3,571 research outputs found

    Equivalence of Symbolic Tree Transducers

    Get PDF
    International audienceSymbolic tree transducers are programs by which to transform data trees with an infinite signature. In this paper, we show that the equivalence problem of symbolic top-down deterministic tree transducers (DTops) can be reduced to that of classical DTops. As a consequence the equivalence of two symbolic DTops can be decided in NExpTime, when assuming that all operations related to the processing of data values are in PTime. This results can be extended to symbolic DTops with lookahead and thus to symbolic bottom-up deterministic tree transducers

    Programming Using Automata and Transducers

    Get PDF
    Automata, the simplest model of computation, have proven to be an effective tool in reasoning about programs that operate over strings. Transducers augment automata to produce outputs and have been used to model string and tree transformations such as natural language translations. The success of these models is primarily due to their closure properties and decidable procedures, but good properties come at the price of limited expressiveness. Concretely, most models only support finite alphabets and can only represent small classes of languages and transformations. We focus on addressing these limitations and bridge the gap between the theory of automata and transducers and complex real-world applications: Can we extend automata and transducer models to operate over structured and infinite alphabets? Can we design languages that hide the complexity of these formalisms? Can we define executable models that can process the input efficiently? First, we introduce succinct models of transducers that can operate over large alphabets and design BEX, a language for analysing string coders. We use BEX to prove the correctness of UTF and BASE64 encoders and decoders. Next, we develop a theory of tree transducers over infinite alphabets and design FAST, a language for analysing tree-manipulating programs. We use FAST to detect vulnerabilities in HTML sanitizers, check whether augmented reality taggers conflict, and optimize and analyze functional programs that operate over lists and trees. Finally, we focus on laying the foundations of stream processing of hierarchical data such as XML files and program traces. We introduce two new efficient and executable models that can process the input in a left-to-right linear pass: symbolic visibly pushdown automata and streaming tree transducers. Symbolic visibly pushdown automata are closed under Boolean operations and can specify and efficiently monitor complex properties for hierarchical structures over infinite alphabets. Streaming tree transducers can express and efficiently process complex XML transformations while enjoying decidable procedures

    Macro tree transducers

    Get PDF
    Macro tree transducers are a combination of top-down tree transducers and macro grammars. They serve as a model for syntax-directed semantics in which context information can be handled. In this paper the formal model of macro tree transducers is studied by investigating typical automata theoretical topics like composition, decomposition, domains, and ranges of the induced translation classes. The extension with regular look-ahead is considered

    Streaming Tree Transducers

    Get PDF
    Theory of tree transducers provides a foundation for understanding expressiveness and complexity of analysis problems for specification languages for transforming hierarchically structured data such as XML documents. We introduce streaming tree transducers as an analyzable, executable, and expressive model for transforming unranked ordered trees in a single pass. Given a linear encoding of the input tree, the transducer makes a single left-to-right pass through the input, and computes the output in linear time using a finite-state control, a visibly pushdown stack, and a finite number of variables that store output chunks that can be combined using the operations of string-concatenation and tree-insertion. We prove that the expressiveness of the model coincides with transductions definable using monadic second-order logic (MSO). Existing models of tree transducers either cannot implement all MSO-definable transformations, or require regular look ahead that prohibits single-pass implementation. We show a variety of analysis problems such as type-checking and checking functional equivalence are solvable for our model.Comment: 40 page

    Learning to Prove Safety over Parameterised Concurrent Systems (Full Version)

    Full text link
    We revisit the classic problem of proving safety over parameterised concurrent systems, i.e., an infinite family of finite-state concurrent systems that are represented by some finite (symbolic) means. An example of such an infinite family is a dining philosopher protocol with any number n of processes (n being the parameter that defines the infinite family). Regular model checking is a well-known generic framework for modelling parameterised concurrent systems, where an infinite set of configurations (resp. transitions) is represented by a regular set (resp. regular transducer). Although verifying safety properties in the regular model checking framework is undecidable in general, many sophisticated semi-algorithms have been developed in the past fifteen years that can successfully prove safety in many practical instances. In this paper, we propose a simple solution to synthesise regular inductive invariants that makes use of Angluin's classic L* algorithm (and its variants). We provide a termination guarantee when the set of configurations reachable from a given set of initial configurations is regular. We have tested L* algorithm on standard (as well as new) examples in regular model checking including the dining philosopher protocol, the dining cryptographer protocol, and several mutual exclusion protocols (e.g. Bakery, Burns, Szymanski, and German). Our experiments show that, despite the simplicity of our solution, it can perform at least as well as existing semi-algorithms.Comment: Full version of FMCAD'17 pape

    Static and dynamic semantics of NoSQL languages

    Get PDF
    We present a calculus for processing semistructured data that spans differences of application area among several novel query languages, broadly categorized as "NoSQL". This calculus lets users define their own operators, capturing a wider range of data processing capabilities, whilst providing a typing precision so far typical only of primitive hard-coded operators. The type inference algorithm is based on semantic type checking, resulting in type information that is both precise, and flexible enough to handle structured and semistructured data. We illustrate the use of this calculus by encoding a large fragment of Jaql, including operations and iterators over JSON, embedded SQL expressions, and co-grouping, and show how the encoding directly yields a typing discipline for Jaql as it is, namely without the addition of any type definition or type annotation in the code

    In the Maze of Data Languages

    Full text link
    In data languages the positions of strings and trees carry a label from a finite alphabet and a data value from an infinite alphabet. Extensions of automata and logics over finite alphabets have been defined to recognize data languages, both in the string and tree cases. In this paper we describe and compare the complexity and expressiveness of such models to understand which ones are better candidates as regular models

    Relational Constraint Driven Test Case Synthesis for Web Applications

    Full text link
    This paper proposes a relational constraint driven technique that synthesizes test cases automatically for web applications. Using a static analysis, servlets can be modeled as relational transducers, which manipulate backend databases. We present a synthesis algorithm that generates a sequence of HTTP requests for simulating a user session. The algorithm relies on backward symbolic image computation for reaching a certain database state, given a code coverage objective. With a slight adaptation, the technique can be used for discovering workflow attacks on web applications.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330
    • …
    corecore