequencies. Transformation-based invisibility cloaks make use of the coordinate invariance of Maxwell's Equations and require complex material configuration e and p in the cloak. We study the practical limitations of cloaking as a function of the size of the object being cloaked. Specifically, we study the bandwidth, loss, and scattering limitations of cloaking as the object gets larger and show that cloaking of objects many times larger than the wavelength in size becomes practically impossible.by Hila Hashemi.Ph.D

    Beaming and localization of electromagnetic waves in periodic structures

    Get PDF
    Ankara : The Department of Physics and the Institute of Engineering and Science of Bilkent University, 2010.Thesis (Ph. D.) -- Bilkent University, 2010.Includes bibliographical references leaves 103-114.We want to manipulate light for several applications: microscopy, data storage, leds, lasers, modulators, sensor and solarcells to make our life healthier, easier or more comfortable. However, especially in small scales manipulating light have many difficulties. We could not focus or localize light into subwavelength dimensions easily, which is the key solution to beat today’s devices both in performance and cost. Achievements in three key research fields may provide the answer to these problems. These emerging research fields are metamaterials, photonic crystals and surface plasmons. In this thesis, we investigated beaming and localization of electromagnetic waves in periodic structures such as: subwavelength metallic gratings, photonic crystals and metamaterials. We studied off-axis beaming from both a metallic subwavelength aperture and photonic crystal waveguide at microwave regime. The output surfaces are designed asymmetrically to change the beaming angle. Furthermore, we studied frequency dependent beam steering with a photonic crystal with a surface defect layer made of dimmers. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Thus, a photonic crystal based surface wave structure that acts as a frequency dependent leaky wave antenna was presented. Additionally, we investigated metamaterial based cavity systems. Since the unit cells of metamaterials are much smaller than the operation wavelength, we observed subwavelength localization within these metamaterial cavity structures. Moreover, we introduced coupled-cavity structures and presented the transmission spectrum of metamaterial based coupled-cavity structures. Finally, we demonstrated an ultrafast bioassay preparation method that overcomes the today’s bioassay limitations using a combination of low power microwave heating and split ring resonator structures.Çağlayan, HümeyraPh.D

    Metamaterial

    Get PDF
    In-depth analysis of the theory, properties and description of the most potential technological applications of metamaterials for the realization of novel devices such as subwavelength lenses, invisibility cloaks, dipole and reflector antennas, high frequency telecommunications, new designs of bandpass filters, absorbers and concentrators of EM waves etc. In order to create a new devices it is necessary to know the main electrodynamical characteristics of metamaterial structures on the basis of which the device is supposed to be created. The electromagnetic wave scattering surfaces built with metamaterials are primarily based on the ability of metamaterials to control the surrounded electromagnetic fields by varying their permeability and permittivity characteristics. The book covers some solutions for microwave wavelength scales as well as exploitation of nanoscale EM wavelength such as visible specter using recent advances of nanotechnology, for instance in the field of nanowires, nanopolymers, carbon nanotubes and graphene. Metamaterial is suitable for scholars from extremely large scientific domain and therefore given to engineers, scientists, graduates and other interested professionals from photonics to nanoscience and from material science to antenna engineering as a comprehensive reference on this artificial materials of tomorrow

    Surface plasmon emission and dynamics in active planar media

    Get PDF
    By reducing the number of dimensions that light can propagate in from three to two, control over the properties of propagation can be achieved. The plasmonic modes of planar metal-dielectric heterostructures will confine light in one dimension, enhancing the electromagnetic fields within the structure. This thesis focuses on two particular aspects of active nanoplasmonics in planar systems, stopped light lasing and plasmons with gain in nonequilibrium graphene. For stopped-light lasing, a plasmonic waveguide mode is designed to have two points of zero group velocity in a narrow frequency range, in order to increase the local density of optical states that a gain medium can emit into. The two stopped light points form a band of slow light that supports a wide range of wavevectors, allowing localisation over a sub-wavelength gain medium and providing the feedback required for lasing. This results in a new type of laser that does not rely on predefined cavity modes, in fact is cavity-free in 2D, dynamically forming its lasing mode about a locally pumped region of carrier inversion. Graphene, a single-atom thick semimetal, provides the ultimate miniaturisation as a truly 2D material. It is shown that graphene can support plasmons with gain, under realistic conditions of collision loss, temperature, doping, and carrier relaxation via amplified spontaneous emission. This is made possible by developing a scheme to evaluate polarisabilities for nonequilibrium carrier distributions, allowing the calculation of the exact RPA complex-frequency plasmon dispersion solutions. The rates of spontaneous emission are calculated and are critically dependant on the exact dispersion relation. The instantaneous rates are found to be 5 times faster than previously reported and, when coupled with phonons, lead to carrier relaxations on 100 fs timescales. The polarisability and relaxation rates must form the basis of any active graphene device, where electromagnetic energy is coupled to an evolving electronic system.Open Acces
    corecore