9,600 research outputs found

    Trends and concerns in digital cartography

    Get PDF
    CISRG discussion paper ;

    Planning Support Systems: Progress, Predictions, and Speculations on the Shape of Things to Come

    Get PDF
    In this paper, we review the brief history of planning support systems, sketching the way both the fields of planning and the software that supports and informs various planning tasks have fragmented and diversified. This is due to many forces which range from changing conceptions of what planning is for and who should be involved, to the rapid dissemination of computers and their software, set against the general quest to build ever more generalized software products applicable to as many activities as possible. We identify two main drivers – the move to visualization which dominates our very interaction with the computer and the move to disseminate and share software data and ideas across the web. We attempt a brief and somewhat unsatisfactory classification of tools for PSS in terms of the planning process and the software that has evolved, but this does serve to point up the state-ofthe- art and to focus our attention on the near and medium term future. We illustrate many of these issues with three exemplars: first a land usetransportation model (LUTM) as part of a concern for climate change, second a visualization of cities in their third dimension which is driving an interest in what places look like and in London, a concern for high buildings, and finally various web-based services we are developing to share spatial data which in turn suggests ways in which stakeholders can begin to define urban issues collaboratively. All these are elements in the larger scheme of things – in the development of online collaboratories for planning support. Our review far from comprehensive and our examples are simply indicative, not definitive. We conclude with some brief suggestions for the future

    Map Calculus in GIS: a proposal and demonstration

    Get PDF
    This paper provides a new representation for fields (continuous surfaces) in Geographical Information Systems (GIS), based on the notion of spatial functions and their combinations. Following Tomlin's (1990) Map Algebra, the term 'Map Calculus' is used for this new representation. In Map Calculus, GIS layers are stored as functions, and new layers can be created by combinations of other functions. This paper explains the principles of Map Calculus and demonstrates the creation of function-based layers and their supporting management mechanism. The proposal is based on Church's (1941) Lambda Calculus and elements of functional computer languages (such as Lisp or Scheme)

    Agent Street: An Environment for Exploring Agent-Based Models in Second Life

    Get PDF
    Urban models can be seen on a continuum between iconic and symbolic. Generally speaking, iconic models are physical versions of the real world at some scaled down representation, while symbolic models represent the system in terms of the way they function replacing the physical or material system by some logical and/or mathematical formulae. Traditionally iconic and symbolic models were distinct classes of model but due to the rise of digital computing the distinction between the two is becoming blurred, with symbolic models being embedded into iconic models. However, such models tend to be single user. This paper demonstrates how 3D symbolic models in the form of agent-based simulations can be embedded into iconic models using the multi-user virtual world of Second Life. Furthermore, the paper demonstrates Second Life\'s potential for social science simulation. To demonstrate this, we first introduce Second Life and provide two exemplar models; Conway\'s Game of Life, and Schelling\'s Segregation Model which highlight how symbolic models can be viewed in an iconic environment. We then present a simple pedestrian evacuation model which merges the iconic and symbolic together and extends the model to directly incorporate avatars and agents in the same environment illustrating how \'real\' participants can influence simulation outcomes. Such examples demonstrate the potential for creating highly visual, immersive, interactive agent-based models for social scientists in multi-user real time virtual worlds. The paper concludes with some final comments on problems with representing models in current virtual worlds and future avenues of research.Agent-Based Modelling, Pedestrian Evacuation, Segregation, Virtual Worlds, Second Life

    From buildings to cities: techniques for the multi-scale analysis of urban form and function

    Get PDF
    The built environment is a significant factor in many urban processes, yet direct measures of built form are seldom used in geographical studies. Representation and analysis of urban form and function could provide new insights and improve the evidence base for research. So far progress has been slow due to limited data availability, computational demands, and a lack of methods to integrate built environment data with aggregate geographical analysis. Spatial data and computational improvements are overcoming some of these problems, but there remains a need for techniques to process and aggregate urban form data. Here we develop a Built Environment Model of urban function and dwelling type classifications for Greater London, based on detailed topographic and address-based data (sourced from Ordnance Survey MasterMap). The multi-scale approach allows the Built Environment Model to be viewed at fine-scales for local planning contexts, and at city-wide scales for aggregate geographical analysis, allowing an improved understanding of urban processes. This flexibility is illustrated in the two examples, that of urban function and residential type analysis, where both local-scale urban clustering and city-wide trends in density and agglomeration are shown. While we demonstrate the multi-scale Built Environment Model to be a viable approach, a number of accuracy issues are identified, including the limitations of 2D data, inaccuracies in commercial function data and problems with temporal attribution. These limitations currently restrict the more advanced applications of the Built Environment Model

    Epidemic space

    Get PDF
    The aim of this article is to highlight the importance of 'spatiality' in understanding the materialization of risk society and cultivation of risk sensibilities. More specifically it provides a cultural analysis of pathogen virulence (as a social phenomenon) by means of tracing and mapping the spatial flows that operate in the uncharted zones between the microphysics of infection and the macrophysics of epidemics. It will be argued that epidemic space consists of three types of forces: the vector, the index and the vortex. It will draw on Latour's Actor Network Theory to argue that epidemic space is geared towards instability when the vortex (of expanding associations and concerns) displaces the index (of finding a single cause)

    GIS-based landscape design research

    Get PDF
    Landscape design research is important for cultivating spatial intelligence in landscape architecture. This study explores GIS (geographic information systems) as a tool for landscape design research - investigating landscape designs to understand them as architectonic compositions (architectonic plan analysis). The concept ‘composition’ refers to a conceivable arrangement, an architectural expression of a mental construct that is legible and open to interpretation. Landscape architectonic compositions and their representations embody a great wealth of design knowledge as objects of our material culture and reflect the possible treatment of the ground, space, image and program as a characteristic coherence. By exploring landscape architectonic compositions with GIS, design researchers can acquire design knowledge that can be used in the creation and refinement of a design.  The research aims to identify and illustrate the potential role of GIS as a tool in landscape design research, so as to provide insight into the possibilities and limitations of using GIS in this capacity. The critical, information-oriented case of Stourhead landscape garden (Wiltshire, UK), an example of a designed landscape that covers the scope and remit of landscape architecture design, forms the heart of the study. The exploration of Stourhead by means of GIS can be understood as a plausibility probe. Here the case study is considered a form of ‘quasi-experiment’, testing the hypothesis and generating a learning process that constitutes a prerequisite for advanced understanding, while using an adjusted version of the framework for landscape design analysis by Steenbergen and Reh (2003). This is a theoretically informed analytical method based on the formal interpretation of the landscape architectonic composition addressing four landscape architectonic categories: the basic, the spatial, the symbolic and the programmatic form. This study includes new aspects to be analysed, such as the visible form and the shape of the walk, and serves as the basis for the landscape architectonic analysis in which GIS is used as the primary analytical tool.  GIS-based design research has the possibility to cultivate spatial intelligence in landscape architecture through three fields of operation: GIS-based modelling: description of existing and future landscape architectonic compositions in digital form; GIS-based analysis: exploration, analysis and synthesis of landscape architectonic compositions in order to reveal latent architectonic relationships and principles, while utilizing the processing capacities and possibilities of computers for ex-ante and ex-post simulation and evaluation; GIS-based visual representation: representation of (virtual) landscape architectonic compositions in space and time, in order to retrieve and communicate information and knowledge of the landscape design.  Though there are limitations, this study exemplifies that GIS is a powerful instrument to acquire knowledge from landscape architectonic compositions. The study points out that the application of GIS in landscape design research can be seen as an extension of the fundamental cycle of observation, visual representation, analysis and interpretation in the process of knowledge acquisition, with alternative visualisations and digital landscape models as important means for this process. Using the calculating power of computers, combined with inventive modelling, analysis and visualisation concepts in an interactive process, opened up possibilities to reveal new information and knowledge about the basic, spatial, symbolic and programmatic form of Stourhead. GIS extended the design researchers’ perception via measurement, simulation and experimentation, and at the same time offered alternative ways of understanding the landscape architectonic composition. This gave rise to the possibility of exploring new elements in the framework of landscape design research, such as the visible form and kinaesthetic aspects, analysing the composition from eyelevel perspective. Moreover, the case study showcases that GIS has the potential to measure phenomena that are often subject to intuitive and experimental design, combining general scientific knowledge of, for instance, visual perception and way-finding, with the examination of site-specific design applications. GIS also enabled one to understand the landscape architectonic composition of Stourhead as a product of time, via the analysis of its development through reconstruction and evaluation of several crucial time-slice snapshots. The study illustrates that GIS can be regarded an external cognitive tool that facilitates and mediates in design knowledge acquisition. GIS facilitates in the sense that it can address the ‘same types of design-knowledge’ regarding the basic, spatial, symbolic and programmatic form, but in a more precise, systematic, transparent, and quantified manner. GIS mediates in the sense that it influences what and how aspects of the composition can be understood and therefore enables design researchers to generate ‘new types of design-knowledge’ by advanced spatial analysis and the possibility of linking or integrating other information layers, fields of science and data sources. The research contributes to the development and distribution of knowledge of GIS-applications in landscape architecture in two ways: (1) by ‘following’ the discipline and developing aspects of it, and (2) by setting in motion fundamental developments in the field, providing alternative readings of landscape architecture designs

    GIS-based landscape design research:

    Get PDF
    Landscape design research is important for cultivating spatial intelligence in landscape architecture. This study explores GIS (geographic information systems) as a tool for landscape design research - investigating landscape designs to understand them as architectonic compositions (architectonic plan analysis). The concept ‘composition’ refers to a conceivable arrangement, an architectural expression of a mental construct that is legible and open to interpretation. Landscape architectonic compositions and their representations embody a great wealth of design knowledge as objects of our material culture and reflect the possible treatment of the ground, space, image and program as a characteristic coherence. By exploring landscape architectonic compositions with GIS, design researchers can acquire design knowledge that can be used in the creation and refinement of a design.  The research aims to identify and illustrate the potential role of GIS as a tool in landscape design research, so as to provide insight into the possibilities and limitations of using GIS in this capacity. The critical, information-oriented case of Stourhead landscape garden (Wiltshire, UK), an example of a designed landscape that covers the scope and remit of landscape architecture design, forms the heart of the study. The exploration of Stourhead by means of GIS can be understood as a plausibility probe. Here the case study is considered a form of ‘quasi-experiment’, testing the hypothesis and generating a learning process that constitutes a prerequisite for advanced understanding, while using an adjusted version of the framework for landscape design analysis by Steenbergen and Reh (2003). This is a theoretically informed analytical method based on the formal interpretation of the landscape architectonic composition addressing four landscape architectonic categories: the basic, the spatial, the symbolic and the programmatic form. This study includes new aspects to be analysed, such as the visible form and the shape of the walk, and serves as the basis for the landscape architectonic analysis in which GIS is used as the primary analytical tool.  GIS-based design research has the possibility to cultivate spatial intelligence in landscape architecture through three fields of operation: GIS-based modelling: description of existing and future landscape architectonic compositions in digital form; GIS-based analysis: exploration, analysis and synthesis of landscape architectonic compositions in order to reveal latent architectonic relationships and principles, while utilizing the processing capacities and possibilities of computers for ex-ante and ex-post simulation and evaluation; GIS-based visual representation: representation of (virtual) landscape architectonic compositions in space and time, in order to retrieve and communicate information and knowledge of the landscape design.  Though there are limitations, this study exemplifies that GIS is a powerful instrument to acquire knowledge from landscape architectonic compositions. The study points out that the application of GIS in landscape design research can be seen as an extension of the fundamental cycle of observation, visual representation, analysis and interpretation in the process of knowledge acquisition, with alternative visualisations and digital landscape models as important means for this process. Using the calculating power of computers, combined with inventive modelling, analysis and visualisation concepts in an interactive process, opened up possibilities to reveal new information and knowledge about the basic, spatial, symbolic and programmatic form of Stourhead. GIS extended the design researchers’ perception via measurement, simulation and experimentation, and at the same time offered alternative ways of understanding the landscape architectonic composition. This gave rise to the possibility of exploring new elements in the framework of landscape design research, such as the visible form and kinaesthetic aspects, analysing the composition from eyelevel perspective. Moreover, the case study showcases that GIS has the potential to measure phenomena that are often subject to intuitive and experimental design, combining general scientific knowledge of, for instance, visual perception and way-finding, with the examination of site-specific design applications. GIS also enabled one to understand the landscape architectonic composition of Stourhead as a product of time, via the analysis of its development through reconstruction and evaluation of several crucial time-slice snapshots. The study illustrates that GIS can be regarded an external cognitive tool that facilitates and mediates in design knowledge acquisition. GIS facilitates in the sense that it can address the ‘same types of design-knowledge’ regarding the basic, spatial, symbolic and programmatic form, but in a more precise, systematic, transparent, and quantified manner. GIS mediates in the sense that it influences what and how aspects of the composition can be understood and therefore enables design researchers to generate ‘new types of design-knowledge’ by advanced spatial analysis and the possibility of linking or integrating other information layers, fields of science and data sources. The research contributes to the development and distribution of knowledge of GIS-applications in landscape architecture in two ways: (1) by ‘following’ the discipline and developing aspects of it, and (2) by setting in motion fundamental developments in the field, providing alternative readings of landscape architecture designs

    Visualisation, VISC and scientific insight

    Get PDF
    CISRG discussion paper ;
    • …
    corecore