67 research outputs found

    Symbol-by-symbol APP decoding of the Golay code and iterative decoding of concatenated Golay codes

    Get PDF
    An efficient coset based symbol-by-symbol soft-in/soft-out a posteriori probability (APP) decoding algorithm is presented for the Golay code. Its application in the iterative decoding of concatenated Golay codes is analyzed.published_or_final_versio

    Iterative decoding for error resilient wireless data transmission

    Get PDF
    Both turbo codes and LDPC codes form two new classes of codes that offer energy efficiencies close to theoretical limit predicted by Claude Shannon. The features of turbo codes include parallel code catenation, recursive convolutional encoders, punctured convolutional codes and an associated decoding algorithm. The features of LDPC codes include code construction, encoding algorithm, and an associated decoding algorithm. This dissertation specifically describes the process of encoding and decoding for both turbo and LDPC codes and demonstrates the performance comparison between theses two codes in terms of some performance factors. In addition, a more general discussion of iterative decoding is presented. One significant contribution of this dissertation is a study of some major performance factors that intensely contribute in the performance of both turbo codes and LDPC codes. These include Bit Error Rate, latency, code rate and computational resources. Simulation results show the performance of turbo codes and LDPC codes under different performance factors

    FPGA based Design and Simulation of Extended Golay Codec with Hardware Optimization for high speed Applications

    Get PDF
    In wireless communication systems the ability of the receiver to detect and correct the error from the received information is become one of the most important issue, so as to provide the processor the correct information data. To achieve this there are numbers of such methods are available to implement the hardware and software. But, length of the communication link plays an important role because the distance of the transmitter and the receiver depends on the length as length increases the distance between the transmitter and the receiver, and multiple bits of the transmitted information may change due to the effect of noise on the transmitted signal. This can cause extreme loss in many cases. This paper presents a brief of Field Programmable Gate Array (FPGA) based design and simulation of Golay Code (G23) and Extended Golay Code (G24) Encoding scheme. This paper using the Golay Encoder to work on the optimization of the time delay of the operational circuit to encode a data packet

    Heuristics for optimizing in complexity SISO trellis-based decoding of linear block codes

    Get PDF
    - Un problÚme important qui se pose lors du décodage des codes linéaires en blocs par l'algorithme Forward-Backward (FB) est de trouver une permutation des coordonnées qui minimise la complexité de branches des treillis associés aux codes. Dans cet article, des heuristiques sont proposées. Nous fournissons une table récapitulative des résultats obtenus pour de nombreux codes et les comparons à ceux publiés dans la littérature. L'optimisation en complexité des treillis et donc de l'algorithme FB permet d'envisager de nouveaux schémas de concaténation parallÚle de codes en blocs, basés sur des codes composants plus puissants que de simples codes de Hamming (étendus) et de comparer leurs performances à celles des turbo-codes

    802.11 Payload Iterative decoding between multiple transmission attempts

    Get PDF
    Abstract. The institute of electrical and electronics engineers (IEEE) 802.11 standard specifies widely used technology for wireless local area networks (WLAN). Standard specifies high-performance physical and media access control (MAC) layers for a distributed network but lacks an effective hybrid automatic repeat request (HARQ). Currently, the standard specifies forward error correction (FEC), error detection (ED), and automatic repeat request (ARQ), but in case of decoding errors, the previously transmitted information is not used when decoding the retransmitted packet. This is called Type 1 HARQ. Type 1 HARQ uses received energy inefficiently, but the simple implementation makes it an attractive solution. Unfortunately, research applying more sophisticated HARQ schemes on top of IEEE 802.11 is limited. In this Master’s Thesis, a novel HARQ technology based on packet retransmissions that can be decoded in a turbo-like manner, keeping as much as possible compatibility with vanilla 802.11, is proposed. The proposed technology is simulated with both the IEEE 802.11 code and with the robust, efficient and smart communication in unpredictable environments (RESCUE) code. An additional interleaver is added before the convolutional encoder in the proposed technology, interleaving either the whole frame or only the payload to enable effective iterative decoding. For received frames, turbo-like iterations are done between initially transmitted packet copy and retransmissions. Results are compared against the non-iterative combining method maximizing signal-to-noise ratio (SNR), maximum ratio combining (MRC). The main design goal for this technology is to maintain compatibility with the 802.11 standard while allowing efficient HARQ. Other design goals are range extension, higher throughput, and better performance in terms of bit error rate (BER) and frame error rate (FER). This technology can be used for range extension at low SNR range and may provide up to 4 dB gain at medium SNR range compared to MRC. At high SNR, technology can reduce the penalty from retransmission allowing higher average modulation and coding scheme (MCS). However, these gains come with the cost of computational complexity from the iterative decoding. The main limiting factors of the proposed technology are decoding errors in the header and the scrambler area, and resource-hungry-processing. In simulations, perfect synchronization and packet detection is assumed, but in reality, especially at low SNR, packet detection and synchronization would be challenging. 802.11 pakettien iteratiivinen dekoodaus lĂ€hetysten vĂ€lillĂ€. TiivistelmĂ€. IEEE 802.11-standardi mÀÀrittelee yleisesti kĂ€ytetyn teknologian langattomille lĂ€hiverkoille. Standardissa mÀÀritellÀÀn tehokas fyysinen- ja verkkoliityntĂ€kerros hajautetuille verkoille, mutta siitĂ€ puuttuu tehokas yhdistetty automaattinen uudelleenlĂ€hetys. NykyisellÀÀn standardi mÀÀrittelee virheenkorjaavan koodin, virheellisen paketin tunnistuksen sekĂ€ automaattisen uudelleenlĂ€hetyksen, mutta aikaisemmin lĂ€hetetyn paketin informaatiota ei kĂ€ytetĂ€ hyvĂ€ksi uudelleenlĂ€hetystilanteessa. TĂ€mĂ€ menetelmĂ€ tunnetaan tyypin yksi yhdistettynĂ€ automaattisena uudelleenlĂ€hetyksenĂ€. Tyypin yksi yhdistetty automaattinen uudelleenlĂ€hetys kĂ€yttÀÀ vastaanotettua signaalia tehottomasti, mutta yksinkertaisuus tekee siitĂ€ houkuttelevan vaihtoehdon. Valitettavasti edistyneempien uudelleenlĂ€hetysvaihtoehtojen tutkimusta 802.11-standardiin on rajoitetusti. TĂ€ssĂ€ diplomityössĂ€ esitellÀÀn uusi yhdistetty uudelleenlĂ€hetysteknologia, joka pohjautuu pakettien uudelleenlĂ€hetykseen, sallien turbo-tyylisen dekoodaamisen sĂ€ilyttĂ€en mahdollisimman hyvĂ€n taaksepĂ€in yhteensopivuutta alkuperĂ€isen 802.11-standardin kanssa. TĂ€mĂ€ teknologia on simuloitu kĂ€yttĂ€en sekĂ€ 802.11- ettĂ€ nk. RESCUE-virheenkorjauskoodia. Teknologiassa uusi lomittaja on lisĂ€tty konvoluutio-enkoodaajan eteen, sallien tehokkaan iteratiivisen dekoodaamisen, lomittaen joko koko paketin tai ainoastaan hyötykuorman. Vastaanotetuille paketeille tehdÀÀn turbo-tyyppinen iteraatio alkuperĂ€isen vastaanotetun kopion ja uudelleenlĂ€hetyksien vĂ€lillĂ€. Tuloksia vertaillaan eiiteratiiviseen yhdistĂ€mismenetelmÀÀn, maksimisuhdeyhdistelyyn, joka maksimoi yhdistetyn signaali-kohinasuhteen. TĂ€rkeimpĂ€nĂ€ suunnittelutavoitteena tĂ€ssĂ€ työssĂ€ on tehokas uudelleenlĂ€hetysmenetelmĂ€, joka yllĂ€pitÀÀ taaksepĂ€in yhteensopivuutta IEEE 802.11-standardin kanssa. Muita tavoitteita ovat kantaman lisĂ€ys, nopeampi yhteys ja matalampi bitti- ja pakettivirhesuhde. KehitettyĂ€ teknologiaa voidaan kĂ€yttÀÀ kantaman lisĂ€ykseen matalan signaalikohinasuhteen vallitessa ja se on jopa 4 dB parempi kohtuullisella signaalikohinasuhteella kuin maksimisuhdeyhdistely. Korkealla signaali-kohinasuhteella teknologiaa voidaan kĂ€yttÀÀ pienentĂ€mÀÀn hĂ€viötĂ€ epĂ€onnistuneesta paketinlĂ€hetyksestĂ€ ja tĂ€ten sallien korkeamman modulaatio-koodiasteen kĂ€yttĂ€misen. Valitettavasti nĂ€mĂ€ parannukset tulevat kasvaneen laskennallisen monimutkaisuuden kustannuksella, johtuen iteratiivisesta dekoodaamisesta. Isoimmat rajoittavat tekijĂ€t teknologian kĂ€ytössĂ€ ovat dekoodausvirheet otsikossa ja datamuokkaimen siemenessĂ€. TĂ€mĂ€n lisĂ€ksi kĂ€yttöÀ rajoittaa resurssisyöppö prosessointi. Simulaatioissa oletetaan tĂ€ydellinen synkronisointi, mutta todellisuudessa, erityisesti matalalla signaali-kohinasuhteella, paketin tunnistus ja synkronointi voivat olla haasteellisia

    Optimal and near-optimal encoders for short and moderate-length tail-biting trellises

    Full text link

    Replacing the Soft FEC Limit Paradigm in the Design of Optical Communication Systems

    Get PDF
    The FEC limit paradigm is the prevalent practice for designing optical communication systems to attain a certain bit-error rate (BER) without forward error correction (FEC). This practice assumes that there is an FEC code that will reduce the BER after decoding to the desired level. In this paper, we challenge this practice and show that the concept of a channel-independent FEC limit is invalid for soft-decision bit-wise decoding. It is shown that for low code rates and high order modulation formats, the use of the soft FEC limit paradigm can underestimate the spectral efficiencies by up to 20%. A better predictor for the BER after decoding is the generalized mutual information, which is shown to give consistent post-FEC BER predictions across different channel conditions and modulation formats. Extensive optical full-field simulations and experiments are carried out in both the linear and nonlinear transmission regimes to confirm the theoretical analysis
    • 

    corecore