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Résumé- Un problème important qui se pose lors du décodage des codes linéaires en blocs par l’algorithme Forward-Backward (FB) est de
trouver une permutation des coordonnées qui minimise la complexité de branches des treillis associés aux codes. Dans cet article, des
heuristiques sont proposées. Nous fournissons une table récapitulative des résultats obtenus pour de nombreux codes et les comparons à ceux
publiés dans la littérature. L’optimisation en complexité des treillis et donc de l’algorithme FB permet d’envisager de nouveaux schémas de
concaténation parallèle de codes en blocs, basés sur des codes composants plus puissants que de simples codes de Hamming (étendus) et de
comparer leurs performances à celles des turbo-codes.
Abstract- An important problem in the decoding of linear block codes via the Forward-Backward (FB) algorithm is to find a coordinate
permutation that minimizes trellis code complexity. In this paper, heuristics for reducing codes trellises are proposed. We give a recapitulating
table of the results we have found for many codes and compare them to those published in litterature up to now. This complexity optimization
allows us to introduce new schemes of parallel concatenated block codes  (PCBC), based on more powerful constituent codes than simple
(extended) Hamming codes and to compare their performance with turbo-codes ones.

1. Introduction
Quite by essence, iterative decoding of any combination of
convolutional or block codes needs some basic decoding
device, called Soft-In-Soft-Out (SISO) decoder, able to accept
and to deliver A Posterior Probablities (APP) on symbols of
constituent codes codewords. Indeed, iterative decoding
consists in re-evaluating APP on symbols.
The Forward-Backward (FB) algorithm has been first
introduced in [BAU-66]. This algorithm computes exact APP
on states and transitions of any markovian process, whose all
state sequences can be represented by a trellis graph. As
pointed out by [BAH-74], convolutional codes are such time-
independent markovian processes. From APP on states or
transitions, APP on symbols of a given information or coded
sequence can be derived respectively. As a consequence, the
FB algorithm is a SISO decoder and realizes an optimal
symbol by symbol MAP decoding of convolutional codes.
Since linear block codes can be seen as time-dependent
markovian processes and since they also accept a dynamic
(non-regular) trellis representation, the FB algorithm can
again be used to decode them in MAP sense.
Because of numerical representation problems, the FB
algorithm which normally operates in the real domain, has to
be implemented in the log-domain, thus becoming the log-FB
algorithm. A simplified sub-optimal version, called Min-Log-
FB algorithm also exists [ROB-95]. These three basic SISO
algorithms are all trellis-oriented. It can be shown that their
complexity linearly depends on the number of edges of the
trellis on which they are applied. Hence, reducing the trellis
edge complexity leads to a significant reduction in complexity
of the SISO decoding of linear constituent block codes,
involved in an iterative process.

2. Trellises for linear block codes
2.1 Elements of minimal trellis theory
In 1974, [BAH-74] first propose some way to represent a
linear block code via a trellis graph, called BCJR or syndrome
trellis. In 1978, [WOL-78] rediscovers the BCJR trellis.
Later, [MUD-88] introduces the concept of minimal trellis for

any linear block code, generalizing Forney’s previous results
on trellis diagrams [FOR-88].
Definition 1: We denote bySi the vertex subspace at depth

i (complexity Si ) and Bi i−1,  the edge subspace between

depths i − 1and i (complexity Bi i−1, ).

Definition 2: A trellis is minimal if and only if it
simultaneously minimizes the number of vertices and the
number of edges, at each depth.
Theorem 1: The minimal trellis exists and is unique for any
linear block code.
Theorem 2: The BCJR trellis is minimal.
Several other methods for constructing trellises are known
[FOR-88], KSC[95], which substantially differ from [BAH-
74] approach. All these methods produce minimal trellises,
i.e. trellises isomorphic to the BCJR trellis. In the present
paper, we focus on Kschichang-Sorokine trellises.
Definition 3: We also define:

• the trellis vertex complexity as S Si
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2.2 The permutation problem
It turns out that a permutation of the trellis time axis
(equivalent to a permutation of code symbols) can drastically
change the number of vertices or edges in the minimal
representation of some given code C . In fact, this
permutation problem is far to be as well understood as the
theory of minimal trellises and still leads to very interesting
and challenging questions. Some authors strongly believe that
the problem of finding an optimal trellis in sense of width
(state complexity) among all possible permutations of the time
axis is NP-complete. [KSC-94] have proved the NP-
completeness of some strongly related problem (state
complexity profile problem). Since the cardinality of the



search space, i.e. the full symmetric group Ω on n  elements,
increases as n! , heuristics are the single solution to find
« good » trellises.
Proposition 1: Optimization attempt under some specific
trellis complexity criterion does not necessarily produce a
trellis which also minimizes other trellis complexity measures.
Proof : by a counter-example. Consider the binary BCH code
( )15 7 5 4, , , . The optimal trellis in sense of edge complexity has

parametersB
opt

= 284 S = 222, whereas the optimal trellis in

sense of vertex complexity has parametersS
opt

= 206

B = 300 q.e.d.

Hence, in the context of minimizing the complexity of a trellis
via permutations of the time axis, it is fundamental to specify
which measure of complexity we attempt to optimize.

3. Heuristic search of optimal trellises
In this section, we briefly describe several heuristics we have
implemented to find « good » time axis permutations. The
fitness function to minimize is:

( ) ( ) ( )f C E C E Ci
i

n

π π π= =
=
∑

1

over all equivalent codes πC  of C .
For some given permutation pattern π , the fitness function
proceeds in two steps:
Step 1: compute the Minimal Span Generator Matrix
(MSGM) associated with equivalent tested code πC , using
for example the « greedy algorithm II » proposed by [McE-
96].
Step 2: read  through the MSGM and compute the trellis edge
complexity.

Clearly, step 1, whose complexity is roughly in ( )O k2  is the

bottleneck of the heuristic. Each time code parameters satisfy:
n k k− <

heuristic is applied on dual code. Using past/future
decomposition, many relationships can be exhibited between
direct and dual trellis code complexity measures [McE-96],
[FOR-94].

3.1 Basic descent procedure
Any basic descent procedure operates as follows:
Step 1: (initialization) Choose a starting point π 0C  in the

search space. Compute the fitness function for this point, and
store it as the current best solution fmin . Let N be the

maximum number of permutations to test. Set i ← 0.
Step 2: while ( )i N<

• « Permutor » procedure selects a permutation scheme π i ;

• ( )f Ciπ is computed:

if ( )f C fiπ < min

( )f f Ci

best i

min ←
←

π
π π

i i← + 1
Different strategies are possible for the « Permutor » process.
Following [KSC-94], the permutation schemes can be chosen
within a neighborhood, restricted to the set of  all codes that

can be reached from the given one by transposing only two
symbol indices (or columns). If at a time, no improvement is
found within the neighborhood, the heuristic search algorithm:
• can return the current best permutation scheme as a tentative
local optimum;
• extend the « local » search to a bigger subspace, or the full
space.
The basic descent procedure can be started from randomly
chosen points and the best overall solution chosen.

3.2 Improved descent procedures
As noticed before, direct evaluation of the fitness function for
each tested permutation scheme, although polynomial in
complexity, is costly. We propose at least two suboptimal
solutions to solve the problem, which lead to several
heuristics:
• compute a simpler related, but not exact objective function;
• attempt to « learn » common charateristics associated with
« good » permutations and use them to improve further
permutation schemes. We introduce two parameters:
σ the number of transpositions after which heuristic begins to
learn common characteristics either on permutation patterns
or directly on MSGM structure;
δ the number of unavailing transpositions after which learning
based constraints are released (according to a rule).

3.3 Simulated annealing method
The simulated annealing method aims at avoiding local
minima of ( )f Cπ . Instead of discarding a transposition

leading to an increase of  the fitness function, as in basic
descent procedure, the method accepts it with some given
probability, which depends on the increase amplitude. A
control parameter θ , called temperature, makes unavailing
transpositions less and less likely. Our simulated annealing
procedure proceeds as follows:
Step 1: (initialization) Choose a starting point πC  in the
search space. ( )π π πbest f f C← ←min . Initialize the

temperature θ (several strategies).
Step 2: while (temperature θ )
Step 3: Compute a threshold κ . Set j ← 0

while ( j < κ )

• « Permutor » procedure selects a permutation scheme π ' ;
• Compute ( ) ( )∆f f C f C= −π π'

if ( )∆f < 0  then  π π← '

if ( )( )f C fπ < min  then

( )π π πbest f f C j j← ← ← +min 1

else
p ← random value in [ ]0 1,

if ( )p f≤ −exp /∆ θ then π π← '

( )θ ϕ θ← where ϕ  is a decreasing function. Return in step 2.

Finally, return πbest

3.4 Results
Convergence speed of each of these heuristics can be
evaluated by applying them on extended Hamming codes of
order m, for which we know optimal trellis complexity
measures [KAS-93]:
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Improved heuristics have time search far lesser than basic
descent procedure. For codes of length 32, search usually
takes few minutes. Even for codes of lenth 64 or higher,
search never exceeds 12 minutes on station HP-UX-9.5.
In table 1, trellis complexity measures are tabulated for
various codes of length up to 64. In column « best found», we
indicate the best trellis found in litterature up to now, and
precise under what complexity criterion. Trellises whose
profiles match the DLP lower bound, are componentwise
optimal and are marked with an asterisk.

Table.1: Trellis complexity measures for various codes
Code |B|wolf |S| |B|best |E| best found Ref

Ham(15,11,3,8) 284 110 188 16 |B|=196 [LIN-97]
Ham(15,11,3,8)⊥ 172 110 124 16
Ham(16,11,4,8) 508 150 252 16 * [KAS-93]
Ham(16,11,4,8)⊥ 316 150 172 16 * [KAS-93]
BCH(15,7,5,4) 636 222 284 32 |B|=284 [LIN-97]
BCH(16,7,6,4) 764 326 420 64 |B|=420 [LIN-97]
BCH(15,5,7,4) 284 134 156 16 |B|=156 [LIN97]
BCH(16,5,8,4) 316 150 172 16 * [LIN-97]
Ham(31,26,3,16) 1468 462 860 32 |S|=462 [KSC-94]
Ham(31,26,3,16)⊥ 796 462 492 32
Ham(31,25,4,16) 2684 606 1116 32
Ham(31,25,4,16)⊥ 1468 606 652 32
Ham(32,26,4,16) 2812 638 1180 32 * [KAS-93]
Ham(32,26,4,16)⊥ 1532 638 684 32 * [KAS-93]
BCH(31,21,5,12) 26620 5038 8028 1024 |S|=5550 [KSC-94]
BCH(31,21,5,12)⊥ 15356 5038 6060 1024 |S|=5550 [KSC-94]
BCH(31,20,6,11) 45052 7486 11900 1024
BCH(31,20,6,11)⊥ 26620 7486 9532 1024
BCH(32,21,6,12) 49158 9534 14972 2048 |B|=14972 [WAN-96]
BCH(32,21,6,12)⊥ 28668 9534 11580 2048
BCH(31,16,7,8) 196604 4286 5884 512 |B|=5884 [LIN-97]
BCH(31,16,7,8)⊥ 163836 4286 5628 512
BCH(32,16,8,8) 262140 4798 6396 512 * [KAS-93]
JMG(31,10,12,5) 15356 5278 6300 1024 |B|=7500 [LIN-97]
BCH(31,10,12,5) 15356 5726 6748 1024 |B|=7068 [LIN-97]
BCH(31,6,15,4) 1468 606 652 32 |S|=606 [KSC-94]
BCH(32,6,16,4) 1532 638 684 32 * [KAS-93]
BCH(33,23,3,12)⊥ 17404 5158 6180 1024
Golay(23,12,7,8) 12284 2174 3068 512 |B|=3068 [LIN-97]
Golay(24,12,8,8) 16830 2686 3580 512 * [FOR-88]
Ham(64,57,4,32)⊥ 6908 2638 2732 64 * [KAS-93]

BCH(64,51,6,24)⊥ 344060 136734 144924 8192

4. Iterative decoding of parallel product
codes (PPC)
4.1 Definition of PPC
Definition 4: Let C1  and C2  be two linear systematic block

codes over Fq  of parameters ( ) [ ]n k d ii i i
, , ,min ∈ 1 2 . Let Bdata

a k k1 2×  data matrix. The bidimensional parallel product code

is the set of all codewords :

B B Bdata parity parity∪ ∪1 2

where ∪ is a concatenation operator, Bparity
1  denotes a

( )n k k1 1 2− ×  parity matrix produced by encoding the k1

columns of  Bdata  via C1  and Bparity
2  denotes a ( )k n k1 2 2× −

parity matrix produced by encoding the k2  rows of  Bdata  via

C2 . PPC can be seen as a special case of PCBC.

PPC are linear block codes over Fq  of length

( )( )n n n n k n k= − − −1 2 1 1 2 2 , of dimension k k k= 1 2  and of

minimum distance d d dmin min min= + −
1 2

1. PPC code rate is

( )ρ = + −1 11 1 2 2/ / /n k n k .

4.2 Iterative decoding of bidimensional PPC
Horizontal step: using C2  SISO decoder, decode

successively the k2  received words of size n2 . For each

word, C2  SISO decoder is fed with the log-likelihood ratios

on received bits, produced by the demodulator, and the log a
priori ratios on data bits, coming from previous C1  decoding.

After C2  decoding, the log extrinsic ratios on data bits are

computed and passed as log a priori ratios on data bits for C1

SISO decoder.
Vertical step: using C1 SISO decoder, decode successively

the k1  received words of size n1 . For each word, C1  SISO

decoder is fed with the log-likelihood ratios on received bits,
produced by the demodulator, and the log a priori ratios on
data bits, coming from previous C2  decoding. After C1

decoding, the log extrinsic ratios on data bits are computed
and passed as log a priori ratios on data bits for C2  SISO

decoder.
The two steps constitute one full iteration of the iterative
process. A recapitulative functional diagram is shown in
Fig.1.

Only the FB and the log-FB algorithms, used as SISO
decoders, deliver optimal reliabilities which really correspond
to the observed bit error probabilities. The sub-optimal Min-
Log-FB algorithm tends to deliver too optimistic soft values at
low SNR, and therefore, the performance in interative
decoding degrades (see Fig.2).
The SISO algorithms are applied onto optimized Kschichang-
Sorokine trellises. When constituent codes have parameters
satisfying inequality:

n k k− <
SISO decoders work onto trellises of dual codes, whose edge
complexity is much smaller.
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Fig.1: Iterative decoding algorithm



4.3 Performance and comparison with Turbo-
codes
We have simulated three different PPC:

( )31 21 24 12 32 16, ² / / ( , )² / / ( , )² / /

A BSPK modulation is assumed. For each PPC, BER versus
SNR performance on a Gaussian channel are shown after 4
iterations of the iterative process. On Fig.2 is pointed out the
degradation, at low SNR, brought by the use of a sub-optimal
Min-Log-FB SISO algorithm instead of a log-FB optimal

SISO. This degradation reaches 0 5, dB at 
E

N
dBb

0
15= , .

Taking [BAR-96] simulation results as a reference, it turns out
that for equivalent rates and interleaver lengths, performance
of PPC are slightly better than those of turbo-codes, which are
very sensitive to interleaver gain. The well known error floor
of parallel concatenation schemes cannot be avoided but it
holds at lower BER for PPC. This is due to the fact that PPC
have a better minimum distance that turbo-codes.

5. Conclusion
In this paper, we have described improved heuristics that have
been used to find optimal coordinate permutations for various
linear block codes, in sense of trellis edge complexity. This
trellis complexity optimization is a crucial step as soon as
iterative decoding of PPC based on FB decoders and
involving more powerful components that simple Hamming
codes is considered. Even for low code rates, simulation
results show that PCBC can achieve similar and sometimes
better performance than Turbo-Codes.

References
[BAH-74] L.R. Bahl, J. Cocke, F. Jelinek, J. Raviv, « Optimal
Decoding of Linear Codes for Minimizing Symbol Error
Rate », IEEE Trans. Inform. Theory, Mar. 1974
[BAR-96] S. Barbulescu, « Iterative Decoding of Turbo-
Codes and Other Concatenated Codes », Doctoral
Dissertation, University of  South Australia, Feb. 1996
[BAU-66] L.E. Baum, T. Petri, « Statistical Inference for
Probabilistic Functions of Finite State Markov Chains »,
Annals of Mathematical Statistics, 1966
[BER-96] C. Berrou, A. Glavieux, « Near Optimal Error
Correcting Coding and Decoding : Turbo-Codes », IEEE
Trans. Inform. Theory, vol. 44, no. 10, Oct. 1996
[FOR-88] G.D. Forney, « Coset Codes - Part II : Binary
Lattices and Related Codes. Annexes : Diagram Trellis »,
IEEE Trans. Inform. Theory, vol. 34, Sept. 1988
[FOR-94] G.D. Forney, « Dimension/Length Profiles and
Trellis Complexity of Linear Block Codes », IEEE Trans.
Inform. Theory, vol. 40, no. 6, Nov. 1994
[KAS-93] T. Kasami, T. Takata, T. Fujiwara, S. Lin, « On
Complexity of Trellis Structure of Linear Block Codes »,
IEEE Trans. Inform. Theory, vol. 39, no. 3, May 1993
[KSC-94] F.R. Kschichang, F.R. Horn, « A Heuristic for
Ordering a Linear Block Codes to Minimize Trellis State
Complexity », Proc. 32nd Annual Allerton, Conf. on
Communications, Control and Computing, Allerton Park,
Illinois, Sept. 1994

[KSC-95] F.R. Kschichang, V. Sorokine, «  On the Trellis
Structure of Block Codes », IEEE Trans. Inform. Theory, vol.
41, Nov. 1995
[LIN-97] W. Lin « The Trellis Complexity of Block and
Convolutional Codes », Doctoral Dissertation, California
Institute of Technology, Pasadena, California, Feb. 1997
[McE-96] R.J. McEliece, « On the BCJR trellis for Linear
Block Codes », IEEE Trans. Inform. Theory, vol. 42, no. 4,
July 1996
[MUD-88] D.J. Muder, « Minimal Trellis for Block Codes,
IEEE Trans. Inform. Theory, vol. 35, no. 5, Sept. 1988
[ROB-95] P. Robertson, E. Villebrun, P. Hoeher, « A
Comparison of Optimal and Suboptimal MAP Decoding
Algorithms operating in the Log-Domain », Proc. Int. IEEE
Conf. on Comm. , 1995
[WAN-96] X. Wang, S.B. Wicker, « The Design and
Implementation of Trellis Decoders for some BCH Codes »,
submitted to IEEE Trans. Inform. Theory, 1996
[WOL-78] J.K. Wolf, « Efficient Maximum Likelihood
Decoding for Linear Block Codes, IEEE Trans. Inform.
Theory, vol. 24, no. 1, Jan. 1978

I t er at i ve decoding of  (3 1,2 1) ² //
N=4 4 1, r =0 .512

M inL ogM AP  ver s us  L og M AP , i t er at ion 4

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

0,5 1 1,5 2 2,5 3

E b/No (dB )

Fig.2: Comparison of SISO algorithms operating in the log-
domain in case of PPC iterative decoding
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Fig.3: Performances of PPC (24,12,8)²
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Fig.4: Performances of PPC (32,16,8)²
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