625 research outputs found

    Sweep coverage of discrete time multi-robot networks with general topologies

    Get PDF
    summary:This paper addresses a sweep coverage problem of multi-robot networks with general topologies. To deal with environmental uncertainties, we present discrete time sweep coverage algorithms to guarantee the complete coverage of the given region by sweeping in parallel with workload partition. Moreover, the error between actual coverage time and the optimal time is estimated with the aid of continuous time results. Finally, numerical simulation is conducted to verify the theoretical results

    An Agent-Based Simulation API for Speculative PDES Runtime Environments

    Get PDF
    Agent-Based Modeling and Simulation (ABMS) is an effective paradigm to model systems exhibiting complex interactions, also with the goal of studying the emergent behavior of these systems. While ABMS has been effectively used in many disciplines, many successful models are still run only sequentially. Relying on simple and easy-to-use languages such as NetLogo limits the possibility to benefit from more effective runtime paradigms, such as speculative Parallel Discrete Event Simulation (PDES). In this paper, we discuss a semantically-rich API allowing to implement Agent-Based Models in a simple and effective way. We also describe the critical points which should be taken into account to implement this API in a speculative PDES environment, to scale up simulations on distributed massively-parallel clusters. We present an experimental assessment showing how our proposal allows to implement complicated interactions with a reduced complexity, while delivering a non-negligible performance increase

    Planning Algorithms for Multi-Robot Active Perception

    Get PDF
    A fundamental task of robotic systems is to use on-board sensors and perception algorithms to understand high-level semantic properties of an environment. These semantic properties may include a map of the environment, the presence of objects, or the parameters of a dynamic field. Observations are highly viewpoint dependent and, thus, the performance of perception algorithms can be improved by planning the motion of the robots to obtain high-value observations. This motivates the problem of active perception, where the goal is to plan the motion of robots to improve perception performance. This fundamental problem is central to many robotics applications, including environmental monitoring, planetary exploration, and precision agriculture. The core contribution of this thesis is a suite of planning algorithms for multi-robot active perception. These algorithms are designed to improve system-level performance on many fronts: online and anytime planning, addressing uncertainty, optimising over a long time horizon, decentralised coordination, robustness to unreliable communication, predicting plans of other agents, and exploiting characteristics of perception models. We first propose the decentralised Monte Carlo tree search algorithm as a generally-applicable, decentralised algorithm for multi-robot planning. We then present a self-organising map algorithm designed to find paths that maximally observe points of interest. Finally, we consider the problem of mission monitoring, where a team of robots monitor the progress of a robotic mission. A spatiotemporal optimal stopping algorithm is proposed and a generalisation for decentralised monitoring. Experimental results are presented for a range of scenarios, such as marine operations and object recognition. Our analytical and empirical results demonstrate theoretically-interesting and practically-relevant properties that support the use of the approaches in practice

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Control for Localization and Visibility Maintenance of an Independent Agent using Robotic Teams

    Get PDF
    Given a non-cooperative agent, we seek to formulate a control strategy to enable a team of robots to localize and track the agent in a complex but known environment while maintaining a continuously optimized line-of-sight communication chain to a fixed base station. We focus on two aspects of the problem. First, we investigate the estimation of the agent\u27s location by using nonlinear sensing modalities, in particular that of range-only sensing, and formulate a control strategy based on improving this estimation using one or more robots working to independently gather information. Second, we develop methods to plan and sequence robot deployments that will establish and maintain line-of-sight chains for communication between the independent agent and the fixed base station using a minimum number of robots. These methods will lead to feedback control laws that can realize this plan and ensure proper navigation and collision avoidance

    Intelligent deployment strategies for passive underwater sensor networks

    Get PDF
    Passive underwater sensor networks are often used to monitor a general area of the ocean, a port or military installation, or to detect underwater vehicles near a high value unit at sea, such as a fuel ship or aircraft carrier. Deploying an underwater sensor network across a large area of interest (AOI), for military surveillance purposes, is a significant challenge due to the inherent difficulties posed by the underwater channel in terms of sensing and communications between sensors. Moreover, monetary constraints, arising from the high cost of these sensors and their deployment, limit the number of available sensors. As a result, sensor deployment must be done as efficiently as possible. The objective of this work is to develop a deployment strategy for passive underwater sensors in an area clearance scenario, where there is no apparent target for an adversary to gravitate towards, such as a ship or a port, while considering all factors pertinent to underwater sensor deployment. These factors include sensing range, communications range, monetary costs, link redundancy, range dependence, and probabilistic visitation. A complete treatment of the underwater sensor deployment problem is presented in this work from determining the purpose of the sensor field to physically deploying the sensors. Assuming a field designer is given a suboptimal number of sensors, they must be methodically allocated across an AOI. The Game Theory Field Design (GTFD) model, proposed in this work, is able to accomplish this task by evaluating the acoustic characteristics across the AOI and allocating sensors accordingly. Since GTFD considers only circular sensing coverage regions, an extension is proposed to consider irregularly shaped regions. Sensor deployment locations are planned using a proposed evolutionary approach, called the Underwater Sensor Deployment Evolutionary Algorithm, which utilizes two suitable network topologies, mesh and cluster. The effects of these topologies, and a sensor\u27s communications range, on the sensing capabilities of a sensor field, are also investigated. Lastly, the impact of deployment imprecision on the connectivity of an underwater sensor field, using a mesh topology, is analyzed, for cases where sensor locations after deployment do not exactly coincide with planned sensor locations

    Establishing and optimising unmanned airborne relay networks in urban environments

    Get PDF
    This thesis assesses the use of a group of small, low-altitude, low-power (in terms of communication equipment), xed-wing unmanned aerial vehicles (UAVs) as a mobile communication relay nodes to facilitate reliable communication between ground nodes in urban environments. This work focuses on enhancing existing models for optimal trajectory planning and enabling UAV relay implementation in realistic urban scenarios. The performance of the proposed UAV relay algorithms was demonstrated and proved through an indoor simulated urban environment, the rst experiment of its kind.The objective of enabling UAV relay deployment in realistic urban environments is addressed through relaxing the constraints on the assumptions of communication prediction models assumptions, reducing knowledge requirements and improving prediction efficiency. This thesis explores assumptions for urban environment knowledge at three different levels: (i) full knowledge about the urban environment, (ii) partially known urban environments, and (iii) no knowledge about the urban environment. The work starts with exploring models that assume the city size, layout and its effects on wireless communication strength are known, representing full knowledge about the urban environment. [Continues.]</div

    Distributed navigation of multi-robot systems for sensing coverage

    Full text link
    A team of coordinating mobile robots equipped with operation specific sensors can perform different coverage tasks. If the required number of robots in the team is very large then a centralized control system becomes a complex strategy. There are also some areas where centralized communication turns into an issue. So, a team of mobile robots for coverage tasks should have the ability of decentralized or distributed decision making. This thesis investigates decentralized control of mobile robots specifically for coverage problems. A decentralized control strategy is ideally based on local information and it can offer flexibility in case there is an increment or decrement in the number of mobile robots. We perform a broad survey of the existing literature for coverage control problems. There are different approaches associated with decentralized control strategy for coverage control problems. We perform a comparative review of these approaches and use the approach based on simple local coordination rules. These locally computed nearest neighbour rules are used to develop decentralized control algorithms for coverage control problems. We investigate this extensively used nearest neighbour rule-based approach for developing coverage control algorithms. In this approach, a mobile robot gives an equal importance to every neighbour robot coming under its communication range. We develop our control approach by making some of the mobile robots playing a more influential role than other members of the team. We develop the control algorithm based on nearest neighbour rules with weighted average functions. The approach based on this control strategy becomes efficient in terms of achieving a consensus on control inputs, say heading angle, velocity, etc. The decentralized control of mobile robots can also exhibit a cyclic behaviour under some physical constraints like a quantized orientation of the mobile robot. We further investigate the cyclic behaviour appearing due to the quantized control of mobile robots under some conditions. Our nearest neighbour rule-based approach offers a biased strategy in case of cyclic behaviour appearing in the team of mobile robots. We consider a clustering technique inside the team of mobile robots. Our decentralized control strategy calculates the similarity measure among the neighbours of a mobile robot. The team of mobile robots with the similarity measure based approach becomes efficient in achieving a fast consensus like on heading angle or velocity. We perform a rigorous mathematical analysis of our developed approach. We also develop a condition based on relaxed criteria for achieving consensus on velocity or heading angle of the mobile robots. Our validation approach is based on mathematical arguments and extensive computer simulations
    • …
    corecore