167 research outputs found

    Symbolic Models for Stochastic Switched Systems: A Discretization and a Discretization-Free Approach

    Full text link
    Stochastic switched systems are a relevant class of stochastic hybrid systems with probabilistic evolution over a continuous domain and control-dependent discrete dynamics over a finite set of modes. In the past few years several different techniques have been developed to assist in the stability analysis of stochastic switched systems. However, more complex and challenging objectives related to the verification of and the controller synthesis for logic specifications have not been formally investigated for this class of systems as of yet. With logic specifications we mean properties expressed as formulae in linear temporal logic or as automata on infinite strings. This paper addresses these complex objectives by constructively deriving approximately equivalent (bisimilar) symbolic models of stochastic switched systems. More precisely, this paper provides two different symbolic abstraction techniques: one requires state space discretization, but the other one does not require any space discretization which can be potentially more efficient than the first one when dealing with higher dimensional stochastic switched systems. Both techniques provide finite symbolic models that are approximately bisimilar to stochastic switched systems under some stability assumptions on the concrete model. This allows formally synthesizing controllers (switching signals) that are valid for the concrete system over the finite symbolic model, by means of mature automata-theoretic techniques in the literature. The effectiveness of the results are illustrated by synthesizing switching signals enforcing logic specifications for two case studies including temperature control of a six-room building.Comment: 25 pages, 4 figures. arXiv admin note: text overlap with arXiv:1302.386

    Towards Scalable Synthesis of Stochastic Control Systems

    Full text link
    Formal control synthesis approaches over stochastic systems have received significant attention in the past few years, in view of their ability to provide provably correct controllers for complex logical specifications in an automated fashion. Examples of complex specifications of interest include properties expressed as formulae in linear temporal logic (LTL) or as automata on infinite strings. A general methodology to synthesize controllers for such properties resorts to symbolic abstractions of the given stochastic systems. Symbolic models are discrete abstractions of the given concrete systems with the property that a controller designed on the abstraction can be refined (or implemented) into a controller on the original system. Although the recent development of techniques for the construction of symbolic models has been quite encouraging, the general goal of formal synthesis over stochastic control systems is by no means solved. A fundamental issue with the existing techniques is the known "curse of dimensionality," which is due to the need to discretize state and input sets and that results in an exponential complexity over the number of state and input variables in the concrete system. In this work we propose a novel abstraction technique for incrementally stable stochastic control systems, which does not require state-space discretization but only input set discretization, and that can be potentially more efficient (and thus scalable) than existing approaches. We elucidate the effectiveness of the proposed approach by synthesizing a schedule for the coordination of two traffic lights under some safety and fairness requirements for a road traffic model. Further we argue that this 5-dimensional linear stochastic control system cannot be studied with existing approaches based on state-space discretization due to the very large number of generated discrete states.Comment: 22 pages, 3 figures. arXiv admin note: text overlap with arXiv:1407.273

    Backstepping controller synthesis and characterizations of incremental stability

    Full text link
    Incremental stability is a property of dynamical and control systems, requiring the uniform asymptotic stability of every trajectory, rather than that of an equilibrium point or a particular time-varying trajectory. Similarly to stability, Lyapunov functions and contraction metrics play important roles in the study of incremental stability. In this paper, we provide characterizations and descriptions of incremental stability in terms of existence of coordinate-invariant notions of incremental Lyapunov functions and contraction metrics, respectively. Most design techniques providing controllers rendering control systems incrementally stable have two main drawbacks: they can only be applied to control systems in either parametric-strict-feedback or strict-feedback form, and they require these control systems to be smooth. In this paper, we propose a design technique that is applicable to larger classes of (not necessarily smooth) control systems. Moreover, we propose a recursive way of constructing contraction metrics (for smooth control systems) and incremental Lyapunov functions which have been identified as a key tool enabling the construction of finite abstractions of nonlinear control systems, the approximation of stochastic hybrid systems, source-code model checking for nonlinear dynamical systems and so on. The effectiveness of the proposed results in this paper is illustrated by synthesizing a controller rendering a non-smooth control system incrementally stable as well as constructing its finite abstraction, using the computed incremental Lyapunov function.Comment: 23 pages, 2 figure

    Compositional abstraction and safety synthesis using overlapping symbolic models

    Full text link
    In this paper, we develop a compositional approach to abstraction and safety synthesis for a general class of discrete time nonlinear systems. Our approach makes it possible to define a symbolic abstraction by composing a set of symbolic subsystems that are overlapping in the sense that they can share some common state variables. We develop compositional safety synthesis techniques using such overlapping symbolic subsystems. Comparisons, in terms of conservativeness and of computational complexity, between abstractions and controllers obtained from different system decompositions are provided. Numerical experiments show that the proposed approach for symbolic control synthesis enables a significant complexity reduction with respect to the centralized approach, while reducing the conservatism with respect to compositional approaches using non-overlapping subsystems
    • …
    corecore