15,142 research outputs found

    Spatial Aggregation: Theory and Applications

    Full text link
    Visual thinking plays an important role in scientific reasoning. Based on the research in automating diverse reasoning tasks about dynamical systems, nonlinear controllers, kinematic mechanisms, and fluid motion, we have identified a style of visual thinking, imagistic reasoning. Imagistic reasoning organizes computations around image-like, analogue representations so that perceptual and symbolic operations can be brought to bear to infer structure and behavior. Programs incorporating imagistic reasoning have been shown to perform at an expert level in domains that defy current analytic or numerical methods. We have developed a computational paradigm, spatial aggregation, to unify the description of a class of imagistic problem solvers. A program written in this paradigm has the following properties. It takes a continuous field and optional objective functions as input, and produces high-level descriptions of structure, behavior, or control actions. It computes a multi-layer of intermediate representations, called spatial aggregates, by forming equivalence classes and adjacency relations. It employs a small set of generic operators such as aggregation, classification, and localization to perform bidirectional mapping between the information-rich field and successively more abstract spatial aggregates. It uses a data structure, the neighborhood graph, as a common interface to modularize computations. To illustrate our theory, we describe the computational structure of three implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the spatial aggregation generic operators by mixing and matching a library of commonly used routines.Comment: See http://www.jair.org/ for any accompanying file

    Structured Knowledge Representation for Image Retrieval

    Full text link
    We propose a structured approach to the problem of retrieval of images by content and present a description logic that has been devised for the semantic indexing and retrieval of images containing complex objects. As other approaches do, we start from low-level features extracted with image analysis to detect and characterize regions in an image. However, in contrast with feature-based approaches, we provide a syntax to describe segmented regions as basic objects and complex objects as compositions of basic ones. Then we introduce a companion extensional semantics for defining reasoning services, such as retrieval, classification, and subsumption. These services can be used for both exact and approximate matching, using similarity measures. Using our logical approach as a formal specification, we implemented a complete client-server image retrieval system, which allows a user to pose both queries by sketch and queries by example. A set of experiments has been carried out on a testbed of images to assess the retrieval capabilities of the system in comparison with expert users ranking. Results are presented adopting a well-established measure of quality borrowed from textual information retrieval

    SPIDA: Abstracting and generalizing layout design cases

    Get PDF
    Abstraction and generalization of layout design cases generate new knowledge that is more widely applicable to use than specific design cases. The abstraction and generalization of design cases into hierarchical levels of abstractions provide the designer with the flexibility to apply any level of abstract and generalized knowledge for a new layout design problem. Existing case-based layout learning (CBLL) systems abstract and generalize cases into single levels of abstractions, but not into a hierarchy. In this paper, we propose a new approach, termed customized viewpoint - spatial (CV-S), which supports the generalization and abstraction of spatial layouts into hierarchies along with a supporting system, SPIDA (SPatial Intelligent Design Assistant)

    2D qualitative shape matching applied to ceramic mosaic assembly

    Get PDF
    A theory of shape recognition of 2D objects and its application in the ceramic industry for intelligent automation of the mosaic mural assembly process are presented in this paper. This theory qualitatively describes the shapes of the objects, considering: (i) shape boundary characteristics, such as angles, relative length, concavities, and curvature; and (ii) their color and size. The shapes to be recognized may be regular or irregular closed polygons, or closed curvilinear figures. Each figure is described as a symbolic character string that contains all its distinctive characteristics. This description is used to determine whether the shape of two figures matches. Then, given a design of a mosaic and given a set of physical ceramic tesserae, an application is developed in order to recognize the tesserae that form the mosaic, thus enabling the intelligent and automated assembly of ceramic mosaics

    Answer Set Programming Modulo `Space-Time'

    Full text link
    We present ASP Modulo `Space-Time', a declarative representational and computational framework to perform commonsense reasoning about regions with both spatial and temporal components. Supported are capabilities for mixed qualitative-quantitative reasoning, consistency checking, and inferring compositions of space-time relations; these capabilities combine and synergise for applications in a range of AI application areas where the processing and interpretation of spatio-temporal data is crucial. The framework and resulting system is the only general KR-based method for declaratively reasoning about the dynamics of `space-time' regions as first-class objects. We present an empirical evaluation (with scalability and robustness results), and include diverse application examples involving interpretation and control tasks

    Class Representation of Shapes Using Qualitative-codes

    Get PDF
    This paper introduces our qualitative shape representation formalism that is devised to overcome, as we have argued, the class abstraction problems created by numeric schemes. The numeric shape representation method used in conventional geometric modeling systems reveals difficulties in several aspects of architectural designing. Firstly, numeric schemes strongly require complete and detailed information for any simple task of object modeling. This requirement of information completeness makes it hard to apply numeric schemes to shapes in sketch level drawings that are characteristically ambiguous and have non-specific limitations on shape descriptions. Secondly, Cartesian coordinate-based quantitative shape representation schemes show restrictions in the task of shape comparison and classification that are inevitably involved in abstract concepts related to shape characteristics. One of the reasons why quantitative schemes are difficult to apply to the abstraction of individual shape information into its classes and categories is the uniqueness property, meaning that an individual description in a quantitative scheme should refer to only one object in the domain of representation. A class representation, however, should be able to indicate not only one but also a group of objects sharing common characteristics. Thirdly, it is difficult or inefficient to apply numeric shape representation schemes based on the Cartesian coordinate system to preliminary shape analysis and modeling tasks because of their emphasis on issues, such as detail, completeness, uniqueness and individuality, which can only be accessed in the final stages of designing. Therefore, we face the need for alternative shape representation schemes that can handle class representation of objects in order to manage the shapes in the early stages of designing. We consider shape as a boundary description consisting of a set of connected and closed lines. Moreover, we need to consider non-numeric approaches to overcome the problems caused by quantitative representation approaches.This paper introduces a qualitative approach to shape representation that is contrasted to conventional numeric techniques. This research is motivated by ideas and methodologies from related studies such as in qualitative formalism ([4], [6], [19], [13], [31]), qualitative abstraction [16], qualitative vector algebra ([7], [32]), qualitative shapes ([18], [23], [21]), and coding theory ([20], [25], [26], [1], [2], [3], [22]). We develop a qualitative shape representation scheme by adopting propitious aspects of the above techniques to suit the need for our shape comparison and analysis tasks. The qualitative shape-encoding scheme converts shapes into systematically constructed qualitative symbols called Q-codes. This paper explains how the Q-code scheme is developed and applied

    Towards a Qualitative Reasoning on Shape Change and Object Division

    Get PDF
    We propose a qualitative representation for handling shape change and object division. We model the shape of a smooth curve in a two-dimensional plane together with its temporal change, using curvature extrema. The representation is based on Process-Grammar, which gives a causal account for each shape change. We introduce several rewriting rules to handle object division, that consist of making a tangent point, reconstruction, and separation. On the treatment of the division process, the expression can clarify the relative locations of multiple objects. We show formalization and application to represent a sequence of shape changes frequently observed in an organogenesis process
    • …
    corecore