30,647 research outputs found

    Symbolic Solving of Extended Regular Expression Inequalities

    Get PDF
    This paper presents a new solution to the containment problem for extended regular expressions that extends basic regular expressions with intersection and complement operators and consider regular expressions on infinite alphabets based on potentially infinite character sets. Standard approaches deciding the containment do not take extended operators or character sets into account. The algorithm avoids the translation to an expression-equivalent automaton and provides a purely symbolic term rewriting systems for solving regular expressions inequalities. We give a new symbolic decision procedure for the containment problem based on Brzozowski's regular expression derivatives and Antimirov's rewriting approach to check containment. We generalize Brzozowski's syntactic derivative operator to two derivative operators that work with respect to (potentially infinite) representable character sets.Comment: Technical Repor

    Better Answers to Real Questions

    Full text link
    We consider existential problems over the reals. Extended quantifier elimination generalizes the concept of regular quantifier elimination by providing in addition answers, which are descriptions of possible assignments for the quantified variables. Implementations of extended quantifier elimination via virtual substitution have been successfully applied to various problems in science and engineering. So far, the answers produced by these implementations included infinitesimal and infinite numbers, which are hard to interpret in practice. We introduce here a post-processing procedure to convert, for fixed parameters, all answers into standard real numbers. The relevance of our procedure is demonstrated by application of our implementation to various examples from the literature, where it significantly improves the quality of the results

    (Un)Decidability Results for Word Equations with Length and Regular Expression Constraints

    Full text link
    We prove several decidability and undecidability results for the satisfiability and validity problems for languages that can express solutions to word equations with length constraints. The atomic formulas over this language are equality over string terms (word equations), linear inequality over the length function (length constraints), and membership in regular sets. These questions are important in logic, program analysis, and formal verification. Variants of these questions have been studied for many decades by mathematicians. More recently, practical satisfiability procedures (aka SMT solvers) for these formulas have become increasingly important in the context of security analysis for string-manipulating programs such as web applications. We prove three main theorems. First, we give a new proof of undecidability for the validity problem for the set of sentences written as a forall-exists quantifier alternation applied to positive word equations. A corollary of this undecidability result is that this set is undecidable even with sentences with at most two occurrences of a string variable. Second, we consider Boolean combinations of quantifier-free formulas constructed out of word equations and length constraints. We show that if word equations can be converted to a solved form, a form relevant in practice, then the satisfiability problem for Boolean combinations of word equations and length constraints is decidable. Third, we show that the satisfiability problem for quantifier-free formulas over word equations in regular solved form, length constraints, and the membership predicate over regular expressions is also decidable.Comment: Invited Paper at ADDCT Workshop 2013 (co-located with CADE 2013

    A tropical extremal problem with nonlinear objective function and linear inequality constraints

    Full text link
    We consider a multidimensional extremal problem formulated in terms of tropical mathematics. The problem is to minimize a nonlinear objective function, which is defined on a finite-dimensional semimodule over an idempotent semifield, subject to linear inequality constraints. An efficient solution approach is developed which reduces the problem to that of solving a linear inequality with an extended set of unknown variables. We use the approach to obtain a complete solution to the problem in a closed form under quite general assumptions. To illustrate the obtained results, a two-dimensional problem is examined and its numerical solution is given.Comment: The 6th WSEAS European Computing Conference (ECC'12), Prague, Czech Republic, September 24-26, 2012; Advances in Computer Science: Proc. 6th WSEAS European Computing Conf. (ECC '12), WSEAS Press. ISBN 978-1-61804-126-5; RACES 5, ISSN 1790-510

    A constrained tropical optimization problem: complete solution and application example

    Full text link
    The paper focuses on a multidimensional optimization problem, which is formulated in terms of tropical mathematics and consists in minimizing a nonlinear objective function subject to linear inequality constraints. To solve the problem, we follow an approach based on the introduction of an additional unknown variable to reduce the problem to solving linear inequalities, where the variable plays the role of a parameter. A necessary and sufficient condition for the inequalities to hold is used to evaluate the parameter, whereas the general solution of the inequalities is taken as a solution of the original problem. Under fairly general assumptions, a complete direct solution to the problem is obtained in a compact vector form. The result is applied to solve a problem in project scheduling when an optimal schedule is given by minimizing the flow time of activities in a project under various activity precedence constraints. As an illustration, a numerical example of optimal scheduling is also presented.Comment: 20 pages, accepted for publication in Contemporary Mathematic
    corecore