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Abstract

This thesis assesses the use of a group of small, low-altitude, low-power (in terms of com-

munication equipment), fixed-wing unmanned aerial vehicles (UAVs) as a mobile commu-

nication relay nodes to facilitate reliable communication between ground nodes in urban

environments. This work focuses on enhancing existing models for optimal trajectory

planning and enabling UAV relay implementation in realistic urban scenarios. The per-

formance of the proposed UAV relay algorithms was demonstrated and proved through an

indoor simulated urban environment, the first experiment of its kind.

The objective of enabling UAV relay deployment in realistic urban environments is

addressed through relaxing the constraints on the assumptions of communication pre-

diction models assumptions, reducing knowledge requirements and improving prediction

efficiency. This thesis explores assumptions for urban environment knowledge at three

different levels: i) full knowledge about the urban environment, ii) partially known urban

environments, and iii) no knowledge about the urban environment.

The work starts with exploring models that assume the city size, layout and its effects

on wireless communication strength are known, representing full knowledge about the

urban environment. It combines a mathematical model with a non-linear model predictive

(NMPC) based trajectory planner for path planning and particle swarm optimisation

(PSO) for positioning. This approach shows a stable performance improvement, and it

has been used for the rest of the work with minor changes. A new communication metric,

modified global message connectivity, is also proposed to enable simultaneous performance

improvement for connections under certain threshold.

Fully predictable communication strength shows very good performance, but it re-

quires a good knowledge about the urban environment, which is usually not the case.

A new method of reducing the level of knowledge requirements is introduced by using

a probabilistic based communication model with a measurement-based approach. Para-

meters of the probabilistic communication model are updated depending on one of the

four pre-defined urban environment types. Neural network is used to determine which

of the four pre-defined urban environment types to use based on signal strength reading

from the ground. This approach shows a similar performance to the existing probabilistic

model with correct urban environment type estimation, and an improved performance to

an incorrectly estimated urban environment type.
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In the final approach, the study of measurement-based communication models is con-

tinued, where UAVs fully learn how to predict wireless signal strength between arbitrary

points in the air and on the ground. This is done to fully eliminate a need for knowledge

about urban environment. Only fixed ground nodes are considered in this case due to

high computational demand. With the compromise, the prediction and path planning

can be done almost in real time. Through careful design, the proposed UAV deployment

techniques are tested and verified in simulated urban environment.
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Chapter 1

Introduction

Figure 1.1: Illustration of the communication relay scenario in urban environment.

1.1 Background and Motivation

Unmanned aerial vehicles (UAVs) applications have been progressing at a significant pace

In recent years. Thanks to by the significant reduction in costs and operating complexity,

UAVs became accessible for the mass market with the low training requirement.

With the reduced entry barrier, UAVs have been applied in fields like film making,

remote sensing, security, search and rescue; future applications like autonomous delivery

have gained considerable attention from both academy and industry.

There exists limited research on the application of UAVs as wireless communication

relays due to prohibitively high costs and training requirements in the past. With the

significant cost reduction in UAVs, relays become a feasible temporary communication

infrastructure when ground-based stations or satellites are unavailable or severely limited

in bandwidth. Such scenarios could occur in:
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1. Introduction

• Infrastructure damage caused by natural disasters or military deployments;

• Insufficient bandwidth within the existing infrastructure due to extraordinary de-

mand during public events.

In general, temporary relays missions can be split into missions in open fields and urban

environments. Benefiting from the open environment and lack of Line of Sight (LOS)

obstructions, open field environments can be relatively easily served by a ground-based

stationary or mobile radio platform [1]. Provision of wireless communication in urban

environments is much more challenging due to the physical obstruction and occlusion by

buildings, resulting in significant transmission delays, limited coverage and high transmit

power demand [2].

To mitigate issues in urban environments, two technologies have been used tradition-

ally: ground-based radios and satellite communications. Both are liable to be obstructed

by buildings, thus reducing signal strength significantly. Moreover, satellites are also lim-

ited by the nature of pre-planned orbits. Compared with the traditional methods, using

UAVs as wireless communication relays is a promising alternative as they can be deployed

in the mission area rapidly without reliance on existing infrastructure and relocated easily

to adapt to dynamic communication demands and environments.

This thesis proposes the use of a group of small, low-altitude, low-power (in terms of

communication equipment) fixed-wing UAVs as a mobile communication relays nodes to

facilitate reliable communication between ground nodes in an urban environment. In this

work, the focus is optimisation of the deployment of the UAVs, including its positioning

and trajectory planning, by improving the communication prediction models of commu-

nication strength on the communication strength between arbitrary points in the air and

on the ground. This improvement is achieved by introducing a new way of quantifying

communication improvement in the group of ground nodes and employing measurement

based methodologies built on online learning approaches.

1.2 Research Methodology

For trajectory planning and positioning for the UAVs relays, information or prediction of

the communication strength between arbitrary points in the air and on the ground be-

comes quite important. Predicting the communication strength between those arbitrary

points is very challenging in urban environments, as a wireless signal is likely to be ab-

sorbed, reflected and refracted by buildings. Modelling those effects precisely is currently

impossible since a wide range of factors like signal frequency, materials and obstacle shapes

may affect the communication strength in various ways in different environments [3].

Previous research explored several methods to obtain the prediction on communication

strength between two nodes by modelling the building absorption, reflection and refraction

effects in various manners. Those approaches can generally be divided into two categories:
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1. Introduction

model-based approach and measurement-based approach [4]. Existing methods in either

approach are not ready for implementation in a realistic scenario due to the prerequisite

or ongoing data requirements as discussed below.

1.2.1 Model-based Approaches for Known Urban Environment

The main limitation of model-based approaches is a large number of parameters required

for computing communication quality between two nodes, which are challenging to es-

timate before the mission or online. Mainly, when model-based approaches are used in

urban environments, usually some knowledge about positions, shape, materials and their

effects on wireless communication are necessary. The knowledge available is generally not

sufficient for good positioning and trajectory planning.

Model-based approaches can be subdivided into the range-only and channel propaga-

tion [4].

The range-only approach such as [5,6] defines a radius within which communication is

assumed to be possible. In the channel propagation approaches [7–10], the communication

strength usually depends on the distance and the existence of direct LOS between nodes.

Another channel model approach is the probabilistic-based method also termed the low-

altitude platform model proposed by [11], which approximates the probability of LOS

occurrence based on the types of urban environments.

In this work, when knowledge about the urban environment is used, it is referring

to the prediction of air to ground communication links in an urban environment. When

known urban environment term is used, it means that the signal strength between air

and ground can be fully predicted using a model-based approach. This implies that all

the knowledge needed for a good air to ground communication strength prediction is

available such as positions and sizes of buildings and their effect on wireless communication

strength. Partially known urban environment means that some parameters for the model

for air to ground communication strength prediction are known, while others are unknown

and need to be either supplied or predicted during relay mission. Finally, an unknown

urban environment means that either no model or very naive model is available for air to

ground prediction and needs to be fully learned during relay mission time. Also at this

stage, it is worth clarifying the difference between trajectory planning and positioning.

Positioning is defined as finding a single point UAVs should stay for a prolonged period of

time. Trajectory planning is defined as finding a trajectory (a group of waypoints) which

the UAV should follow for a given period of time, with possible updates throughout the

mission.
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1.2.2 Measurement-based Approaches for Unknown and Partially Known

Urban Environment

Measurement-based approaches are utilised to cope with the difficulties of estimating

communication parameters involved in implementing model-based approaches. This is

achieved by using UAVs to collect the signal strength data from the ground nodes during

the mission. The data collected is used to model air-to-ground signal strength online, and

trajectory planning is performed on the created model.

Measurement-based approaches can be subdivided into gradient following approaches

and learning approaches.

In the gradient following methods such as in [1], the UAV collects the signal strength

from ground nodes to calculate the signal strength gradient and move towards the optimal

position gradually. Meanwhile, learning- based approaches such as [12,13] rely on collecting

the signal strength data to create or update a communication model using machine learning

techniques.

While measurement based approaches offer to solve a number of parameters issues of

model-based approaches, they have two significant limitations. First, measurement-based

approaches are mainly used for stationary environments because of the high data volume

required for learning and prediction for mobile ground nodes. Second, gradient following

methods are unable to cope with non-linearities and discontinuities in the wireless signal

introduced by urban environments.

1.3 Research Contribution

This thesis assessed the UAVs relays performance in complex urban environments and

enhanced the existing communication prediction models for optimal trajectory planning.

Those enhancements make it possible to implement UAVs relays in realistic scenarios.

The first experiment of this type was developed and conducted to show the performance

of UAVs relays in a simulated urban environment. This thesis makes the following main

contributions in this area.

• A new way of measuring communication performance for the group of ground nodes,

modified global message connectivity (mGMC) is devised. In previous work, con-

nection performance improvement was constrained to improving either the weakest

connection or the sum of all connections. With the proposed metric, all connections

with sub-par performance can be dealt with simultaneously, thus offering benefits of

both improving weakest connections and the sum of all connections.

• Neural network for updating the probabilistic model to predict wireless signal strength

in the urban environment is proposed. This approach is a combination of a learning-

based measurement technique with a probabilistic low altitude platform (LAP)
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communication model [11]. By the combination of model-based approaches and

measurement-based approaches, this hybrid approach overcomes the limitation of

heavily relying on communication parameters known a priori, in the model-based

approaches, and that of high data volume requirements, in the measurement-based

approaches. This hybrid approach makes it possible to apply the measurement-based

technique to dynamic scenarios where ground nodes are moving.

• Predicting a communication map in a complex urban environment using the Gaus-

sian Process technique is proposed. Two different schemes of using the Gaussian

Process (GP) framework to assist UAV trajectory planning are compared: i) pre-

scanning followed by the Non-linear model predictive control (NMPC) trajectory

planner with GP, and ii) the NMPC trajectory planner with GP. The first method

initially performs pre-scanning of the region of interest to build an accurate com-

munication channel map, then plans the optimal relays trajectory with this map.

The second method updates the communication channel map and trajectory plan-

ning continuously using online measurements and GP during the flight. As shown

in chapter 4, the first shows similar communication improvement amongst ground

nodes as model-based approaches while second from fast start to relaying mission.

For the first time, the performance, benefits and shortcoming of such an approach

in an environment with complex wireless signal strength are compared with other

approaches, including the state-of-art technique proposed in [11].

1.4 Outline

The chapter outline is presented in Fig. 1.2. The diagram presents an overview of changes

of key ideas in three concept streams (indicated in green columns on the right) across

chapters of this thesis (rectangles of different colours stretching from left to right). The

trajectory planning and positioning stream show how optimisation of trajectory and posi-

tioning evolves across the chapters. Similarly, ground nodes mobility show whether ground

nodes can move or are stationary in a given chapter. Finally, the communication mod-

elling concept stream reflects three different communication models used throughout the

chapters in this thesis. The remainder of the thesis is organised as follows

• Chapter 2. In this chapter, relevant literature is reviewed, and the problem of

optimising trajectory of UAVs for communication relays in urban environments to

be addressed in this thesis is defined.

The literature review is split into three sections: wireless communication in an urban

environment, trajectory planning and positioning and communication modelling for

UAVs. The first section reviews the complexity of behaviour of a wireless network in

urban environments. The complexity arises as wireless communication is affected by

multiple phenomena such as diffraction, reflections and absorptions. In the second
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Figure 1.2: Overview of chapters in this thesis

section, issues with determining trajectory and position planning are considered. The

complexity of the problem is mainly caused by the vast dimensions of the problems,

limited available knowledge regarding ground nodes positions and trajectories, and

computational time. The third section introduces the existing attempts to solve the

problem of predicting wireless signal strength between arbitrary points in various

types of environment.

The literature review reveals that the current communication prediction models

could not cope with urban environments adequately. To deploy UAVs for com-

munication relays in an urban environment successfully, it is essential to address the

challenges of predicting communication strength between any pair of points on the
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ground and in the air.

• Chapter 3. In this chapter, the research focuses on optimally deploying a UAV

using particle swarm optimisation (PSO) for stationary ground nodes and NMPC

for mobile ground nodes. PSO, genetic algorithm (GA), NMPC based trajectory

planner and model-based wireless communication strength prediction are introduced

and assessed. For stationary ground nodes, a PSO based positioning algorithm is

developed to deploy UAVs as a optimal communication relays. This approach is

extended to the NMPC based trajectory planner with GA being used to find a

trajectory of UAVs with mobile ground nodes. Compared with stationary ground

nodes, this is a more realistic and common situation encountered by UAVs. In this

chapter, the feasibility of the proposed PSO positional planner and the proposed

NMPC based trajectory planner is investigated in terms of computational time and

performance. Additionally, the performance of the proposed mGMC is assessed in

this chapter. The experiment is carefully designed and presented at the end of this

chapter, where a quadrotor UAV is used in an indoor area to relay communication

between three ground vehicles.

• Chapter 4. This chapter is a further exploration of removing constraints of UAV

communication strength prediction in urban environments. Further to previous ef-

forts of relaxing the assumption of sufficiently good knowledge about environments,

a situation where UAVs has no knowledge about communication loss in the opera-

tional environment is considered. In this case, a communication model has to be fully

learned online during the mission. Due to the computational complexity involved in

this situation, only stationary ground nodes are considered in this study.

• Chapter 5. This chapter improves the NMPC based trajectory planner with a new

optimiser called cross entropy optimiser. It also introduces a new approach to com-

pute wireless communication signal strength using a Neural Network (NN). The

NN is combined with a probabilistic communication performance metric to predict

communication model parameters during a mission. Such an approach allows us to

relax the assumption that sufficient knowledge about the operational environment

is available, while still coping with mobile ground nodes.

• Chapter 6. This chapter is devoted to the experimental setup and tests of the pro-

posed GP channel prediction approach. In an indoor laboratory, a small scale urban

environment including building blocks is set up and simulated. The experiment

involves a quadrotor UAV and two ground nodes in a simulated city. To mimic

communication loss due to buildings and other obstacles in an indoor environment

realistically, multiple water containers were used. Water has good absorption prop-

erties in typical bands used for wireless communication. In the experiment, the

GP approach was compared to the model-based approach (the model was similar
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to that from chapter 3). It was shown that despite assuming no apriori knowledge

about the propagation of a wireless signal in this environment GP channel prediction

performance is close to the model-based approach.

• Chapter 7. The final chapter summarises the contributions of the thesis and suggests

the directions for future work.
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Chapter 2

Literature Review

For efficent utilisation of Unmanned Aerial Vehicles (UAVs) as communication relays, mul-

tiple problems need to be addressed, such as trajectory planning and positoning, modelling

of wireless communication, network topologies, routing protocols and UAV battery man-

agement. Among those problems, path planning and modelling of wireless communication

are reviewed in detail. However, to fully understand the magnitude of the problem, it is

important to first understand the behaviour of wireless signal in an urban environment.

2.1 Wireless Communication in Urban Environment

Wireless communication in an urban environment is characterised by a stochastic difficult

to predict behaviour caused by reflections, absorptions and refractions. Experiments have

been performed to characterise wireless communication behaviour in urban environments.

First, the effect of different materials used in buildings is discussed. An experiment

performed by [14] measured the effect of reflection and absorption brick, tinted glass, clear

glass and wall (made of a combination of a variety of materials) for 28 GHz network. It was

shown that tinted glass had the highest reflection coefficient of 89%, meaning most of the

wireless signal was reflected. Also, concrete drywall and clear glass materials have shown

very similar reflection coefficients of about 70%. Finally, it was shown that common office

objects walls, doors, cubicles and others significantly affected the behaviour of wireless

communication.

Effect of low-built-up homes is shown in [15]. In their experiment, they measured

the performance of 5.85 GHz network around three different houses each constructed at

different times and made of different materials. Each of the homes has shown different

attenuation of the wireless signal. Even theoretically same materials have shown different

losses. Sometimes losses difference were twice as high between homes built in two different

architectural styles. Another exploration of the wireless signal behaviour around low-built-

up areas was performed by [16]. Unlike [15], this work checked frequencies between 2000

and 16000 MHz. It has shown that depending on frequency penetration across buildings

can be very different. In general the lower the frequency, the better the penetration. Those
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experiments show how different materials are interacting with different electromagnetic

wave frequencies can have a significantly different effect on the wireless signal. Thus to be

able to predict signal strength, the composition of each building would need to be known.

Wireless communication performance around taller buildings was explored by [17], [18]

and [19]. Davidson et al. [18] measured the wireless signal penetration loss for various

tall buildings. The transmitter was located between 1 or 2 km away from buildings, while

receivers were located inside. It was shown that receivers located at different floors received

signal of different strength. Tannis Et Al. [17] explored how the wireless communication

signal strength varied for two bands 880 MHz and 1922 MHz in different buildings such as

office, mall and hotel. In this work, it is shown that on average signal difference between

a line of sight (LOS) and non-line of sight (NLOS) was 3 dB, which means that 3 dB is

lost due to buildings.

Series of experiments to test how the wireless propagation is affected before, during

and after building collapse, across series of bands was performed in [20–23]. Three different

buildings were tested: highrise ex-hotel, stadium and convention centre. The experiment

is a simulation of how the wireless signal changes during a natural disaster scenario, which

is one of the key usages of UAV relays explored in this thesis. Destruction of buildings

resulted in a significant change in communication performance at each receiver site. Most

of the time the receivers saw a degradation of signal quality due to material built-up around

the receivers. Such a signal strength change could make even perfect model obsolete very

quickly.

Overall, it was shown that communication strength performance varies highly depend-

ing on the building’s shape, size and construction materials. Because of this, the wireless

signal has an extremely complex behaviour and is difficult to predict.

Previously effects of simple single buildings cases were presented. Here this discussion

is extended to account for multiple buildings or cities. Multiple buildings cause more

complex behaviour of wireless communication, as multiple effects are combined at the

same time. With multiple buildings, two types of tests were performed: with stationary

antennas and with mobile antennas (i.e. mounted on a car or other vehicles).

Experiments were performed where two antennas are placed a certain distance from

each other in an urban environment. One such a work in [24] explored how NLOS affects

performance at high frequencies such as 23 or 28 GHz. It has been shown that signal in

an urban environment has considerable variance through extensive testing in New York

and Austin, Texas. Murdock, et al. [25] performed a test at the University of Texas

campus which attempted to measure the effects of diffraction. It was shown that with

diffraction the likelihood of successful link establishment was 10% to 20% higher than

without diffraction. Important remark for the wireless signal propagation was made in [26].

This work showed that, the ratio of windows to building area could have a significant

impact on the wireless signal propagation. Moreover, the presence of tinted metal in the

windows also affected the wireless signal propagation profoundly. Rapport, et al. [27]
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focused on observing the variance of the signal. In this paper, it was shown that, in

NLOS, the variance of the received signal strength increases significantly. The difference

in signal arrival time was explored in [28]. An experiment performed in New York showed

that, due to multipath fading, data arrives at receiver postion much later for NLOS case

than LOS case. Wireless communication strength experiments in 700 MHz and 4.9 GHz

bands were performed in [19] to asses multipath losses performance for LOS and NLOS

around single buildings. Multipath losses are caused by signal taking different routes to

arrive at the receiver. It was found that multipath losses in urban environments were

independent of whether transmitter-receiver pairs were in LOS and NLOS. With this, it

can be seen that buildings not only affect signal strength directly but also contribute to

creating multiple paths signal can travel, increasing stochastic behaviour of the wireless

signal. Laurila et al. [29] performed an experiment in Helsinki which classified propagation

into four different urban environment classes to account for the obstructions by buildings.

In this paper, it was shown that the received signal strength indicator (RSSI) is affected by

objects next to the base station the most. They have also shown that signal components

received over the rooftop of a building are often a result of reflections from other highrise

buildings in the area. Groups of buildings cause signal strength to behave in a highly

stochastic way; thus the wireless signal strength in an urban environment is difficult to

predict accurately. Moreover, it is shown that due to buildings, the wireless signal often

arrives with significant delays.

Work in [30, 31] considers moving antennas mounted on a car. In Otto et al. [30]

experiment was devised in three different environment types: open fields, suburban and

urban. It was shown that distance based loss is similar across all three environments but

signal variance the highest in urban and lowest in open fields environment. Similarly,

variance of signal strength increases between NLOS and LOS. Two tests were performed

in [31] with vehicles driving in the same direction in one test and the opposite direction

in the other test, to see how RSSI changes with distance in different environments. It is

noted that path loss was the highest in highway environment, followed by the urban and

rural environment.

With such a stochastic and complicated behaviour caused by buildings, using a math-

ematical model for communication prediction is not trivial. Two reviews comparing the

accuracy of wireless communication models in an urban environment was performed in [32]

and [33]. Wu et al. [32] assessed communication models available for predicting commu-

nication strength in an urban environment for Jinan City in China. In this work, several

models were compared with the measurement data they collected, with two models show-

ing good fit. However, it was remarked that the fact those two models are such a good

fit is down to the geography of the place, i.e. those two models were created in a very

similar urban environment. On the other hand, other models developed for substantially

different urban environments did not work well. Abhayawardhan et al. [33] presented

another review of the suitability of empirical models in an urban environment. It can be
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seen again that models do not fit with measurements well. One of the models (ECC-33)

performed well in a single urban environment but didn’t perform so well in other urban

environments. Also, it is worth noting even for these with good fitness, it is only achieved

on average but not at individual point.

2.2 Communication Modelling for UAVs

To effectively plan the UAV relay trajectory, it is essential to predict the air-to-ground

communication channel quality for arbitrary UAV positions. In the literature, several ap-

proaches were used for wireless communication channel prediction. They can be primarily

divided into the model-based and measurement-based approaches [4].

2.2.1 Model Based Approaches

In the model-based approaches, communication channel strength between nodes is cal-

culated by using a pre-defined model with known communication parameters which are

dependent on the mission environment. Model-based approaches can be further subdivided

into range-only and channel propagation methods.

Range-only

The range-only approach is one of the simplest methods of defining communication model.

This type of methodology is also referred to as a disc-based model [4]. It relies on defining

a radius within which communication is possible. There were several approaches which

used range only models to the great effect.

Simple range-only models were explored in [5, 6, 34]. In those approaches, commu-

nication is assumed to be possible only within a certain radius away from the node. It

was shown that the range only method has high computational efficiency while providing

reasonably good performance in terms of improving communication performance.

Burdakov et al. [35] extended the range only method with added LOS obstruction

element. They assumed that communication is possible within a given radius only if LOS

is present. With this simple extension, they were able to use the range-only approach in

an environment with obstacles, with a minimal computational cost increase.

Another approach of using range-only models to cope with the urban environment was

presented in [36]. In their approach, the radius of possible communication changes based

on the type of urban environment given node is in. In general, the more complex the

environment is, the shorter the possible communication radius will be.

Despite the fast computational speed, range-only approaches fail to account for many

essential elements of communication prediction. For example, it is challenging to account

for directional effects such as antennas directionality. Moreover, range-only approaches,

despite some attempts, struggle in urban environments. While simple non-line of sight
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(NLOS)/LOS can be considered, more complex effects such as diffractions cannot be dealt

with.

Channel Propagation

Channel propagation methods are a popular way of modelling communication perform-

ance. Those methods were created to account for more factors affecting communication

compared with range-only methods. In this method, a mathematical model is used to

model the channel propagation between different nodes. The models usually account for

various things such as distance, propagation loss and shadow fading.

A simple channel propagation method was presented in [37]. In their model, data

rate between various nodes is computed based on the distance between nodes, as well as

maximum bandwidth a node of concern can support.

Wu et al. [38] proposed a very comprehensive channel model for general usage. Their

model accounted for factors such as azimuth and elevation between two nodes (to account

for different antenna propagation properties), the distance between two nodes, general

obstructions by buildings as well as Doppler frequencies to account for refractions caused

by buildings.

Kim et al. [7] and Han Ee al. [8] use a model which is based on the distance between

two nodes, transmitted power, background noise and channel gain. Model is then used to

give a probability of achieving desired link strength. Such an approach allows accounting

for desired communication strength from the user in a probabilistic manner.

Multiple antennas systems were considered in [39]. Their models calculated predicted

SNR using a channel matrix (number of communication channels available based on num-

bers of antennas in the system). The model was initially developed by [40] and [41].

SPLAT! [42] is a simulation software used in [43,44] to predict communication strength

between air and ground. SPLAT! is a popular software used to predict communication

strength between two points. It can account for NLOS obstructions as well as simple

distance-based models. NLOS obstructions are dealt with in a simple manner where if

two nodes are in NLOS, their communication is not possible.

Mozaffari et al. [45] described the positioning of an UAV in an urban environment based

on a probabilistic communication model from [46]. The model is based on distance-based

loss, antenna gain, transmitted power and finally random Gaussian variable representing

the noise. The noise component is different depending on whether two nodes are in LOS

or not. Additionally, in this work, it is shown that the probability of being in LOS

is dependant on the angle between air and ground vehicles. The similar probabilistic

approach is presented in [47].

Channel based methods can be used to account for the majority of effects of an urban

environment on the communication. However, to achieve that, they usually require i) a

good knowledge about the urban environment and ii) a good estimation of many paramet-
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ers. As described in Sec. 2.1, communication strength between two arbitrary points in a

city is affected by many factors such as number, positions and makeup of obstacles (e.g.

buildings) and even the presence of trees and bushes. It is just impossible to account for all

of them in any model. Additionally, it is not easy to correctly estimate model parameters

suitable for a mission in a given environments a priori. With the wrong parameters, the

performance of the model is significantly depreciated. For those reasons, it is difficult to

use channel-based models to full capacity.

2.2.2 Measurement Based Approaches

To address the issues with the model-based approaches, measurement-based approaches

were introduced. They rely on collecting communication data to create and update the

communication prediction models in real time. They can be divided into the gradient

following and the learning methods.

Gradient Based

In the gradient following methods such as [1, 48, 49], measurements (e.g. SNR or RSSI)

are used to calculate the gradient, and the UAV follows the gradient to a better channel

position gradually. Eventually, optimal position is reached when no increase of RSSI is

possible by any movement of the UAV.

A gradient following method based on potential fields was presented in [50]. This

work is about communication relay between two ground nodes using a chain of multiple

ground vehicles. To generate UAV guiding potential fields, a communication measurements

strength from other ground vehicles are used.

Gil et. al. [51] showed a method of determining communication quality using both

signal strength and channel phase. That allows determination of change signal quality

much quicker as channel phase changes can be observed faster than signal strength changes.

Additionally, it uses synthetic aperture radar to determine a signal direction for further

improvement of trajectory planning.

Gradient following communication models are characterised by low computation effort

and not relying on fitting appropriate models to appropriate urban environments. How-

ever, gradient following methods is unable to cope with non-linearities and discontinuities

in the signal strength which are present in urban environments.

Learning Based

To cope with the limitation of gradient-based methods, learning based methods were

devised to allow measurement based methods to cope with more complex scenarios such

as urban environments.

Hsieh proposed one of the first learning methods in [52]. This method relied on splitting

an urban environment into grid points. The grid would generally follow the outline of the
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roads in a city to guarantee all points are reachable. Robots would then survey the grid

to find connection strength between grid points, to be later used for trajectory planning.

Carfang et al. [53] used scaled unscented Kalman filter to predict parameters in the

communication model. It used Rappaport’s long-distance model for signal estimation and

then used a Kalman filter to estimate parameters in the communication model equation.

The approach was shown to work during the experimental flight where it was shown

parameters converge relatively quickly.

Another approach proposed by Carfang et al. in [12, 54] used the Gaussian process

(GP) to iteratively learn radio frequency environment to improve the efficiency of the data

ferrying UAV. Network strength is said to consist of two components RF propagation and

white noise. White noise is dependant on location and thus can be estimated using a

Gaussian process. In a simulation, it was shown that the theoretical maximum bandwidth

provided by the ferry could be 21 Mbps, while in reality at the beginning of the experiment

it was 6 Mbps. After a few iterations of algorithm 21 Mbps was eventually reached.

Fink et al. [55–57] proposed several other approaches using GP Their method was

using a group of mobile robots estimate signal strength for a stationary ground node. GP

was used in the estimation which was proven to work well for this prediction.

GP was also used in [58–60] for predicting communication strength to support the op-

eration of ground robots. Both approaches used robots to perform a certain mission, while

mapping communication strength to ensure communication to the base can be achieved.

Mostofi and her group have developed two ways of predicting spatial channel capacity.

The first methodology discussed in [61–63] was using compressive signal theory and the

other one [64, 65] was a probabilistic method. The compressive signal theory relied on

the transfer of spatial signal data to a space where most of the signal is contained within

much fewer terms only. Those terms can be estimated from measured data easier than in

spatial domain and transferred back to the spatial domain, where it can be used for signal

prediction. A probabilistic method was developed that relies on estimating the shadowing

and path loss components for a given area while ignoring multipath fading.

Another approach to learning the RF signal was proposed by [66], which used a meth-

odology called segmented regression. It clustered points based on RSSI values. The

advantage of this approach was that instead of trying to use a continuous function to

approximate discontinuous communication strength function, it could approximate dis-

continuous function directly. Such an approximation was a more accurate representation

of wireless signal behaviour, resulting in better planner performance.

Learning methods can cope well with urban environments as it learns communication

performance during the mission and it can cope with the discontinuous signal from ground

nodes. The disadvantage of learning based methods is the time needed by the UAV to

learn communication performance.
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2.2.3 UAV Network Test

To complete a discussion on wireless communication, experiments involving UAVs are dis-

cussed hereafter. It is worth noting that using UAVs to measure signal strength variation

in an urban environment is challenging at the time of writing as UAV flight is restricted

by law limitations heavily. Nevertheless, for the sake of completeness, it is important to

consider the performance of UAV even if it is in open environments such as in Yanmaz et

Al. [67]. There also exists one work which considers an urban environment in a limited

capacity in VanDerBergh et Al. [68].

Yanmaz et all. [67] performed an experiment involving UAV and a ground station.

They measured how radio communication changes as a function of distance and height of

the UAV. The signal was linear with distance, but it still has a significant variation despite

there being no buildings or obstacles in the line of sight.

Van Der Bergh et Al. [68] is a paper about using Long Term term evolution (LTE)

networks for UAV relay between many nodes. Their work focused on measuring the per-

formance of such a relay without any optimal placement algorithms. They flew UAV up to

a 120 m and detected communication strength in what seems to be an urban environment

(or environment with obstacles), to the nearest LTE station.

2.2.4 Discussion

Multiple methods to predict wireless signal strength were presented. Range-only ap-

proaches work very well for a simple open-field environment, where the signal can be

simply predicted. Channel propagation methods which add additional elements of pre-

diction to a simple range, can be used in a slightly more complex scenario. However,

model-based methods require the estimation of several parameters for them to work well.

Measurement-based techniques solve this problem by relying on collecting signal strength

data and reaching appropriate to the data which is observed. Out of gradient-based and

learning based, only learning based methodologies are suitable for urban environments.

Gradient-based approaches would struggle with discontinuities and non-linearities intro-

duced by urban environments.

With those limitations in mind, this work uses channel propagation methods and

learning based method. Channel propagation methods work well when there is proper

knowledge about an urban environment. Learning based methods are used to supplement

the channel model, where knowledge about the urban environment is incomplete or non-

existent.
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2.3 Trajectory Planning for fixed wing aircraft and Posi-

tioning for rotary wing aircraft

This section explores trajectory planning and positioning algorithms for an unmanned

aerial vehicle (UAV) relay. The nature of both vehicles dictates this usage. Rotary wing

UAVs can hover so it can stay at a predefined the position, while fixed-wing UAV needs

to move at a certain speed, so trajectory planning is necessary. Trajectory planning and

positioning are necessary to utilise limited UAVs available in a mission effectively.

2.3.1 Positioning for Optimal Configuration of UAV RelayNetwork

Relay positioning algorithms can be divided into three categories: i) convex optimisa-

tion [69], ii) bio-inspired heuristics optimisation and iii) other heuristic optimisation.

Convex optimisation relies on careful formulation and simplification of the problem so

that it can be solved by gradient ascending/descending algorithms. Bio-inspired heurist-

ics optimisation uses bio-inspired algorithms to solve the positioning problems, while other

heuristic optimisations rely on either geometry or special assumptions and constraints of

the problem to provide a fast suboptimal solution.

Convex Optimisation

One of the key techniques used in convex optimisation is Linear programming used for

example in [36, 70, 71]. Flushing et al. presented a mixed integer linear programming

(MILP) approach for placing relays in Wireless Sensors Network system [70], where the

mission region is split into sub-regions of square shapes. Each square defines the density

of nodes within it, and then UAVs are positioned so that they all serve a similar number

of ground stations. The algorithm described in [71] used UAVs to increase the second

smallest eigenvalue of the Laplacian matrix of the network graph. This lead to improved

connectivity in a wireless sensor network. This number also called Fiedler value of the

network, measures how well the group of nodes is connected. They used semi-definite

formulation with SDPA-M software package to solve the problem.

MILP based approaches are guaranteed to find the optimal solution given that problem

can satisfy framework constraints. Moreover, there exist multiple tried and tested MILP

solvers which can arrive at the optimal solution quickly. However using MILP requires

special formulating a problem in a specific way, which is not always possible.

Another set of approaches can be classified as gradient descent. In those approaches,

UAVs follows a trajectory of the decreasing RSSI to reach an optimal position as described

in [1, 50, 72]. One of those approaches was shown in [72] where a gradient following

controller for a rotary wing UAV was developed. The algorithm was used to find the

UAV position which improves all connections among a group of ground nodes. They have

performed an extensive indoor experiment using a group of quadrotors and ground sensors.
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Dixon et al. [1] used the measured signal to noise ratio (SNR) and a gradient following

technique to guide multiple UAVs to optimal positions between two ground nodes. They

have performed an outdoor proof-of-concept experiment with fixed-wing UAV. Zavlanos

et al. [50] used the potential vector field approach to solve Unmanned ground vehicles

(UGVs) positioning problem similarly to gradient following algorithms. They have used a

group of UGVs to help communication between two base stations. The key advantage of

the proposed approach was that it could run in a decentralised manner.

Gradient-based approaches are very fast to compute as they do not rely on a com-

plex model of UAV kinematics or wireless communication strength and can be run in a

decentralised manner with minimum efforts.

The critical advantage of convex optimisation techniques is high computational effi-

ciency and the guarantee of reaching optimal answer given fulfilment of specific require-

ments. However, fulfilling those requirements is not always possible, resulting in poor

performance. This is particularly true in an urban environment where complex commu-

nication models introduce non-linearities and discontinuities in cost functions, causing

convex optimisation to be stuck in local minima.

Bio-inspired Heuristics Optimisation

For coping with more complex communication models, bio-inspired heuristics optimisa-

tion techniques could be used. Bio-inspired heuristics optimisation techniques mostly use

optimisation algorithms such as particle swarm optimisation (PSO) and genetic algorithm

(GA). Bio-inspired heuristics optimisation techniques trades-in guarantees of optimality

for improved performances in complex urban environment scenarios.

Magan-Carrion [34] used PSO to find optimal positions of relays. This approach splits

problem into two parts: i) initial guess of where the UAV relay placement might be based

on heuristics; ii) The placement is then updated using PSO for further refinements. Such

an approach was introduced to allow placement of multiple communication relays (10 or

20) quickly.

Performance of GA and PSO in a small urban environment scenario was compared in

[73]. It was shown that these two have a very similar performance in terms of determining

optimal positioning of UAVs relays. They have also shown the performance of the proposed

methodology in an outdoor experiment with a group of UGVs.

In [74] usage of a multi-subpopulation GA to position UAVs relays in a scenario with

multiple ground nodes was explored. In this approach objectives such as fault tolerance,

redundancy and network coverage are considered. The approach consists of is a set of

smaller GAs, each evolving with different initial algorithm parameters, with the best

solution chosen among the set of smaller GAs. It has been shown that their approach is

better for this problem than standard optimisers such as PSO.

Bio-inspired heuristics optimisation techniques are ideally suited to cope with more
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complex scenarios such as urban environments. In an urban environment, signal strength

is not continuous as a function of the position of air and ground vehicles, resulting in a

non-convex cost function. Convex based algorithms have limited performance with non-

convex cost functions as they tend to get stuck in local minima. Bio-Inspired heuristics

optimisation techniques have mechanisms to prevent this issue; however, they sacrifice a

guarantee of optimality and computational speed.

Other Heuristic Optimisation

Other Heuristic Optimisation approaches are used to either arrive at the close to optimal

answer quickly or to try to cope with non-convex cost function issue. Other heuristic

optimisation approaches use either geometric features or a significant simplification of the

problem to be able to apply brute force search methods efficiently.

Chandrashekar’s [75] approach is based on grouping ground nodes to a set of clusters

based on communication strength. UAVs are then used to connect separate groups. With

the grouping, the problem was greatly simplified, so brute force approach was applied to

find the optimal positioning of relays between clusters.

Another approach which relied on great simplification and brute force usage was shown

in [76]. In their scenarios, the coverage provided by a set of base stations was reduced

due to a natural disaster occurring. UAVs are used to cover the area that was no longer

covered by damaged or destroyed base stations. With such a setup, a brute force solution

can be easily obtained by placing UAVs in any non-covered area.

The approach presented in [36] has shown a 3D placement problem, rather than 2D

placement in other works, that can be solved successfully using MILP. To mitigate the

computational time issue, their algorithm consisted of two phases i) using one-dimensional

bisection search to fix UAV altitude, and ii) solving the problem on a given altitude as a

mixed- integer non-linear problem (MINLP) problem.

Geometry based heuristics were presented in [77–79] to solve relay placement in an

urban environment. In [77] approach relies on first choosing line and angle UAV will be

at from ground nodes. Then UAV positions are adjusted on that line until a maximum

number of ground vehicles are in LOS. This approach guarantees very fast convergence

and low computational cost. Lyu et al. [78] presented a heuristic approach where UAVs

are placed between the edges of the polygon which joins all unconnected ground nodes. At

the beginning the shortest edges are filled, to be followed with longest edges until all relays

are placed. Essentially the idea is very similar to clustering. Nikolov presented approach

where UAVs are placed sequentially on the edges of overlapping communication regions

between ground nodes [79]. Relay position is then optimised within the overlapping region

using a gradient-based approach. Once the optimal position has been found, new UAVs

are added until all relays are positioned within the network.

Xu et al. [80] proposed another approach using the heuristic method for relay place-
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ment. Their algorithm performs both UAV placement and node scheduling (i.e. at which

time which node should transmit data). Their algorithm first fixes a position of the relay,

then uses that position to compute optimal scheduling. Based on that they can solve both

problems quickly.

The computational speed is a crucial advantage of other heuristic optimisation ap-

proaches where the features or characters of a specific problem is fully explored. It is

particularly useful if the algorithm is to be deployed on a vehicle where often compu-

tational power and communication bandwidth to an external computational station are

limited. However, due to a limited scope of formulation, usage of heuristics optimisation

is limited to the specific scenarios they were designed for.

2.3.2 Trajectory Planning to search for Optimal Solutions

Path planning is predominantly used for fixed-wing aircraft due to its suitability to fixed-

wing kinematics constraints, i.e. fixed-wing UAV needs to keep moving to maintain a

suitable lift required for not falling out of the sky. Path planning algorithms can be

categorised into convex optimisation, bio-inspired heurisitic optimisation, game theory

and other heuristic optimisation.

Convex Optimisation

In convex optimisation for trajectory planning, two techniques are predominant MILP and

gradient-based optimisers.

Examples of work using MILP has been shown in [43] and [81]. Gortli et al. [43] invest-

igated trajectory planning using MILP. In their approach trajectory is pre-generated before

the mission and is based on communication strength simulation done in communication

strength simulation software called SPLAT!. Additionally, they considered factors such

as refuelling and collision avoidance. Flushing et al. developed another MILP approach

in [81]. In this work, the problem of balancing communication needs and performing other

tasks at the same time was considered.

Gradient-based approaches were considered in [82], [7] and [83]. In [82] considera-

tion of energy efficiency for the UAV relay trajectory planning was introduced. They

used gradient based convex optimisation and showed that communication energy is neg-

ligible compared to the energy used by the UAV during the flight. In their approach,

the trajectory planning is done off-line before the mission and then UAV follows it. Kim

et al. [7] proposed an approach based on a non-linear model predictive control (NMPC)

and gradient-based optimisation. The NMPC based trajectory planner is used to plan

the path with mobile ground nodes. Additionally, the Kalman filter is used to predict

future trajectories of ground vehicles. The approach proposed in this work can update

the trajectory periodically during a mission to account for new positions of ground nodes.

NMPC based trajectory planner is one of the most important methodologies used for
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UAV trajectory planning due to its low computational load, transferability across many

different problem domains and ease of implementation. NMPC trajectory planners have

been explored in many applications. Singh et al. [84] used this methodology to navigate

between waypoints in a dynamic urban environment. Kange et al. used NMPC methodo-

logy for trajectory following in [85]. NMPC was also used for cooperative target tracking

by [86]. Autonomous landing and mapping were proposed in [87]. Another popular us-

age of NMPC methodology is formation flying explored for example in [88] or [89]. Choi

et al. [83] used UAVs to minimise the link capacity (i.e. how much data given link can

transfer) amongst a group of moving ground nodes. In their approach, a UAV follows

the gradient of signal strength to position itself amongst a mobile group of ground nodes.

However, ground nodes have to be moving in generally the same direction; otherwise, the

optimal position would not be reached.

Trajectory planning is a more complex problem than positioning, and convex trajectory

planning is limited to solving simple problems only. Trajectory planning can be thought of

as multiple positioning problems, solved together at the same time to generate a group of

connected points for UAV to fly to, thus by nature it is a more complex problem. Moreover,

some additional constraints need to be considered such as kinematics constraints of the

UAV to make sure a designed trajectory can be traversed. All these issues result in a

significant increase in computational time to find the optimal trajectory, compared to

finding the optimal positioning.

Bio-inspired Heuristic Optimisation

Bio-inspired heuristic optimisation for trajectory planning is used to cope with more com-

plex communication models present in the urban environment.

Carfang et al. [12] used GA to iteratively learn radio frequency environment to improve

the efficiency of the data ferrying UAV. This work uses a receding time horizon and GA to

predict future UAV trajectory. In a simulation, it was shown that the theoretical maximum

bandwidth provided by the ferry could be 21 Mbps, while in reality at the beginning of

the experiment it was 6 Mbps. After a few iterations of algorithm 21 Mbps was eventually

reached.

Ho et al. [90] used the PSO method to guide a UAV on minimum energy trajectory

while maximising the connection time between the UAV and ground nodes. The ground

nodes, in this case, were elements of a wireless sensor network and the objective was to

minimise transmission power required to transfer data back to the UAV. It was necessary

to optimise transmission power as sensors usually have minimal energy storage capacity;

thus it is desirable to keep their energy usage to the minimum.

Bio-inspired heuristic optimisation trajectory planning is ideal to cope with complex

cost functions in an urban environment while sacrificing the guarantee of optimality of

convex optimisation. However, planning a full path requires a significant computational
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effort. To cope with this, most bio-inspired heuristic optimisation approaches uses a

technique called receding horizon (also called model predictive control (MPC)). Rather

than optimising the full path, it defines a time or distance limit within which path planning

problem is solved. This significantly reduces the time needed for optimisation as it only

solves a part of the problem at a time.

Game Theory

Approaches presented in [91,92] are a series of work which focused on trajectory planning

to improve coverage of mobile ground nodes in open fields environments. This work focuses

on non-cooperative games with the objective of adding more ground nodes connections

to each UAV while keeping old ones connected (adding new ground nodes has a higher

payoff, than keeping old ones).

Roh et al. [93] presented approach about controlling ground vehicles trajectories while

improving wireless communication amongst them. In this setup, some of the ground

vehicles are said to be performing their mission, while others are controlled to fulfil com-

munications needs. There are two objectives of the game i) improve a number of links

between ground vehicles and ii) preserve average data transmision rate of already existing

links.

Game theory based approach was used to collect data from a wireless sensor network

(WSN) in [94]. In their approach, the objective of the game was to increase mutual

information gain by efficiently planning a trajectory for the UAV. Mutual information

gain is defined as the amount of new information UAV gains during its flight from WSN.

Choi et al. [95] used differential games to solve UAV relay problem between a moving

ground node and the base station. The UAV aimed to connect a ground rover to a base

station by adjusting its heading and angle.

Game theory is another technique which can be used to find a close to an optimal

solution with low computational load requirements. The key advantage of the game theory

is the fact that it can be run in a decentralised fashion. One of the critical problems is the

limited ability to cope with uncertainties and inability to cope well with non-linear cost

functions.

Other Heuristic Optimisation

Due to the complexity of solving a trajectory planning problem, several heuristic al-

gorithms have been developed to allow quick computation of suboptimal trajectory taking

advantages of specific features of a problem under study.

De Freitas et al. [5] and Basu et al. [96] showed an approach based on flocking meth-

odology. UAV is attracted to the last known neighbour if the number of connections to

the UAV drops to below a pre-specified threshold. This approach has shown good im-

provement in communication in large groups of ground nodes with little computational
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time.

Optimal transport theory has been implemented by [97] to plan a trajectory for com-

munication relay amongst a group of static nodes in an urban environment. In short,

their algorithm can be summarised as i) cluster nodes to UAVs using k-means clustering

ii) UAV moves to reduce the distance between it and members of its cluster. Continue

i) and ii) repeatedly until UAV doesn’t improve its position any more. Finally, optimal

transport theory is used to find the most energy efficient trajectories for UAV to follow.

Dubins paths were used by [98] to find trajectories for a group of relay UAVs to

facilitate communication between a group of mobile ground nodes and ground station.

Using Dubins paths make computation of trajectory very fast.

Gil et al. proposed an approach to place relays in the middle of groups of WSNs [99].

The main contribution of this paper was the usage of reachability analysis to guarantee

a certain level of performance for a certain amount of time. Their algorithm is based on

reducing the longest communication link (longest in terms of distance). In a open-field

environment that is generally the weakest link.

The heuristic algorithm to solve the UAV trajectory planning problem while improving

the security of the network was proposed in [100]. Their algorithm relied on splitting the

problem into two subproblems: 1) optimising transmission power for a given trajectory

and 2) optimising trajectory for given transmission power. The advantage is that the

optimal solution can be analytically found for subproblem 1, while optimisation is only

needed for subproblem 2.

An auction-based algorithm called consensus based bundle algorithm (CBBA) was pro-

posed in [101]. In auction-based algorithms, task allocation problem (i.e. relay, tracking)

is formulated as an auction between agents. Each agent runs independently, and they

negotiate assignment of all tasks. As an auction-based algorithm, CBBA has several ad-

vantages such as scalability, fast computational time and ability to fix its mistakes. This

work is more focused on balancing communication tasks with other mission components

rather than trajectory planning.

Heuristic approaches for trajectory planning problems are particularly valuable as an

attempt to solve the computational time issue. However, due to simplifications, most of

them are unable to solve communication relay in urban environment problem in realistic

environments.

2.3.3 Discussion

Several approaches were presented for both trajectory planning and positioning. Out of all

approaches, convex optimisation and game theory are not suitable for urban environments

as their performance is suboptimal within urban environments. Such a weak performance

is caused by the complexity of predicting signal strength between two arbitrary points

in urban environments. Due to the presence of buildings and effects they have on wire-
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less signal strength, such a prediction is non-linear with numerous discontinuities. It is

very likely that those two approaches would struggle with this complex signal strength

prediction, and would get stuck in local minima.

Heuristics optimisations are the methodologies which can potentially cope with com-

plex communication models in an urban environment. However, general heuristic-based

(here also named as other heuristic-based) approaches usually work well only in the spe-

cified, narrowly-defined scenario since they explore the structure or features of a specific

scenario. On the other hand, bio-inspired heuristic optimisation can work with multiple

scenario types. Based on the assessment, bio-inspired heuristic optimisation optimisation

is explored for both trajectory planning and positioning in this work.

2.4 Background Knowledge

2.4.1 Introduction to NMPC-Based Trajectory Planning

NMPC based trajectory planning algorithm is used in this work to determine path for the

UAV. To compute path NMPC combines finite time horizon with a non-linear model of

the controlled system. Time horizon determines how far prediction of vehicle behaviour

is made into the future. In order to account for behaviour throughout the prediction and

not only at the beginning and end of prediction, the prediction time is discretised into N

horizon step, each of them of pre-specified length. At each horizon step change of control

input to UAV is possible. Best possible combination of control inputs is then determined

by optimisation procedure. At the end of optimisation, only control input from first

horizon step is provided to actual controller, and procedure repeats for next time step.In

this approach, the concept of a receding time horizon is utilized, which determines how

far prediction of the UAV behaviour is made into the future as illustrated in Fig. 2.1.

Optimization is performed to compute the best set of control inputs over the receding

horizon is discretized into N time steps. This discretization is done because predicting

all possible trajectories of the UAV using a continuous input might be computationally

intensive even with fast optimization tools. Thus, it is more appropriate that a control

input is approximated to a set of discrete values. Only a control input from the first

horizon step is used and the optimization process repeats in the next time step to refine

the trajectory planning.

2.4.2 Discrete Genetic Algorithm

Genetic algorithm is used extensively throughout this work, so a detailed description

is provided. A genetic algorithm has been shown to efficiently plan a path for a UAV

target tracking problem in [86] with discrete control; thus this work utilises a similar

GA algorithm, version of which is more broadly described in [102]. Finding the optimal

solution sequence U i (regardless of the cost function) is done in the following way. At the
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Figure 2.1: Illustration of the NMPC trajectory planner. At each star point, the UAV

makes the decision on where to go next which creates a set of possible trajectories. Even

thought the plan is made over the multi-step horizon length, only the first step input is

taken and a new plan is made once the UAV arrives at the next point.

initialisation stage of GA, a first generation is created. It is a very important part of every

GA as it largely determines the quality of problem space exploration and thus the quality

of an available solution. Each chromosome consists of potential control sequence U ip and

can be denoted as:

U ip,j =
(
uiω,0 uiω,1 . . . uiω,N−1

)
∀j ∈ 1, 2...,M (2.1)

subject to

uiω,k+1 = uiω,k + a∆uω (2.2)

where M is a population size, N is a horizon step number and a is chosen randomly

from the set {−1, 0, 1}. Initial member of chromosome group g0 is based on the control

command executed in the previous step. Each subsequent command in a given sequence

is determined by Eq. (2.2).

Each chromosome needs to be evaluated to determine its quality. The solution fitness

f of each chromosome is based on the value of Jd defined in Eq. (5.15). A solution fitness

can be found as:

f =
1

(Jd + Je)b
(2.3)
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where b is a factor determined experimentally to prevent one solution from overwhelming

the optimisation process too early, and Je is an additional cost which can be defined as:

Je =

{
A, if any constraints are not satisfied is not satisfied.

0, otherwise
(2.4)

where A > 0 is a penalty value due to constraint break.

At the reproduction stage, a new population is created while taking into account for

the fitness evaluation. The process has three steps: selection, crossover and mutation.

Selection In selection, a set of breeding population is chosen from the already existing

population. Selection is based on a widely used roulette wheel method. Let us define a

set of chromosomes as:

C = {U ip,1, U ip,2, ..., U ip,M} (2.5)

and a set of fitness function corresponding to each chromosome as:

F = {f1, f2, ..., fM} (2.6)

The sum of a fitness functions is then calculated as:

Fs =

M∑
i=1

fi (2.7)

Also, a cumulative fitness function as a percentage of a total cost function is defined as:

Fc = {fc1, fc2, · · · , fcM} (2.8)

where

fcj =

j∑
i=1

fi
Fs
× 100; ∀j ∈ {1, 2, · · · ,M} (2.9)

Then uniformly distributed random number µ ∼ U{0, 100} is generated and compared

against cumulative fitness function. Last parent for who cumulative percentage fitness is

smaller than the random number is used in a breeding population. This can be formally

expressed as:

Gmk = arg min
U i
p,j∈C

(fcj − µ ≥ 0); ∀k ∈ {1, 2, · · · ,M} (2.10)

where Gm is a chromosome from a breeding population. The process continuous until

there are M parents in a breeding population. Such a selection leaves the majority of the

breeding population as good parents while allowing for space exploration by keeping a few

bad ones.

Crossover Crossover is used to combine two parents chromosomes together which

follows the procedure outlined below.

1. Two parents chromosomes Gmx and Gmy are randomly selected from a breading

population.
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2. Crossover point gc is randomly selected within two parents strings where c ∈ {1, 2, · · · , N−
1} and crossover point is between c and c+ 1

3. Parts from parent from start to crossover point and from crossover to to the end of

other parent are added added.

Mutation To help with problem space exploration, mutation is used as a final step

of reproduction. Mutation is calculated separately for each member of each chromosome.

As this is very short optimisation and problem space needs to be explored quickly, for the

majority of optimisation, mutation is set as a chance of 50% i.e. each member of each

chromosome has a 50% chance of mutation. For the final few iterations, mutation is set

for a significantly lower 17% chance to allow for convergence. If a given member mutates,

then its new value can be denoted as follows:

uiω,k = uiω,k−1 + a∆uω (2.11)

where k is a mutating chromosome index and a is a number randomly selected from set

{−1, 0, 1}; although this might lead to a situation where constraints Eqs. (5.17) and (5.18)

are violated, such solutions are quickly removed due to a high cost correlated with constrain

violation.

Lastly, a convergence criterion for the GA algorithm is the number of acceptable gen-

erations Ng.

2.4.3 Cross-Entropy Optimisation

Cross-entropy (CE) method was originally proposed as an adaptive variance algorithm

for estimating probabilities of rare events. When applying to optimization, the basic

principle of the cross-entropy optimization algorithm is to first associate it with each

optimization problem a rare event estimation problem, and then to solve this estimation

problem efficiently by an adaptive algorithm [103]. This algorithm constructs a random

sequence of solutions which converges probabilistically to the optimal or near-optimal

solution. The generic cross-entropy optimization (CEO) involves several iterative steps

and can be summarized as follows:

1. Define the initial set of probability density function (pdf) following a certain distri-

bution with parameter v0.

2. Generate samples using the previously-defined pdf and parameters.

3. Calculate the value of the cost function associated with each sample and update the

distribution parameter using selected samples.

4. Stop if the convergence criterion is reached, otherwise return to step 2.
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To apply CEO to solve our problem (5.15), we first develop a new representation of it,

and then describe how to achieve Step 2) and Step 3) in the above generic algorithm.

Define U ∈ RN×M as a matrix of possible control sequences where each element is

defined as uω,ij with i ∈ {0, 1...N − 1} and j ∈ {0, 1...M − 1}, where M is the number of

samples per iteration in the CEO algorithm and N is the number of control inputs. Then,

let ∆m ∈ RN×M be a matrix of possible changes of the control input from the previous

step where each element is taken one of three values, i.e., ∆m,ij ∈ [−∆uω, 0,∆uω]. The

elements in U should satisfy uω,ij = uω,i−1j +∆ij with i, j retaining previous meaning and

uω,i−1j being control input executed by the UAV at the previous time step. To apply the

CE algorithm to ∆m, it needs to be represented in the binary form. As the matrix has only

three possible options for each value it can be conveniently represented as a combination

of two binary variables, so ∆b ∈ R2N×M . The transformation between the ∆b and ∆m is

summarized in Table 2.1.

Table 2.1: transformation between ∆b and ∆m

∆m,ij ∆b,ij

−∆uω 00

0 01

∆uω 11

Each element in ∆b can be defined as a binary random variable

∆b,ij =

{
1, if r > Pj

0, otherwise
(2.12)

where r is the uniform random variable between 0 and 1 and P ∈ R2N×1 is a matrix of

P1, P2, ..., Pj with values between 0 and 1, and represents the parameters of the Bernoulli

probability density function for generating samples. It is values of P which will be updated

in the optimisation procedure to produce better solutions to (5.15). With this the cost

function can be evaluated:

Cj = J(Uj) (2.13)

where each Cj is a cost of a given control sequence Uj and is the part of the matrix

C ∈ RM×1 and Uj = (uω,0j , uω,1j , . . . , uω,N−1j) is the part of the U matrix. In order to

prevent solutions which violate constraints of (5.17) and (5.18), a large penalty cost of Cv

is added to the objective function if any of the constraints is violated.

To update values of P, first, the objective function values of samples will be sorted in

the ascending order as

Csort = sort(C). (2.14)
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And position of ρ-quartile (ρ is a parameter to be tuned for the best performance) is found

in

G = M(1− ρ) (2.15)

where G is the position of ρ-quartile in a number of samples and M is the number of

samples per iteration in the CEO algorithm. As G is not guaranteed to be an integer,

interpolation needs to be used to find value of cost at position G denoted as γt (also

referred to as threshold value), starting with finding positions of two cost values closest to

G, i.e.

x0 = floor(G) (2.16)

x1 = ceiling(G) (2.17)

Then defining the actual value of the cost at positions (x0, x1) as:

y0 = Csort,x0 (2.18)

y1 = Csort,x1 (2.19)

where Csort,x0 and Csort,x1 indicates value of cost function at positions x0, x1 respectively.

Finally interpolation is used as:

γt =

{
y0(x1−G)+y1(G−x0)

x1−x0 , if |x1 − x0| > 0

y0, otherwise
(2.20)

With this threshold γt, P can be updated using two simple steps. First, find the set

of new probabilities:

Pnew =

∑M
j=0 IC>=γt∆b,ij∑M

j=0 IC>=γt

, (2.21)

where I is defined as the indicator function and j = {0, 1...M − 1}. Secondly, generate

new Bernoulli samples using the following parameter update:

Pj = αPnew,j + (α− 1)Pj−1, (2.22)

where we have introduced the smoothing factor α to prevent convergence to local optimum.

With the above steps, the generic cross-entropy optimization is readily applied to solve

our problem (5.15).

2.4.4 Introduction to Neural Network

P (LOS, θij) in Eq. (5.8) and consequently, the signal strength of ground nodes obtained

by the UAV depends on the urban environment type. When the urban type is unknown,

the learning-based approach could be utilised with collected signal strength data to predict

the environment type.

In this section neural networks are described. Neural network is a common technique

used for classification. The origin of Neural Network can be traced as far as 1943 in [104],
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Figure 2.2: Neural Network schematics showing parts of the network

where attempt was made to model information processing in biological system. Since

then it has evolved multiple times to become a useful tool for classifcation problems.

Let’s explore how to formulate and train such a sample neural network. Please note

that formulation in this section is adapted from [105]. Simple neural network are split

in three groups: input, output and two hidden units as indicated in Fig. 2.2. It is worth

noting that there are several way to define layers in the neural network. Here we adopt

terminology defined by [105] which is that number of hidden layers is number of adaptive

layers. First from figure 2.2 the input to neural network is (x1, x2..., xD) and D is a

number of inputs to the neural network designed by user. Ouptus from neural network

are denoted as (y1, y2, ..., yK) and K is number of predicted classes as dictated by problem

formulation.With the diagram in mind let’s consider formulation of this simple neural

network. We start by defning an initial combination of of input variables as:

aj =
D∑
i=1

w
(1)
ij xi + w

(1)
j0 (2.23)

With j = 1, 2, ....,M , M is a design parameter which defines number of neurons in a hidden

layer and suberscript (1) refers to the fact that those are parameters on first layer. wij is

the wieght paramters and wj0 are bias parameters. Finally to obtain values (z1, z2, ..., zM )

nonlinear activation function is applied h(·)

zj = h(aj) (2.24)

In this work activation function used is a logistic sigmoid activation function described in

more details later on in this section. The values from formula 2.26 are once again combined
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with weights by:

ak =
M∑
j=1

w
(1)
ik zj + w

(1)
k0 (2.25)

Finally for normalisation we apply logistic sigmoid function to this layer as:

yk = σ(ak) (2.26)

Note that for the clarity distinction and generality between two layers σ(·) and h(·)
are defined separately. Generally those two functions could be different functions, only

in this work they are defined as the same. With this definition full formulation can be

represented as:

yk(x,w) = σ(
M∑
j=1

w
(1)
ik (h(

D∑
i=1

w
(1)
ij xi + w

(
j01))) + w

(
k01)) (2.27)

Where x are grouped inputs and w are grouped weights and bias paramters This equation

is the most general form of Neural Network which can be further modified and simplified,

but that is beyond scope of this overview. To train the neural network w needs to be

defined such that it fits training data the best. Let’s explore how learning in neural

network is performed. In this work we employ scaled conjugate gradient backpropagation

with cross entropy error function. According to [105] cross entropy error function is a

standard choice of error function for classifcation problem and is defined as:

E(w) = −
N∑
n=1

K∑
k=1

tnk ln yk(xn,w) (2.28)

With error function defined any optimiser could be used, here scaled conjugate gradient

backpropagation method is used as defined by [106]. This is one the most sucesful and

widely used optimisation method for usage in Neural Network.

To complete this overview of NN it is necessary to described logistic sigmoid function.

Logistic sigmoid function is defined as:

σ(a) =
1

1 + exp−a
(2.29)

Sigmoid functions are used to normalise the output from given neuron between zero and

one and is depicted in figure 2.3. In other words regardless of the value of input value,

the output of this function is always between 0 and 1. In neural network sigmoid function

is necessary to ensure each neuron output is similar. Without that some neurons would

overhelm the prediction very quickly, resulting in false predictions.

2.5 Summary

Establishing wireless communication networks are vital in various circumstances such as

rescue missions in a natural disaster. The literature review has shown that utilising wireless
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Figure 2.3: Sigmoid function

communication in an urban environment is challenging due to obstructions and occlusions

by buildings, resulting in significant delays and limited range of bandwidth. The following

technologies have been used as an attempt to mitigate wireless communication issues in

urban environments: infrastructures (e.g. cell tower), ground-based radios and satellite

communications. The first is often unavailable due to the damage caused by the natural

disaster. Moreover, in an emergency, there is little time to put a temporary infrastructure

in place. The other two do not rely on existing infrastructure, but they cannot solve the

issue of obstruction by buildings entirely. Additionally, satellites are limited by the nature

of their pre-planned orbits.

Compared with the traditional method, utilising UAVs to construct communication

relay can be a promising alternative solution. The UAVs relays should be a group of low

flying (below 500 meters), and small UAVs and they have advantages in rapid deployment

to the mission area and swift relocation to encounter the effect of obstruction by buildings.

To allow usage of limited UAVs resources, it is necessary to consider how to optimise

the UAV assets utilisation through choosing the optimal number of UAVs to cover a

given area and planning optimal trajectories. In this context, trajectory planning and

positioning is an important aspect to consider. Trajectory planning and positioning are

used to determine which position UAVs should be at a given time to provide the best

improvement to communication to a group of ground nodes.

Trajectory planning and positioning has challenges from the available computational

power and complex wireless signal prediction. Computational power becomes a significant

issue when pre-planning cannot be performed, or plan changes during a mission. In those

situations, trajectory and position need to be computed relatively quickly to guarantee
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minimum disruption to the wireless network. Facing constraint from the computational

power, it is better to reach a sub-optional answer timely, rather than an optimal answer

too late. Bio-inspired heuristic based optimisers are the only approach which can con-

sistently cope with complex wireless signal prediction in an urban environment. Also, it

should be adopted for both trajectory planning and positioning problem. As outlined in

the literature review, bio-inspired heuristic based optimisers struggle with computational

time. To mitigate it, careful formulation of the cost function and a limited number of

optimisation steps are introduced. For trajectory planning, the receding horizon approach

is also utilised to mitigate the computational time problem.

A critical part of trajectory planning and positioning is to determine the positions of

best communication improvement. To achieve that, the capability of predicting commu-

nication strength between arbitrary points on the ground and in the air is essential.

Such a prediction in an urban environment is challenging because of the absorption,

reflection and refraction effects that buildings have on the wireless signal. Researchers have

been trying to cope with the challenge through a model-based approach and measurement-

based approach. Model-based methods rely on the mathematical model to predict wireless

signal, while measurement-based methods rely on collecting signals from the ground nodes

to update or develop a communication model during the mission time.

The main limitation of model-based approaches is that they need to know a large

number of parameters required to compute the communication quality between two nodes,

which can be challenging to estimate before the mission or online. Measurement-based ap-

proaches were devised to cope with the challenge of estimating communication parameters

accurately, but they were used mainly for stationary environments because the amount

of data required for learning and prediction for mobile ground nodes was too high. To

enable the deployment of UAV relay in an urban environment, it is essential to relax the

prediction constraints, reducing information required and improving predicting efficiency.
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Model-based Approach to Known

Urban Environment

In this chapter, it is assumed that communication can be predicted between arbitrary air

and ground points using model only. In this model-based approach, signal strength can

be predicted using a distance between two nodes and detailed knowledge about the urban

environment. The model-based approach offers several benefits. First of all, provided that

the detailed map of an urban environment is known, it guarantees close to optimal relay

performance. Moreover, it can start relay mission immediately upon arrival to the mis-

sion area. Finally, model-based approaches have certain guaranteed connection strength

predictions in a specific environment.

Using this model provides excellent flexibility in terms of using either trajectory plan-

ning or positioning as well as the mobility of ground vehicles. With this in mind, two

options were explored: positioning of rotary wing UAV with a group of stationary ground

nodes and trajectory planning of fixed-wing unmanned aerial vehicles (UAVs) with a group

of mobile ground nodes. Those two approaches allow exploiting unique characteristics of

each vehicle type. Namely, with stationary ground nodes, it is relatively easy to define

optimal point for a UAV to hover, making rotary wing aircraft a natural fit to this kind

of mission. However, fixed-wing aircraft is much more suited to mobile nodes scenarios

where it needs to move most of the time.

The algorithms proposed in this chapter are designed to try to satisfy three conditions

i) maximise communication performance with consideration of signal quality reduction

due to obstacles (i.e. LOS obstruction), ii) obey dynamic constraints of UAVs (applic-

able to fixed-wing only) and iii) run as fast as possible for the online implementation.

To fulfil the outlined requirements, a particle swarm optimisation (PSO) technique for

positioning and non-linear model predictive control (NMPC) based trajectory planner [7]

are used. PSO is particularly suitable to solve the problem in an urban environment as it

can address with discontinuities and non-linearities in the communication strength model

introduced by buildings. Near-real-time implementation is achieved by carefully defining
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the cost function to be as efficient as possible and sacrificing optimality when necessary

by restricting a number of iterations of PSO. The NMPC framework was chosen since the

kinematic constraints of the UAV and communication can be easily combined in a single

formulation, while being adjustable to allow the real-time implementation. Besides, as the

NMPC updates the trajectory periodically, the trajectory can be adjusted quickly in case

of unpredicted events such as path change by ground nodes. Finally, to speed up com-

putation, the NMPC algorithm is simplified by assuming a constant speed and discrete

heading change of the UAV.

To model the communication performance, this chapter follows a model-based ap-

proach from [8]. The model is combined with three different communication performance

metrics: the global message connectivity (GMC), the worst case connectivity (WCC) and

the modified global message connectivity (mGMC). The three performance metrics are

used during optimisation to quantify the performance of the solution and to focus on

specific connections within the group. The GMC is used to improve the sum of all connec-

tions amongst ground nodes the WCC focuses the poorest/weakest link only. Meanwhile,

the proposed mGMC uses a certain number of weak connections based on the desired

communication quality requirement to combine the benefit of the GMC and the WCC.

3.1 Scenarios and Algorithm Overview

Figure 3.1 shows a sample scenario considered for trajectory planning in this study. The

yellow circles represent ground nodes/vehicles which are assumed to be performing their

own individual missions, black dotted lines represent the trace of ground vehicles, aircraft

models represent UAVs and blue cuboids represent buildings. The path and positions of

ground vehicles are not controlled by the communication optimisation algorithm. They

are in the postions and trajectories necessitated by their own mission requriements. This

assumption is justified by considering mission types performed by rescue worker. Rescue

worker maybe transporting a victim to the nearest hospital, where every minute counts.

Moreover he could be unable to move in an emergency situations. Those two example

shows that it is desirable to allow ground nodes to perform their mission to their needs.

For postionining of a rotary wing aircraft with stationary ground nodes, the scenario is

the same other than, positions of ground nodes are fixed.

Assumptions made in this work are listed as:

(i) The urban environment is known prior to the mission;

(ii) The UAVs can obtain the current position of the ground vehicles via communication;

and

(iii) If a line-of-sight (LOS) is obstructed by buildings between two nodes, a communic-

ation quality is reduced proportionally to the length of the obstruction.
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(iv) UAVs can communicate amongst themselves

Figure 3.1: A sample scenario of the proposed approach.

The flow chart of the proposed trajectory planning algorithm for communication relay

UAVs in an urban environment is shown in Fig. 3.2. Firstly, each UAV estimates states

and also predicts the future position of ground vehicles for a certain time steps ahead with

the Kalman filter and the GPS position of ground vehicles as sensor measurements. Based

on position estimates, UAVs then calculate the communication cost in consideration of the

communication range, signal-to-noise ratio and line-of-sight obstruction. The trajectory

and the minimum spanning tree (MST) for a given UAV is found using a discrete genetic

algorithm (GA)-based optimisation with the desired communication performance metric.

Algorithm for positoning differes in three places. First Ground vehicles do not move.

Second there is no need for ground vehicle estimation as their current and future postions

are perfectly known (i.e. they do not change with scenario time). Finally instead of

Discrete GA optimisation, particle swarm optimiser was used.

3.2 Communication Model

Communication model formulation consist of three parts. First part is accounting for

reduction of communication due to distance. Secondly we convert it to cost sutiable for

optimisation and we add extra reduction in communication performance based on how

much obstruction by building occurs and extra reduction in communication performance

if UAV gets too low. Thirdly Formulation is completed by combining the costs of commu-

nication between single pair of air and ground nodes into a group suitable for optimisation.
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Figure 3.2: Flow chart of the NMPC-based trajectory planning algorithm for communic-

ation relay UAV.

3.2.1 Line-of-sight Communication Probability

Finding an optimal position requires establishing a node-to-node communication quality.

In this work, a communication quality is represented as a probability of successful com-

munication using an open space communication model [7, 8]. In this model, node i has

the transmission power of Pi and observes a noise σ2
i while receiving a signal from other

members of the group. Then, the received signal-to-noise ratio (SNR) Γij for a signal

transmitted from the i-th node and received by j-th node is given as:

Γij =
PiGij
σ2
i

(3.1)

where Gij is a channel gain and can be expressed as:

Gij =
Cij |hij |2

Dα
ij

(3.2)

where Cij is a constant accounting for antenna gains and shadowing, hij is responsible for

multipath fading, α is a path loss factor and Dij is the distance between two nodes.
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For the computation of a probability of successful communication, a minimal accept-

able link quality γ needs to be determined. If Rayleigh fading is assumed i.e. hij is the

complex Gaussian with zero mean and unit variance, then the probability of successful

transmission from i-th node to j-th node is equal to:

Pr
ij (Γij ≥ γ) = exp

(
−
σ2
j γD

α
ij

CijPi

)
(3.3)

It is worthwhile noting that, at this time, the model does not consider effects like diffrac-

tions and reflections of wireless signal, as this would significantly increase the computa-

tional load.

3.2.2 Communication Cost

For optimisation purposes, a probability calculated in Eq. (3.3) is transformed into a cost.

Then, effects of LOS obstructions are added. The weighted edge cost between two nodes

(i.e. i and j) is defined by using the above probability of successful transmission as:

W o
ij = − ln

(
P ijr
)

(3.4)

Above equation implies that the higher the probability of successful communication is,

the lower the cost is, and this weight will be used as a cost to be minimised. In order to

consider buildings, an additional weight is added whenever a connection passes through

the building. This weight has a relatively high value to strongly discourage connections

through buildings and is represented as:

W b
ij =

{
W pb
ij if the LOS is blocked

0, otherwise
(3.5)

where W pb
ij is a penalty cost due to LOS block. The computation of LOS block is explained

in the next section. Note that, non-smooth characteristic of W pb
ij can make the solution

space highly non-convex with many local minima, as illustrated in Fig. 3.3a. This figure

shows a certain communication performance metric when using a single relay UAV at dif-

ferent grid locations at a constant altitude (different communication performance metrics

will be explained in Section 3.2.3). To mitigate the issue, a new weight is introduced

by using the length of LOS block lb inside the building (i.e. the length of the intersec-

tion/overlap between the LOS and the obstructing building as illustrated in Fig. 3.4)

as:

W b
ij =

{
W pb
ij lb if the LOS is blocked

0, otherwise
(3.6)

where lb is the distance of LOS intersection with an obstructing building and W pb
ij is a

base cost. Figure 3.3b clearly shows a much smoother cost function, which facilitates an
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(a) Non-smooth weight due to discrete LOS obstruction.

(b) New weight considering the length of overlap

Figure 3.3: Surface plot for the communication performance function at different relay

UAV locations.

Figure 3.4: Illustration of new weight computation. The case on the left would result in a

higher cost than that on the right since the longer portion of the LOS line overlaps with

the building.
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optimisation process. Matlab library written in IRNA [107] is used to find the intersection

and the distance lb between the LOS line and the building and is ilustrated in Fig. 3.4.

For static scenarios, the weight for the UAV height restriction is also added. As in

Eq. (3.3), a communication quality is better if nodes are close to each other, implying it is

likely that UAVs’ optimal position would be dangerously close to the ground and buildings

in order to maximise the communication quality. To prevent this from happening, a

minimum allowable UAV height is imposed as:

W h
ij =

{
W ph
ij , if below minimum height

0, otherwise
(3.7)

where W ph
ij is a penalty cost due to the height restriction. It is worthwhile noting that

this weight is not related to the communication in a strict sense; it only serves as a barrier

to prevent UAVs from flying too low.

Finally, the total communication weight, W t
ij , can then be expressed as:

W t
ij = W o

ij +W b
ij +W h

ij . (3.8)

As the number of nodes involved in a scenario increases, the number of connections in

the network increases significantly. As a result, efficient sharing of information becomes a

problem. To deal with this issue, this work uses a minimum spanning tree (MST) concept.

The MST is defined as a subset of graph where all nodes are connected to each other but

there are no loops, having a minimum (or at least the same as minimum, as there can be

several minimum spanning trees in a single scenario) sum of edge weights [108]. In simple

terms, the MST finds the least costly and least number of connections to connect all the

members in the group.

3.2.3 Communication Performance Metrics

In the team of networked nodes, optimal UAV position or trajectory will be different de-

pending on performance metric (index) used in optimisation. This work considers three

communication metrics: the global message connectivity (GMC), the worst case connectiv-

ity (WCC), and the modified global message connectivity (mGMC).

Global message connectivity (GMC) The GMC is defined as a probability of mes-

sage being successfully transmitted to all nodes within the minimum spanning tree (MST) [8].

As all positions of ground nodes, UAVs and buildings are known, Eq. (3.8) can be used to

find node to node communication cost. With those individual link weight, the MST can be

constructed. Let the Adjacency matrix of the MST be represented as A
′ ∈ R(n+m)×(n+m),

where n is a UAV number and m ground vehicle number, then A
′
ij = 1 if the link from

node i to node j is the part of the MST, and A
′
ij = 0, otherwise. In the MST, a probability

of message being successfully transmitted to all nodes is a sum of all connections within
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the MST, thus the performance index can be denoted as:

JGMC(x̄pos, x̄g,pos) =
n+m∑
i=1

n+m∑
j=1

A
′
ijW

t
ij . (3.9)

Note that W t and consequently A
′

depend on 3-D location of UAVs (represented as x̄pos ∈
R3×n) and ground nodes (represented as x̄g,pos ∈ R3×m). thus by minimising the GMC

performance index (JGMC(x̄pos, x̄g,pos)) with respect to UAV position, the communication

relay optimal position can be found as:

min
x̄pos

JGMC(x̄pos, x̄g,pos) = min
x̄pos

n+m∑
i=1

n+m∑
j=1

A
′
ijW

t
ij . (3.10)

A simple illustration of using the GMC as a performance index is shown in Fig. 3.5. This

metric improves global communication quality rather than focusing only on a particular

link(s).

Figure 3.5: Cost function with the GMC explained on a simple example. The blue square

is a building, blue circles are nodes and red lines is the MST.

Worst case connectivity (WCC) The WCC is defined as the link with the lowest

probability of successful communication of all the links within the MST [8]. Using the

MST definition from previous paragraph, UAV relay position can be found by minimising

the weight of worst link within the MST with respect to UAV locations x̄pos as:

min
x̄pos

JWCC(x̄pos, x̄g,pos) = min
x̄pos

(
max
∀i,j∈M

(W t
ijA

′
ij)

)
(3.11)

41



3. Model-based Approach to Predict Wireless Signal Strength

where M = {1, · · · , n+m} is a set of all nodes in the network (i.e. m UAVs and n ground

nodes). This performance metric is a worst connection within the MST as shown in fig. 3.6,

and UAV is trying to improve that connection. This index performs exceptionally in case

of numerous disconnected group of ground nodes.

Figure 3.6: Cost function with the WCC explained on a simple example.

Modified global message connectivity (mGMC) The aforementioned WCC and

GMC focus on improving one worst connection and overall communication performance

respectively. If a need arises to improve both overall and node to node communication

quality, neither of the metric is suitable. To this end, the mGMC metric is proposed as a

compromise between the GMC and the WCC. For the mGMC performance index, constant

β is defined as the number of weak connections in the initial MST to be improved. The

constant can be obtained by considering user defined minimum communication probability

Pd of the network.

Firstly, desired probability needs to be converted into weight as:

W d = − ln(Pd) (3.12)

then W t
ij for all i, j ∈ M is compared against W d to find connections weaker than the

desired probability in the following manner:

W tc
ij =

{
1, if W t

ijA
′
ij > W d

0, otherwise
(3.13)

where W tc ∈ R(n+m)×(n+m) is a temporary matrix. Lastly, constant β is calculated as:

β =

n+m∑
i=1

n+m∑
j=1

W tc
ij (3.14)

42



3. Model-based Approach to Predict Wireless Signal Strength

β is then used to compute the mGMC performance index, starting with rearranging the

connectivity matrix into a vector:

W ts = vec(W tA
′
) (3.15)

where W ts ∈ R(n+m)2×1. This vector is sorted in a descending order and stored as W ts.

The mGMC cost can then be found as:

min
x̄pos

JmGMC(x̄pos, x̄g,pos) = min
x̄pos

β∑
k=1

W ts
k (3.16)

The mGMC focuses neither on all connection within group nor the worst connections,

but rather on improving number of connection decided by user requirements. Figure. 3.7

shows the computation using the mGMC metric on a simple example. For this case, as β

is 4 (considering bi-directional links) and W d = 1, the total mGMC metric cost is equal

to (3.0 + 1.4)× 2 = 8.8.

Figure 3.7: Cost function with the mGMC explained on a simple example.

3.3 Relay UAV Optimal Positioning and Trajectory Plan-

ning

Distinguishing and investigating the advantages of each performance metrics introduced

from the previous Section can be performed easily on a static scenario as removing time de-

pendence reduces the number of variables affecting the performance of each metric. Thus,

static scenarios are considered as well. As the nature of the dynamic and static scenarios
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is different (i.e. the one requires trajectory planning with consideration of UAV dynamics

while the other is simple positioning), each algorithm follows a different procedure to find

an optimal solution.

3.3.1 Relay UAV Positioning for Optimal Configuration

Figure 3.8: Sample quadcopter UAV which could be used with this approach.

For positioning we propose usage of multirotor UAV such as one in Fig. 3.8. Such

a vehicle has a few advantages over fixed wing aircraft. The main one being low skills

ceilling requred. Wtih this type of vehicle minimal skill and supervision is required from

the operator. While the proposed algorithm can work with any size of the vehicles, in here

we focus on small class of UAVs (below 7 kg).

Firstly, in order to generate relay UAV optimal position for static scenarios using

aforementioned performance metrics, the particle swarm optimisation (PSO) algorithm

[109] is utilised. The PSO was used due to its ability to solve complex, non-smooth and

non-convex problems. The PSO algorithm start by randomly spreading particles over the

problem space and evaluating their cost function. The consecutive positions is found by

computing velocity vector in each dimension of the problem as:

vi,d = r1ωvi−1,d + εr2 (Xib,i−1,d −Xc,i−1,d) + εr3 (Xgb,i−1,d −Xc,i−1,d) (3.17)

where d denotes a problem space dimension, i represents the iteration step, ω represents
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(a) Initial random positions

(b) Moving following velocity

vector (c) Final particles positions

Figure 3.9: Illustration of the particle swarm optimisation process.

the inertia of the particle, and ε is a correction factor. Xib, Xgb and Xc represent the best

position of a given particle, the global best position (considering all particles) and the

current position of the particle, respectively. vi,d is the particle velocity, and r1, r2, r3

are random numbers from zero to one. The calculation finish once convergence criterion

(e.g. the maximum number of iterations) is satisfied. The PSO algorithm is illustrated in

Fig. 3.9

3.3.2 UAV Trajectory Planning to Search for Optimal Solutions

In this section, trajectory planning for the fixed-wing communication relay UAV is dis-

cussed. The UAV trajectory planning problem in an urban environment presents several

challenges. First of all, the fixed-wing type UAV (Fig. 3.10) considered in this paper is

underactuated where the number of available control inputs is smaller than the number

of controlled outputs. Besides, its control input (e.g. turning rates or speed command) is

constrained and there is a nonholonomic (differential) state-vector constraint. These make

it difficult for the fixed UAV to follow given arbitrary trajectories in 3-D space precisely.

Moreover, due to the presence of buildings, the communication quality between nodes can

change rapidly. For the implementation, the planning algorithm should be run in real

time. Nonlinear model predictive control (NMPC)-based online trajectory planner has all

of these features. UAV dynamic constraints can be added as optimisation constraints to be

considered in the NMPC problem formulation. The algorithm can tackle rapid change of

the communication quality. As the NMPC framework considers the future path of ground

vehicles, the trajectory can also prevent the LOS obstruction from occurring in advance.

UAV Kinematic Model

This work utilises a simple two-dimensional UAV kinematic model [110] by assuming the

UAV speed is constant. This simplification was made to: i) reduce optimisation time and
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Figure 3.10: Example UAV with marked reference frame, speed, yaw rate and heading

ii) save the energy used by the UAV during its flight, where the UAV model is given as:
ẋ

ẏ

ψ̇

ω̇

 = f(x, uω) =


v cosψ

v sinψ

ω

− 1
τω
ω + 1

τω
uω

 (3.18)

where x =
(
x y ψ ω

)T
are the inertial position, heading and yaw rate of the UAV,

respectively. τω is time constant accounting for actuator response delay, which can be

determined experimentally for given UAV model. uω is a command input in form of

turning rate. In this work, the command is constrained by:

|uω| ≤ ωmax (3.19)

|uω,k − uω,k−1| = 0.1 (3.20)

where k is a current time step. The first constraint limits the maximum heading rate of

the vehicle. The second constraint limits the rate at which heading changes and allows

for discretisation of the controller. Both constraints are the result of dynamic limits of a

fixed-wing UAV. The UAV model from Eq. (5.13) is discretised using Euler integration as:

xk+1 = fd(xω,k, uk) = xk + Tsf(xk, uωk) (3.21)

where xk =
(
xk yk ψk ωk

)T
and Ts is a sampling time.

Tracking Filter with Ground Vehicle and Sensor Models

While it was assumed that UAV knows current position of ground vehicle, it does not know

the trajectory given ground node will take in the future. As a matter of fact ground node
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may not know the trajectory it will take in the future. Besides communicating the planned

trajectory would result in additional work overhead required by the ground node. From

earlier use cases example, such a solution is unacceptable as it would result in increased

load for ground nodes.

For the UAV to predict future states of ground vehicles (position, velocity and accel-

eration) which is required for NMPC-based trajectory planning, the Kalman filter (KF) is

used. Generally, for a discrete KF, two steps are required using vehicle and sensor models:

i) prediction step where vehicle states and error covariance are extrapolated and ii) update

step where a correction is made.

The ground vehicle model is based on the work from [111] where a discrete state of

the ground vehicle xgk =
(
xgk ẋgk ẍgk ygk ẏgk ÿgk

)T
can be found using:

xgk+1 = Fkx
g
k + ηk (3.22)

where ηk is a process noise which represents the acceleration characteristics of the target,

and Fk is a state transition matrix. The details of this model can be found in [111].

Provided that the ground vehicles are using GPS, their GPS positions are used as

measurements for the UAV (via communication) for the position estimation as:

zk = Hkx
g
k + vk (3.23)

where the measurement matrix is:

Hk =

[
1 0 0 0 0 0

0 0 0 1 0 0

]
(3.24)

The measurement matrix implies that x and y positions of the ground nodes are the

only measured variables by the GPS. The measurement noise is vk ∼ N(0, Rk) and the

covariance matrix is given as:

Rk =

[
σ2
x 0

0 σ2
y

]
(3.25)

where σx and σy are the standard deviations of positions of x and y, respectively.

Performance Index

In a dynamic scenario, using performance metrics from Section 3.2.3 on its own is not

sufficient as they do not account for dynamic properties of UAVs. Thus, the NMPC

framework is combined with the aforementioned performance metric to create a trajectory

plan for the UAV in the from of control input sequence U i =
(
uiω,0, u

i
ω,1, . . . , u

i
ω,N−1

)
where

i is i-th UAV and N is a horizon step. To find this control sequence, a new performance

index is defined in Eq. (5.15) and minimised using a genetic algorithm (GA):

Jd = Φ(x̄N , x̄
g
N ) +

N−1∑
k=0

L(x̄k, x̄
g
k, u

i
ω,k) (3.26)
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s.t.

xik+1 = fd(x
i
k, u

i
ω,k) (3.27)

ωmin ≤ uiω,k ≤ ωmax (3.28)

|uiω,k − uiω,k−1| = ∆uω (3.29)

|C(xik − (xj 6=ik )| > rc (3.30)

where:

Φ(x̄N , x̄
g
N ) = pcJz(x̄

pos
N , x̄g,posN ) (3.31)

L(x̄N , x̄
g
N , u

i
ω,k) =

1

2

[
qcJmGMC(x̄posk , x̄g,posk ) + rv

(
uiω,k
ωmax

)]2

(3.32)

C =

[
1 0 0 0

0 1 0 0

]
(3.33)

where JmGMC represents the mGMC performance index and x̄posk and x̄g,posk are x and y

position of UAVs and ground vehicles, respectively, from state vectors xk =
(
x y ψ ω

)T
and xvk =

(
xvk ẋvk ẍvk xvk ẏvk ÿvk

)T
. In the objective function of J(Uω) of (5.15), the

first term Φ(x̄N , x̄
g
N ) is to consider the communication performance at the final receding

horizon step. We separate the communication performance at the final step from the rest,

as it is more important than intermediate steps and we assign a relatively higher weight

for it. Jcomm represents the average communication data rate
∑n

i=1Ri/n between the

UAV and n ground nodes where Ri represents the link quality defined (4.8). The second

term
N−1∑
k=0

L(x̄k, x̄
g
k, uω,k) consists of two parts as in (3.32). The first part is the sum of

communication costs for all receding horizon steps except for the final step. The second

part is a penalty for the UAV to make a turn; this is included to minimize the energy

usage whenever possible under the assumption that turning consumes significantly higher

energy than the straight flight. It is worthwhile mentioning that there exist other metrics

such as the worst link between the UAV and ground nodes [8]. This would mean that

the UAV focuses on improving the weakest connection rather than trying to improve the

connection quality on average.

uω,k is the control input at the time instance k. x̄pos ∈ R3×1 and x̄g,pos ∈ R3×n

represent the position of UAVs and ground nodes, respectively. pc, qc and rω are constant

weighting factors, ωmax and ωmin are the maximum and minimum turning rates limited by

the UAV kinematics, respectively, ∆uω is the maximum allowable control input difference,

and rc is a safe distance between UAVs to prevent collision. The constraints in (5.17) and

(5.18) are to limit the maximum heading rate of the UAV, and the rate of change of
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heading, respectively. Note that, at any given time step, the UAV is assumed to be able

to take one of three actions: keep current heading rate and change by ∆uω either to left

or right. While constraint from (5.19) is used to prevent collisions between UAVs.

Due to the large computation time to obtain desired commands, a decentralised ap-

proach is used in this work. The decentralised approach implies that each UAV needs

to determine the MST independently and calculate its optimal control based on future

predictions of other UAVs and ground vehicles, meaning that communication between

UAVs is required within one sampling time. The sampling time can be adjusted to match

the capability of communication equipment on-board UAVs. If all UAVs have the same

positional information about each other, then each MST would be the same. However, it

is possible that due to disruption and delays, each UAV would have different MSTs. One

possible way of mitigating the issue is for UAVs to share their MST using their wireless

link, and choose one with the lowest cost. The decentralised approach is also more robust

since if one UAV fails, others can continue a communication relay mission.

3.4 Numerical Simulations

Static scenarios are first considered to perform initial comparison of three communication

performance metrics: the global message connectivity (GMC), the worst case connectiv-

ity (WCC) and the modified global message connectivity (mGMC). After validating ba-

sic properties, dynamic scenarios are then considered to investigate the effect of moving

ground vehicles on the proposed mGMC performance. Simulation parameters for com-

munication equipment are based on a low-cost and low-power commercial off-the-shelf

Ubiquity Pico station M2, as shown in Table 5.4.

Table 3.1: Radio communication parameter

Parameter Value Unit

Transmission power (Pi) 0.01 W

Noise power (σ2) 1× 10−9 W

Max communication range 300 m

Attenuation factor (α) 3 n/a

Antenna gain C for UGV and UAV 1 n/a

3.4.1 Static Scenarios

Sample Scenario

To establish the basic behaviour of communication performance metrics, a sample scenario

with two relay UAVs, 12 ground nodes and 30 buildings is discussed. Figure 3.11 shows the
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result of using different communication performance metrics in the optimisation process.

For JmGMC cost computation, W d = 20 is used as a desired communication requirement,

resulting in the number of weak connections β = 6 in the for the static scenario unless

otherwise stated.

Firstly, Fig. 3.11a presents MST between ground nodes (shown as red lines) without

relay UAVs. Numerous connections are weak due to: i) buildings obstructing line-of-sight

(LOS) and ii) relatively large distances between nodes. The weakest connection within

the MST is between nodes 11 and 12 (shown as green line) with the weighted edge cost

of JWCC = 39.01. The sum of all connection (termed as the global cost, hereafter) in the

MST for this sample scenario is JGMC = 281.4, and the sum of β worst connections is

JmGMC = 167.2.
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(a) MST without UAVs

(b) Using the GMC with two UAVs

Figure 3.11: Optimal deployment results for relay UAVs using different communication

performance metrics.
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(c) Using the WCC with two UAVs

(d) Using the mGMC with two UAVs

Figure 3.11: Optimal deployment results for relay UAVs using different communication

performance metrics (cont.).
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Utilising the GMC as the performance metric in the optimisation process is shown

in Fig. 3.11b. As expected, using this metric reduces the global cost significantly to

JGMC = 154.12. However, the connection between nodes 6 and 12 becomes very weak

(W t
612 = 20.13) since the weak connection is not particularly considered; the purpose of the

GMC metric is to improve all connection overall. Figure. 3.11c shows the result of using

WCC as the performance metric in optimisation. This metric improves the value of worst

connection to 16.3 between nodes 6 and 12. However, the global cost JGMC = 186.04 is the

worst amongst three metrics. This comes from the nature of this metric which focuses on

improving the weakest connection only while ignoring the global communication quality

(i.e. all other connections).

Lastly, Fig. 3.11d shows the result of the proposed metric, mGMC. The resulting global

cost for this metric is JGMC = 163.1 which is in the middle between the GMC and the

WCC at 154.12 and 186.04, respectively. Besides, the worst connection cost JWCC = 16.3

is the same as using WCC as a metric. For the sum of three bi-directional worst connections

(i.e. β = 6), this metric provides the best result (JmGMC = 82.4) among three metrics.

As the worst connection value is below 20, using the proposed mGMC metric satisfies the

desired communication requirement, while providing the reasonable global communication

performance as well.

Monte Carlo Simulations

Monte Carlo simulations are used to confirm the aforementioned trends observed in the

sample scenario. Figure 3.12 shows the results averaged over 30 independent Monte Carlo

simulation runs. The global cost (JGMC) change with the increasing number of UAVs

is shown in Fig. 3.12a using three different performance metrics. It is worthwhile noting

that in this simulation, Wd is adjusted so that β = 6 at all times. As expected, the GMC

metric (shown as a blue solid line) produces the best result, however the result from the

mGMC is not much worse, which is particularly the case for the small number of UAVs.

With the small number of UAVs, there are a large number of bad connections and thus

improving them led to a significant improvement on the global cost using either of the

GMC or the mGMC. Similar trend is shown in the WCC, however, the metric gets worse

much faster than the mGMC.

Figure. 3.12b with the WCC cost shows the reversed situation as in Fig. 3.12a. This

means that using WCC as the performance index provides the best result in terms of

improving the worst connection, while the result from the GMC metric is the worst.

Comparing three three metrics with the sum of β=6 worst connection cost (JmGMC) as

shown in Fig. 3.12c, it can be seen that the mGMC metric case shows the best performance.

It can also be seen that adding more UAVs gets less improvements. This is because as

UAVs are added into the scenario, the number of bad connections is reduced until there

are only good ones to improve.
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(a) JGMC cost

(b) JWCC cost

(c) [JmGMC cost

Figure 3.12: Monte Carlo simulation results using three different communication perform-

ance metrics with different number of UAVs.
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3.4.2 Dynamic Scenarios

Having shown comparison of the proposed mGMC metric with other metrics on static

scenarios, investigation of this metric on dynamic scenarios is performed. It is worthwhile

noting that due to movement of ground vehicles and corresponding communication quality

change, β also changes; thus, it is calculated at each simulation step to take into account all

connections above W d. The dynamic scenario with three UAVs, 12 ground nodes and 30

buildings uses the same communication parameters from Table 5.4, and other simulation

parameters are shown in Table 5.5. In this section, the effect of following changes are

mainly considered: i) change of horizon length in the NMPC problem formulation, ii)

different movement pattern including random, loitering and the proposed method, iii) the

number of UAV used, and iv) kinematic constraints of the UAV including the speed and

turning rate.

Table 3.2: Mobile simulation parameter

Parameter Value Unit

Actuator delay (τω) 1/3 s

UAV speed (v) 20 m/s

Heading rate constraint (ωmin, ωmax) (−0.2, 0.2) rad/s

Receding horizon step (N) 5 N/A

Maximum heading rate change (∆Uω) 0.1 rad/s

Weighting factors (pc, qc, rω) (1000, pc/N, 1) N/A

Population size (M) 15 N/A

Acceptable number of generations (Ng) 15 N/A

Firstly, Fig. 3.13 shows that the horizon length has a critical impact on the performance

when using the mGMC. If the horizon length is too small, UAVs will not see any possible

trajectory which can improve the mGMC cost as the mGMC is only focused on a few

worst connection, which might not be in that UAVs range. This situation is illustrated in

Fig. 3.14. On the other hand, if the horizon is too long, ground vehicles’ plan needs to be

known well in advance and UAVs may overlook imminent weak connections for the sake

of improving connections far away. To trade off between those two problems, the horizon

length needs to be carefully determined. There might be two ways to change the horizon

length: i) increasing the horizon steps with a fixed time interval or ii) increasing time

interval between horizon steps with a fixed number of horizon steps. First method would

result in significantly increased computational efforts but an accurate solution while the

second does not increase computational efforts, but it reduces the accuracy of a solution.

Since the computational speed is one of the requirements for the proposed algorithm as

stated in the introduction, the second method is employed in this work. Table 3.3 shows
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the different time intervals between horizon steps with five horizon steps (which results

in different total horizon length from 5 to 25) used in the numerical simulation shown in

Fig. 3.13. It can be seen that there is a significant performance improvement up to the

horizon length of 15 and smaller improvement between 15 and 20. After the horizon length

of 20, the performance of the mGMC cost starts to decrease (so value increases) again and

can be associated to UAVs trying to improve connections too far in the future.Thus, the

best horizon length for the mGMC in this size of scenario is 20 and this horizon length

will be used in other simulations hereafter.

Table 3.3: Different time intervals between horizon steps

Total horizon length [sec] time interval between horizon steps [sec]

5 (0.5, 0.5, 1, 1, 2)

10 (0.5, 0.5, 2, 3, 3)

15 (0.5, 2.5, 3, 4, 5)

20 (0.5, 4.5, 5, 5)

25 (0.5, 4.5, 6, 6, 8)

Figure 3.15 shows comparison between random movement, loitering (circling) around

a starting point and using the proposed GA optimisation. At the beginning, all three

methods show similar performance and the loiter shows even better performance during

around 30 and 40 seconds of simulation. This might be because fixed-wing UAVs cannot

change its heading or position instantaneously towards the optimal heading/position due

to their dynamic constraints. However, the proposed method outperforms the other two

for most of the time as it optimised its movement considering the movement of all ground

nodes and the corresponding mGMC cost.

The effect of changing the number of UAVs is shown in Fig. 3.16. As expected, the

more UAVs are used, the better the sum of β connections is obtained. Note that the

difference between two and three UAVs is not that significant. This implies that there is

a saturation point where adding more UAVs does not result in a significant increase of

communication performance. As more UAVs are added, there are fewer weak connections

to improve than if a small number of UAVs is present (e.g. it is possible a single connection

is improved by two UAVs in a chain rather than a single UAV).

Different heading rates and speeds are used to determine how UAV dynamics affects

the communication performance. Figures 3.17 and 3.18 show that higher turning rates

and slower speeds results in better communication performance in terms of lowering the

communication cost. In these conditions, UAVs can make tighter turns, thus they can bet-

ter react to the local changes of ground node positions and corresponding communication

structure (i.e. MST). Also, fig. 3.18 Allows for assessment of constant speed assumption.
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Figure 3.13: Averaged sum of β connections over ten scenarios.

Figure 3.14: Illustration of a problem of too short horizon length where the UAV

cannot see a move which would reduce the mGMC cost.

It can be seen that too low speed can result in a significant performance drop (25 to 40

second region on the graph). However, for most of the time speed of the UAVs do not

seem to be affecting the performance of the relay. It would be worth optimising for speed

if possible just to gain a little boost in performance, but it is not deemed vital.

To illustrate a significant reduction of the number of weak connections using the pro-

posed algorithm, the mGMC cost and the number of the weak connection (communication

quality above W d) of a sample scenario with and without using UAVs is shown in Fig.3.19.

In this scenario, UAVs cause a significant reduction of number of weak connections where

the average number of weak connections with UAVs is about 1.6, while without the UAV

is 4.4, proving the benefit of the proposed approach.

Currently, control commands need to be sent to UAVs every half a second, so each

NMPC iteration needs to be finished within that time. It is also worth noting that al-
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Figure 3.15: Comparison of NMPC-based trajectory planner using the

genetic algorithm implementation with random motion and loitering.

Figure 3.16: Effect of changing number of UAVs on the performance of

the mGMC metric.

Figure 3.17: Effect of changing heading rate on the performance of the

mGMC.
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Figure 3.18: Effect of changing speed on the performance of the mGMC.

Figure 3.19: Comparison of performance (JmGMC cost) between cases with and without

UAVs.

gorithm can be run in a decentralized manner (i.e. each UAV performs its own NMPC

computation based on the prediction on what the rest of the group will do). Thus, compu-

tation time per UAV is representative of how fast the group can finish one iteration. Table

3 shows the computation cost of one iteration, implemented in Matlab, using the same

scenario described before with and without buildings in the environment. This implies

the significant impact of LOS obstruction detection on the computation time. Figure 11

represents the computation time with respect to the number of ground vehicle. Pos-

sible approaches to address the issue on the computation time include: i) implement the

algorithm in C/C++. Using a lower level language will reduce computation time signific-

antly; ii) commands can be sent less often to the UAV. This will increase the allowed time
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for each iteration to finish at the expense of communication performance of the algorithm;

and iii) the number of iterations or population size of the genetic algorithm can be reduced

to achieve significant reduction of the computation time. However, this is likely to reduce

the quality of solution.

Table 3.4: Mean and standard deviation for a runtime per iteration averaged over ten

sample scenarios

Computation time Without buildings With buildings

Mean time ± Std (sec) 0.29 ±0.0088 8.9±0.55

Figure 3.20: Computation time for a single UAV and 30 buildings with respect to the

number of ground vehicles.

3.5 Indoor Flight Experiments

To validate and verify the feasibility and benefits of the proposed algorithms, flight tests

are performed in an indoor environment. This section starts with describing the indoor

experiment testbed, followed by experimental procedure and setup. Finally, sample cap-

tures from the experiments are presented. Note that a movie clip of indoor experiments

and simulations presented in this report can be downloaded at

https://dl.dropboxusercontent.com/u/17047357/Comm_Relay.zip.
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3.5.1 Indoor Experiment Testbed

The overview of an indoor experiment testbed system is shown in Fig. 3.21. The system

can be largely divided into three sections: positioning system, air and ground vehicles and

ground control station. From the following, each section is explained in detail.

Figure 3.21: Indoor experiment testbed overview

Vicon motion tracking-based positioning system

In order to perform experiments in an indoor environment, the position of each vehicle

in three dimensional (3D) space is needed. A GPS signal indoor is too weak to be of

any use. The Vicon motion tracking system is used as indoor GPS replacement shown

in Fig. 3.22. The system uses a series of accurately located infrared (IR) cameras, which

are equipped with infrared light emitting diodes (IRLEDs), to track the relative position

of retro-reflective markers that have been attached to the moving vehicle. To obtain

accurate data, markers need to be adequately separated and visible by a minimum of two

cameras. This allows position and attitude data to be obtained to within 0.1mm and 1

deg, respectively. The position data for each vehicle is then read by Simulink using Vicon

software development kit and forwarded to corresponding vehicles.

Vehicles: UAV and UGV

Figure 3.23 shows a quadrotor UAV used in this experiment. It is equipped with Ardupilot

and Raspberry Pi B+: Ardupilot (commercially-available autopilot product) is used for the
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(a) Vicon infrared camera

(b) Image of tracked reflective balls attached to the vehicle

Figure 3.22: Vicon motion tracking system

roll and pitch angle stabilisation of the platform during the flight (i.e. inner-loop control);

and Raspberry Pi is for the outer-loop position and yaw control as well as receiving and

sending information related to desired and current position of the vehicle. Along with

the UAV, Lynxmotion Aluminium A4WD1 ground vehicles are used in the experiment as

shown in Fig. 3.24. For the sake of keeping the system consistent across all the vehicles,

the UGV uses the same hardware combination of ardupilot and Rasberry Pi as used for

the UAV, with firmware adjusted for a ground vehicle.

Each vehicle runs a Simulink model, through run on target hardware (ROTH) capacity.

ROTH works by firstly generating C++ code from the Simulink model. It is then uploaded

to the Raspberry Pi and complied, thus allowing for direct execution on Raspberry Pi. In

this experiment, each vehicle runs a PID controller for position and yaw control as shown

in Fig. 3.25. It is worth noting that a UAV’s control structure is slightly more complicated

than that of the UGV as the UAV operates in 3D space. Besides, Figure 3.26 illustrates

data flow and processes of each vehicle (represented as Embedded model) in relation to
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Figure 3.23: Custom-built quadrotor UAV.

Figure 3.24: Lynxmotion Aluminium A4WD1 UGV.

the Vicon positioning system and a ground control station.

Ground control station

Ground control station consists of three separate models: management station, mission

planning (optimisation) station and Run on target hardware (ROTH) monitoring sta-

tion as shown in Fig. 3.21. First, the management station is responsible for controlling

time synchronisation of the entire system and sending time-stamped desired waypoints to

vehicles. It also has direct control over the quadrotor UAV in case that there are problems

in autonomous flight. The mission planning station uses known desired position of UGVs

to calculate next desired position of the relay UAV. It then transmits it to the UAV via the
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Figure 3.25: Schematic diagram of position and yaw controller with data flow and pro-

cesses.

management station. The ROTH monitoring station monitors the status (e.g. position,

attitude, operation mode, etc.) of each vehicle.

Although all models can be run on a single computer, each model in the ground control

station runs on a separate machine for safety and computation efficiency. To be more

specific, first of all, the management station is a safety critical model, so it is necessary for

it to be separated from others. Moreover, since the mission planning station might require

significant computing power for optimisation, it is decided to dedicate one computer to it

as well. Lastly, since separate ROTH monitoring stations are required for each vehicle, it

is worthwhile running on a single machine.

3.5.2 Experimental Procedure and Setup

Both optimal UAV deployment planning and convoy following trajectory planning scen-

arios are slightly modified for real implementation. The mission of the experiment is

defined by a series of discrete time-stamped waypoints for UGVs. For this dynamic scen-

ario, the relay UAV is supposed to be positioned accordingly depending on the position of

UGVs. Two scenarios run in a similar manner, however time between each step is different

for each scenario. The experiment procedure is shown in Fig. 3.27, and steps are outlined

as below:

1) The UAV takes off and is piloted manually close to its starting point.
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Figure 3.26: ROTH model structure with data flow and the processes to support manual

and autonomous operation and the transmission of data. Note that the mission in the

ground control model comes from either manual control or mission planning (optimisation)

station.

2) The autonomous mission is triggered with ground vehicles at inital positions.

3) The mission planning station computes the desired position of the UAV using PSO.

4) The UAV reaches the desired position.

5) After the specified time, UGVs starts to move to the next position and calculation

for the next UAV position starts.

6) UGVs reach their next position.

7) As soon as calculation is done, the UAV moves to the next desired position.

8) Steps 6∼8 are repeated for pre-specified number of steps depending on the mission.

The experiment was performed in an area with 5 by 5 meters size which can be covered

by Vicon cameras. The city layout is shown in Fig. 3.28. It consists of 15 buildings

arranged in a T-shaped junction. The building positions are accurately measured using

Vicon system. Note that the T-junction is used to allow for flexibility in possible scenarios.

3.5.3 Experimental Results

In this experiment, three UGVs and one UAV are used. The time gap between UGV

waypoints are set to 40 seconds. Figure 3.29(a) shows the first optimal position of the

UAV for the initial position of UGVs with red lines representing the MST. In this case,

the UAV is required to function as a relay between all three UGVs as the LOS between
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Figure 3.27: Experiment timeline.

Figure 3.28: Urban environment used in experiment. Black boxes represent buildings.

all of them is obstructed by buildings. This frame shows the great benefit of using the

relay UAV as otherwise communication would not be possible. Figure 3.29(b) shows the

status about 60 seconds later. The UGV in the middle lane and the UGV in the right lane

changed their position, which makes the LOS to each other blocked. The UAV ensures

communication between those two vehicles. As the other UGV (in the left lane) has a

direct LOS to the middle lane UGV, those two are directly connected, not through the

UAV. For the final UGV waypoints as shown in Fig. 3.29(c), the UAV moves to the position

which improves communication between UGVs in the middle lane and the right lane as

the LOS is blocked.
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(a) First UGV waypoints (b) Second UGV waypoints

(c) Third UGV waypoints

Figure 3.29: Snapshots from the experiment which finds the optimal UAV positions and

the MST (red lines) for UGV waypoints.

3.6 Summary

This chapter has presented a trajectory planning and positoning algorithms for fixed-

wing communication relay UAVs to enhance communication quality of the ground mobile

network in an urban environment. To plan the optimal trajectory, discretised NMPC

trajectory planning was proposed using a genetic algorithm-based optimisation method.

While to position UAV, approach based on PSO was proposed. Both algorithms were

paired with the GMC, WCC and mGMC communication performance metric targeted to

improve only the necessary weak connections in the network. For positoning performance

of GMC, WCC and mGMC was validated, both on single sample scenario and Monte

Carlo simulations. For trajectory planner, it was shown how different horizon length, the
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number of the UAV used, and kinematic constraints of the UAV such as the heading rate

and the speed can affect the communication performance. Benefits of proposed approaches

were presented by comparing performance with and without UAVs. An indoor flight test

showed potential for the near real-time algorithm execution.
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Chapter 4

Measurement-based Approach for

Unknown Urban Environment

In this chapter, a new communication model is introduced to address two of the chal-

lenges of the communication prediction models described in chapters 3 and 5. First, it

was assumed that all obstacles present in the urban environment reduce communication

performance to a similar degree. However, buildings are made from different compositions

of materials which as introduced in Chap. 2. Each composition affects communication per-

formance in different ways. Even the presence of small objects such as trees and lamp posts

can affect wireless communication performance. Moreover, previous approaches required

either i) knowledge of the 3D map of the environment in Chap. 3 or ii) that it fits one

of the predefined urban environment types from Chap. 5. Such knowledge is sometimes

unavailable. With those issues, an UAV would have to use an incomplete understanding

resulting in a mediocre performance (an example of this is shown in Fig 5.7). To cope

with situations of lack or incomplete knowledge we propose an approach which learns the

majority of communication model during the mission. This is achieved by using machine

learning to predict the effects of urban environments on the wireless signal without any

prior knowledge.

For this prediction GP machine learning is employed. This technique has three main

advantages, which makes it suitable to solve the aforementioned limitations. First of

all, it is a non-parametric machine learning technique. Non-parametric property implies

that with careful formulation and appropriate choice of mean and covariance functions,

it can be used without any pretraining. By omitting pretraining, we can reduce the risk

of not preparing for a given scenario type from the training dataset. Instead, GP relies

on collecting communication strength data from ground nodes during a UAV flight and

then fitting the GP communication strength model to collected data. The second benefit

is that GP can fix its mistakes in prediction. Due to the stochastic nature of wireless

communication, it is possible that false prediction is made. However, The data obtained

in later phases of flight can fix this mistake and adjust the forecast accordingly. Finally,
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with GP, it is possible to account for any wireless signal interference, not only ones created

by buildings. Other devices could cause such an interference with a similar frequency or

active jamming.

GP is paired with non-linear model predictive control (NMPC) based trajectory plan-

ner. This trajectory planner is ideally suited as it can adapt trajectory to improving

communication strength prediction. With the progression of the relay mission, a UAV

collects more communication strength data between air and ground to improve its predic-

tion. NMPC is ideally position to exploit the updates as the planned trajectory is updated

periodically as part of the formulation.

With its ability to solve some of the issues of previous two models, GP has two signi-

ficant limitations i) it is unable to deal with mobile ground nodes and ii) it is challenging

to include the height in path prediction. Both those problems are a consequence of a

way GP makes its predictions. In GP, communication strength prediction depends on

a number and a location of collected strength data. This is not an issue for stationary

ground nodes, as UAV can quickly fly to scan the area. However, for mobile ground nodes,

it would be necessary for both ground nodes and UAV to travel to learn communication

strength between an arbitrary point in the air and on the ground. This would result in

the unacceptably high time needed for collecting the data. Moreover, In GP the more

the data points, the slower the prediction time. With communication strength collected

on the ground and in the air, the prediction time would be considerably large even for

modern computers. Similar reasoning can be used to understand the problem with adding

height to path planning. For GP to be able to make predictions at different heights, a

UAV would need to perform the scan in a 3D space, rather than on a 2D plane, taking a

significant amount of time. This could be somewhat mitigated by having multiple UAVs

each covering different heights. However, This does not solve the issue of having too many

data points needed for reasonably fast prediction. To conclude, rather than replacing of

the other two models, GP is another option which offer certain advantages in suitable

circumstances.

4.1 Problem Overview

4.1.1 Scenario and Assumptions

We consider an urban environment where a fixed-wing UAV serves as a flying communic-

ation relay station for ground nodes, as illustrated in Fig. 5.5. There are multiple ground

nodes where the line-of-sight (LOS) between them is likely to be obstructed by buildings

in a complex urban environment. The purpose of the relay UAV trajectory planning is to

fly in a way to improve the average communication performance between the UAV and

all ground nodes from its initial position. We consider randomly generated cities with

different building heights and different ground node locations.
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The assumptions used in this study include: i) ground nodes are stationary and able to

transmit their accurate position to the relay UAV prior to a mission; ii) the positions and

shapes of buildings are unknown; iii) path loss and transmitted power of communication

strength between any two nodes are empirically known, but shadow fading and needs to

be predicted.

Figure 4.1: A sample urban scenario with four ground nodes, a relay UAV and buildings

with different heights. The proposed trajectory planning guides the UAV to fly from the

initial position to the optimal position that can provide the best communication quality

to ground nodes.

4.1.2 Algorithm Overview

In order to plan the online trajectory of the relay UAV to improve the quality of air-to-

ground communication, accurate channel prediction between the UAV and ground nodes

is of primary importance. To this end, this study proposes two learning schemes using the

Gaussian Process (GP) combined with the nonlinear model predictive control (NMPC)-

based trajectory planning as shown in Fig. 4.2 and summarized as follows:

• Scan+NMPC with GP is an approach where the relay UAV performs a pre-

specified scanning pattern flight in the area of interest (see Fig. 4.3) to collect com-

munication strength measurement from ground nodes. The collected data can then

be used by GP to build the map of communication channel strength between an ar-

bitrary UAV position and ground nodes. With this communication map, the NMPC-

based trajectory planner can be used to guide the UAV to the optimal position in

terms of maximizing the air-to-ground communication performance.

• NMPC with GP is different from the above in the sense that the scanning is not

performed. Instead, the UAV plans its trajectory with its current best knowledge
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on air-to-ground communication. For the initial plan, it uses the knowledge it has a

priori (e.g. the communication map built from the empirical communication model

only without any data). Then, the UAV periodically collects communication chan-

nel strength data to update the communication map using GP, while executing its

optimal control command obtained from the trajectory planner.

The NMPC with GP method could save the time spent on the scanning flight, but

the accuracy of the communication quality prediction might be worse than that of scan

+NMPC with GP. Besides NMPC with GP will be useful in a situation where there is a

change in the communication environment during the mission.

Figure 4.2: Overview of the two proposed algorithms: i) scan+NMPC with GP and ii)

NMPC with GP for the communication relay mission.

Figure 4.3: Example pattern for the UAV scan flight on a sample scenario.
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4.2 Communication Channel Model and GP-Based Channel

Prediction

4.2.1 Air-to-ground Channel Modelling

In this chapter communication model used is adapted from section 5.2.1. While they are

very similar, they are used in a different context and difference are present so for conviniece

of the reader full formulation is repeated here.

To realistically model communication quality between nodes, the channel model pro-

posed by [46] is used in this work. This model is designed for aerial platforms based on

multiple ray tracing simulations in different types of urban environments, proposed by the

International Telecommunication Union (ITU-R) [112]. The urban type is characterized

by three parameters α0, β0 and γ0: α0 is a ratio of the built-up land area to the total land

area, β0 is a mean number of buildings per unit area (buildings/km2) and γ0 is a scale

factor that describes the building height in the Rayleigh probability density function as:

P (h) =
h

γ2
0

exp

(
−h2

2γ2
0

)
, (4.1)

where h is the building height in meters. The model considers four environments: i)

Suburban, ii) Urban, iii) Dense urban, and iv) High-rise urban, where the corresponding

parameters are summarized in Table 5.1. To fully define the urban type, a layout of a

city is also needed along with parameters α0, β0 and γ0. This study uses ‘standard city’

layout as defined by [46] as depicted in Fig. 5.3. As building heights are characterised

by a probability density, it is convenient to use this model when performing Monte Carlo

simulations with different heights of the buildings without the risk of buildings overlapping

with each other.

Table 4.1: different city environment parameters

Environment α0 β0 γ0

Suburban 0.1 750 8

Urban 0.3 500 15

Dense Urban 1 300 20

High-rise Urban 1 300 50

The communication channel model used for the above urban environment can be rep-

resented as a general formulation [45]:

Pr,i = Pt,i − LdB,i −Ψ (4.2)

where Pr,i (dBm) is the received power strength at the UAV from the node i, Pt,i (dBm)

is the transmit power of the node i, LdB,i represents the path loss between node the i and
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Figure 4.4: A sample city generated with parameters: α0 = 0.1, β0 =750 and γ0 = 8.

the UAV. Ψ is the unknown shadow fading assumed to be a Gaussian distributed random

variable as Ψ ∼ N
(
µ, σ2), where µ and σ2 are fading mean and variance. Note that in

this model, shadow fading accounts only for diffraction on multipath fading caused by

buildings. LdB,i can be represented as:

LdB,i = 10α log10

(
4πfcdi
c

)
, (4.3)

where fc is the central frequency, α is the path loss exponent, di is the distance between

the ground node i and the UAV, and c is the speed of light. As Pt,i and LdB,i are constants

and known, Pr,i also follows Gaussian distribution as:

Pr,i ∼ N
(
Pt,i − LdB,i − µi, σ2

i ). (4.4)

To obtain the average SNR Γi, we subtract noise power Pn,i from the mean received power

strength as:

Γi = Pt,i − LdB,i − µi − Pn,i, (4.5)

where Pn,i is a noise power (dBm) calculated as:

Pn,i = 10 log10(KTBi) + 30, (4.6)

where K is the Boltzmann constant, T is the ambient temperature and Bi is the bandwidth

allocated to the ground node i. Γi is converted to the absolute value from decibel by:

Γ
′
i = 10Γi/10. (4.7)

Assuming channel reciprocity, the achievable data rate of the link between the UAV and

the node i can be calculated as:

Ri = Bi log2(1 + Γ
′
i). (4.8)

The shadow fading Ψ used in the (5.2) is represented as the Gaussian distribution where

mean µ and variance σ2 can take two values as ΨLOS ∼ N
(
µLOS , σ

2
LOS) and ΨNLOS ∼
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N
(
µNLOS , σ

2
NLOS) in decibels for LOS and non-LOS (NLOS) cases, respectively. Here,

µLOS and µNLOS are assumed to be constants for a given environment type (i.e., Suburban,

Urban, Dense urban and High-rise urban), whereas σ2
LOS and σ2

NLOS can be modelled as:

σ2
LOS = k1 exp(k2θi), and (4.9)

σ2
NLOS = g1 exp(g2θi), (4.10)

where θi is the elevation angle between the ground node i and the UAV, and k1, k2, g1,

and g2 are constants dependent on the environment type.

Note that the GP approach (which will be explained in the next subsection) is used

to predict ΨLoS and ΨNLoS while Pt,i and LdB,i are assumed to be known a priori. While

model used in this work assumes Gaussian distribution on the shadow fading, GP can

be used to predict other distributions as well. The GP approach can predict errors and

uncertainties in Pt,i and LdB,i (such as wrongly guessed α parameter) as well, however, for

the sake of simplicity, ease of comparison and prediction time those errors and uncertainties

are not considered in this study. Besides, some other shadow fading components such as

atmospheric effects could be easily incorporated into this model if necessary.

4.2.2 GP- based Channel Prediction

It is difficult to obtain the channel model accurately since it would require perfect know-

ledge of the dynamic communication environment of an urban area. In this work, instead

of relying only on the model-based approach, we propose a GP-based learning approach

with collected communication strength data to learn the effect of shadow fading to be

combined with the known part of the model.

GP is one of powerful machine learning techniques, which can be described as:

fGP ∼ GP (m(x), k(x′,x)) (4.11)

where m(x) is the mean function and k(x′,x) is the covariance function between x′ and

x. Here, x is an input vector from the training data consisting of the position of the UAV

and ground nodes and x′ is a matrix of an arbitrary UAV positions for which communic-

ation strength between air and ground is predicted. A training set with Nt observations

is expressed as D = {(xn, yn)|n = 1, · · · , Nt} = {X,y} where y is a set of measured

communication channel strength from all ground nodes.

Generally, covariance functions used for GP can be split into stationary and non-

stationary. Stationary covariance functions are used when the original functions have

certain patterns, while non-stationary covariance functions are used when the original

function has no repeatable patterns. Fig. 4.5 shows the surface plot of the mean of shadow

fading from (5.2) for four ground nodes with respect to changing positions of the UAV

flying at 150 meters high. Since the spaces between areas are irregular with no repeatable

patterns, a non-stationary covariance function is more appropriate for this problem. Here,
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we use the squared exponential covariance function [113] with the spatially-varying length

scale parameters as:

k(x′,x) = σ2
f

(
a

b

)n
2

exp

(
||x− x′||2

b

)
, (4.12)

where a = 2l(x)l(x′), b = 2l2(x) + l2(x′) and n is a number of variables being correlated.

l(·) represents the spatially varying length scale hyper parameters which are of the same

form as the mean function. A constant mean function is defined as:

m(x′,x) = c, (4.13)

where c is a hyperparameter to be optimised.

Figure 4.5: The sum of shadow fading for four ground nodes as seen by the UAV flying at

150 m height.

Given the GP model with the mean and covariance function, the fitness of this model

to the training set D can be evaluated using the marginal likelihood conditioned on hy-

perparameters θ (i.e. parameters to be trained in the mean and covariance function):

L(θ) = log(y|X,θ) = −1

2
log |Cn|

− 1

2
(y−m(x))T (Cn)−1(y−m(x))− Nt

2
log(2π)

(4.14)

where Cn = Σ + σ2
nINt , in which Σ denotes a set of covariance functions of Nt ×Nt size

with entries kij = k(xi,xj) for i, j = 1, ..., Nt, σ
2
n is the hyperparameter accounting for

noisy data, and Nt is the number of observations.

Hyperparameters θ can be tuned by maximizing the likelihood function (4.14) using

the conjugate gradients method [12], as,

θ∗ = arg max
θ

(L(θ)). (4.15)

76



4. Measurement-based Approach to Predict Wireless Signal
Strength

Given the training set D and the covariance function with the trained hyperparameters,

the mean and variance at an arbitrary test position x′ are computed as:

µp(x
′) = m(x′) + k(x,x′)T (Cn

−1(y −m(x′)) (4.16)

σ2
p(x
′) = k(x′,x′)− k(x,x′)T (Cn)−1k(x,x′). (4.17)

Therefore, the GP approach can learn and predict shadow fading parameters µi and

σ2
i in (5.4) without a priori knowledge. Note that, although the shadow fading is normally

modelled as the Gaussian distribution and GP as a regression tool assumes that the

function output follows the Gaussian distribution, it does not require the actual fading to

be Gaussian distributed.

Computation time for predicting µi in GP increases quadratically with number of data

points collected, i.e. O(N2
t ). This would be particular problematic for Scan+NMPC with

GP approach, where number of datapoints for good prediction can be very high. To

mitigate this approximation is used, where GP prediction is performed at pre-specified

sparse grid points in xy-plane in the mission area after collecting the data from the

scan, and during the relay mission, bilinear interpolation is used for prediction at ar-

bitrary points. Such a grid is described by distance between each point dg and limits

[xg,low, xg,high, yg,low, yg,high].

4.2.3 Prediction for Scan+NMPC With GP

Computation time for predicting µi in GP increases quadratically with number of data

points collected, i.e. O(N2
t ). To mitigate this, GP prediction is only performed at pre-

specified grids in the mission area after collecting the data from the scan, and during the

relay mission, bilinear interpolation is used for prediction at arbitrary points. Let xgird

be a matrix of (x, y) coordinates with length Ng so that points are spaced with the equal

distance dg and within [xg,low, xg,high, yg,low, yg,high] limits, where Ng is the number of data

points needed to fill the area within the limits. Then, the mean of the shadow fading at

those points is predicted as:

µg(xgird) = m(xgird) + k(x,xgird)T (Cn
−1(y −m(xgird)), (4.18)

With (4.18), bilinear interpolation can be used to find the mean of the shadow fading at

arbitrary locations as needed.

4.3 Numerical Simulation Results

In this section, the performance of the proposed GP based channel prediction and the UAV

trajectory planning is evaluated via numerical simulation results. Four ground nodes are

used and the flight height of the UAV is set to 150 m. Other parameters for communication

and trajectory planning used for simulations are summarized in Table 5.4 and Table 5.5.
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Table 4.2: Communication parameter

Parameter Value Unit

Transmission power (Pt) 40 dBm

Frequency fc 2.0 GHz

Attenuation factor (α) 2.5 n/a

Communication Properties k1, k2, g1, g2 11.25, 0.06, 32.17, 0.03 n/a

mean LOS fading µLOS 0.1 n/a

mean NLOS fading µNLOS 21 n/a

Table 4.3: Simulation parameter

Parameter Value Unit

Actuator delay (τω) 1/3 sec

UAV speed (v) 20 m/s

Heading rate constraint (ωmin, ωmax) (−0.4, 0.4) rad/s

Receding horizon step (N) 5 N/A

Horizon steps (0.5, 4.5, 5, 5, 5) sec

Maximum heading rate change (∆uω) 0.1 rad/s

Weighting factors (pc, qc, rω) (−1000, pc/N, 1) N/A

Urban Enviroment Parameters (α0, β0, γ0) (0.1, 750, 8) N/A

No. of data points for scan+NMPC with GP (per ground node) 320 n/a

Collection rate for NMPC with GP 2 sec

CEO sample size 8 n/a

CEO time step 6 n/a

CEO (α, ρ) (0.4, 0.2) n/a

Ambient temperature T 293 K

Bandwidth Bi 5 MHz

Grid parameters (dg, xg,low, xg,high, yg,low, yg,high) (50,−300, 1300,−300, 1300) m

Seven methods are compared as described in Table 4.4 where two proposed methods

using GP (scan+NMPC with GP and NMPC with GP) are already described in Section

II.B; Three are model-based approaches and two are machine learning based approaches.

The model-based approaches were devised to provide a baseline comparison and are defined

as follows

• NMPC with known map assumes perfect knowledge of an urban map and the

communication channel strength between the UAV and ground nodes. This method

is to provide the baseline performance of the trajectory planner.

• NMPC with LAP is an approach which uses the LAP communication model de-
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scribed in Section III.C with the NMPC-based trajectory planner. This is one of the

recent techniques, which determines the LOS obstructions based on the probabilistic

model.

• Optimal point provides the upper bound of the communication performance. The

map is discretized into a grid of the predefined size and at each point of the grid,

the communication performance is computed as if the UAV is there. Among those

points, the optimal position which gives the best communication performance is

chosen assuming that the UAV is able to hover in a single spot, even though this is

not physically possible for the fixed-wing UAV considered in this paper.

Machine learning based approaches were used to verify performance of GP as a suitable

technique to solve this problem. The machine learning based approaches are characterised

below:

• Scan+NMPC with SVM. It is the same approach as Scan+NMPC with GP,

however, it uses a support vector machine (SVM) for regression instead of GP to

predict air to ground links. Here SVM with Gaussian kernel is used.

• Scan+NMPC with NN. It is the same approach as Scan+NMPC with GP, how-

ever, it uses Neural Network (NN) for regression instead of GP to predict air to

ground links. Here Neural network with 10 hidden neurons is exploited with Bayesian

Regularization learning method due to superior performance with noisy data.

Table 4.4: Air-to-ground link prediction schemes

Path loss Shadow fading

Scan+NMPC with GP

known

predicted by GP

NMPC with GP predicted by GP

NMPC with known map known

NMPC with LAP predicted by (5.9)

Optimal point known

4.3.1 The Comparison of CEO and GA

For trajectory planning, here, the same approach as described in chapter 3 is utilised. The

main difference is that kalman filter is not used. With fixed ground node position, Kalman

filter to predict trajectory is not necessary. Instead we assume UAV knows ground vehicle

postion from start of mission. moreover Cross-Entropy Optimiser (CEO) was utilised

instead of Genetic Algoritm. To evaluate the performance of the CEO algorithm, we

compare it to our previous roulette-based GA as used in [9]. To conduct this comparison,
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50 Monte Carlo simulations using NMPC with the known map and parameters from 5.5

are performed and the result is represented in Fig. 4.6. Each algorithm is tested with

different iteration number and sample/population size which is reflected in number of calls

to cost function on the y-axis. Inderectly this also allow comparison of the computational

time as computing cost function is main contributor to computational time. CEO achieves

a better solution using less cost function calls than GA does. For instance, CEO achieves

the communication rate of 16.7 Mbps in just 40 calls and then increases to around 17

Mbps using 20 more calls. Meanwhile, GA reaches 16.2 Mbps in 40 calls and then steadily

increases to about 16.7 Mbps, which takes about 200 calls to the cost function.

Figure 4.6: Comparison of the achievable communication rates of the proposed CEO

algorithm with the GA algorithms. The shaded patch with boundaries represents the

1-σ standard deviation. The CEO algorithm shows much faster convergence and achieves

higher data rate as compared to the genetic algorithm.

4.3.2 The Comparison of GP Performance for Different Scan Patters

To determine a good scan pattern comparison between three different scans were per-

formed. Here, 3,5 and 7 UAV parallel flights (sweeps) are compared. Each sweep is a

single line, which is parallel to the x-axis, in a path travelled by the UAV (see Fig. 4.3).

At the end of each sweep, UAV turns to align for next sweep. The radius of the turn

is smaller for a higher number of sweeps per scan flight. Performance of scan+NMPC

with GP for a different number of sweeps is summarised in Fig. 4.7. It can be seen that

performance with 7 sweeps is slightly better than 5 and 3 sweeps. This small difference

is caused by a relatively small mission area used in this work. The number of sweeps is a

parameter set by the user depending on the mission area, size and available time. In this

work, 7 sweeps are used.
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Figure 4.7: Comparison of performance of scan+NMPC with GP based on different num-

ber of sweeps. Each sweep is defined as a single parallel line flown by the UAV.

4.3.3 The quality of GP based Channel Prediction

To validate the performance of the GP-based channel prediction, Monte Carlo simulations

over 30 scenarios are run on four different cases: i) ‘no buildings’, ii) ‘around buildings’

(four buildings around a ground node), iii) ‘far buildings’ (four buildings at least 200 m

away from a ground node) and iv) ‘all buildings’ (using the suburban environment model).

Each scenario consists of a single ground node for the reduced computation time.

Error for an Urban Map Using Scan+NMPC With GP

Fig. 4.8 shows how the root mean square RMS error in communication channel prediction

changes with the number of data points collected from four scenarios. In this work, the

RMS error is taken to be absolute difference between the mean of the shadow fading

predicted by GP and the mean of the shadow fading defined in the (5.2). All four curves

in Fig. 4.8 follow the exponential decrease in error until it reaches almost a constant error

value. In general, results can be split into two groups (based on the magnitude of the

error): i) ‘no buildings’ and ‘far buildings’ and ii) ‘around buildings’ and ‘all buildings’.

The first group has much smaller overall error compared to the second group as scen-

arios for the first group are rather simple. Although the ’far buildings’ case has the same

amount of buildings as ’ around buildings’, buildings far away are not that important as

they will rarely (if at all) cause LOS obstruction as illustrated in Fig. 4.9. The second

group has a much higher overall error. This is because buildings are close to the ground

node, affecting the LOS condition significantly and thus making the channel prediction
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Figure 4.8: Comparison of errors in channel prediction using scan+NMPC with GP.

more complex. In a full city scenario (i.e. ‘all buildings’ case), there are more buildings

close to the ground node, and thus prediction is even more difficult in this case. One sample

error of predicted communication map from ‘all buildings’ case is shown in Fig. 4.10. With

200 data points used to create this figure, the prediction is relatively satisfactory, which

means that GP is able to predict all major fading features affecting the ground node.

Error for UAV’s Flight Trajectory Using NMPC With GP

Predicting the communication quality using NMPC with GP is more challenging as the

UAV collects communication strength data over its flight trajectory only without pre-

scanning. This means that there are many areas the UAV has no knowledge about the

communication environment. Just increasing the number of data points collected over

the travelled path does not provide more useful global information about the area which

the UAV did not visit. Thus, the error over a full communication map does not yield

a comparable situation to the scan+NMPC with GP case. For this reason, for NMPC

with GP, the error over the travelled path only is computed, and the results are shown

in Fig. 4.11. Note that the magnitude of the error is much lower than the previous scan

case as this is computed only over the flown path, rather than full area. In this figure, the

trends are similar to the scanning case, however, the variance is a lot higher. This high

variance can be explained by the fact that the UAV can take a different path depending

on earlier prediction. As the UAV collects communication data over its path in randomly

generated scenarios, GP prediction will not be the same for different simulations runs.
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Figure 4.9: An illustration on the blockage effect of close and far buildings for air-to-ground

communication.

Computational Time

To decide the optimal number of data points to be collected for a given scenario, not only

the quality of prediction but also the computation time is of importance. It is worthwhile

noting that the GP computational speed is mostly a function of i) the number of data

points and ii) complexity of mean and covariance functions, however, it is not dependent

on how complex the actual function is. Also for scan+NMPC with GP this represents only

computational time to predict each point on the grid, rather than the time needed for each

planning step. Computational time for each NMPC trajectory planner timestep for each

of the approaches is discussed later on in table 4.7. Fig. 4.12 shows the computational

time for the ‘all buildings’ scenario, generated using the desktop PC and repeating each

scenario 50 times. It is worth noting that this figure is used to extract general trends

since the actual performance will vary depending on the computer hardware used. The

fitted curve is a quadratic function. As the computational time for data points rapidly

gets unreasonably high and after 400 data points, improvement in prediction is negligible

(as seen in Fig. 4.8), it is suggested that around 200 points per ground node would be an

appropriate number.

4.3.4 Trajectory Planning Results

Next, we examine the average achievable communication rate as a result of different tra-

jectory planning approaches. Each method runs over 50 Monte Carlo simulations in a

suburban environment with the same starting point. For the Scan+NMPC with GP case,

the UAV returns to its starting position after the scan flight.
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Figure 4.10: Error in channel prediction with the ‘all buildings scenario’ after scanning

with 200 data points collected. The ground node position (yellow circle) is elevated to 20

meters to improve visibility.

Table 4.5: Average communication throughput over the final 20 seconds

Method Average Throughput per Ground Node (Mbps)

Optimal Point 38.7

NMPC with known map (Perfect) 34.4

Scan+NMPC with GP 33.5

NMPC with GP 32.2

NMPC with LAP 31.8

LAP wrong assumptions 25.8

The averaged throughput across the whole trajectory and in the final 20 seconds are

shown in Fig. 4.13 and Table 4.5, respectively for the suburban environment for comparison

with model based approaches. Figure 4.15 and Table 4.6 shows simulation results for the

dense urban environment for comparison with model based approaches. It can be seen

that the optimal point approach sets the upper bound of the performance as expected.

NMPC with known map has the best performance among NMPC-based approaches, closely

followed by Scan+NMPC with GP and then NMPC with GP. Although NMPC with GP

has worse performance than that of Scan+NMPC, it is beneficial to some extent as it can

start the relay mission immediately without spending time on the scan flight. This means

that, depending on user requirements (e.g. whether timely communication provision is

important or not), different approaches could be preferred. It is worthwhile noting that
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Figure 4.11: Comparison of errors in prediction from NMPC with GP. This error is calcu-

lated only over the path of UAV, rather than full area, as in NMPC with GP prediction

outside path is very uncertain.

Table 4.6: Average communication throughput over the final 20 seconds

Method Average Throughput per Ground Node (Mbps)

Optimal Point 35

NMPC with known map (Perfect) 23.4

Scan+NMPC with GP 22.3

NMPC with GP 20.7

NMPC with LAP 20.5

LAP wrong assumptions 19

Scan+NMPC with GP has the performance very similar to NMPC with known map

(Perfect) in both suburban and dense urban environments, however, NMPC with GP is

worse in suburban than dense urban environment.

Fig. 4.14 and Fig. 4.16 shows comparison between Scan+NMPC with GP, Scan+NMPC

with SVM and Scan+NMPC with NN. First, it can be noted that Scan+NMPC with GP

is the best for either of the tested urban environment. While not all machine learning

techniques were tested, it suggests that GP is a good technique for this problem. The

weak performance of the neural network suggests that applicability of NN regression is

limited for this type of problems. Although the exact reason is uncertain at this stage,

it is currently believed that NN struggles to learn good prediction with a limited number
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Figure 4.12: Computational time of GP-based channel prediction as a function of the

number of data points collected for prediction.

and highly noisy data points.

Finally, comparison of the computational time per NMPC trajectory planner step is

presented in the Table 4.7. For Scan+NMPC with GP time steps do not include initial

time needed to create the grid from section III.C. This computation can be either offloaded

to a very powerful computer or a cloud on the ground or it can be made when the UAV

repositions itself to start the relay mission. Scan+NMPC with GP and NMPC with LAP

have a similar computational load of about 0.7 seconds per time step. For NMPC with GP

computational time is the highest, since the channel prediction using GP becomes slow as

more data points are used.

Table 4.7: computational time per NMPC trajectory planner timestep (averaged over

scenario time)

Method Computational time per NMPC horizon step (s)

NMPC with known map (Perfect) 1.2

Scan+NMPC with GP 0.76

NMPC with GP 3.23

NMPC with LAP 0.77

86



4. Measurement-based Approach to Predict Wireless Signal
Strength

Figure 4.13: Communication performance comparison in a suburban environment between

proposed approach and model based approaches.

Figure 4.14: Communication performance comparison in a suburban environment between

proposed approach three machine learning approaches.
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Figure 4.15: Communication performance comparison in a dense urban environment

between proposed approach and model based approaches.

Figure 4.16: Communication performance comparison in a suburban environment between

proposed approach three machine learning approaches.
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4.4 Conclusions

The use of GP for channel prediction to support the UAV communication relay mission

was presented in this paper considering complex urban environments. It was shown that

creating a communication channel strength map using the GP approach before the mission

with the scanning flight shows an advantage over creating the communication map while

performing the mission (i.e. online) without scanning. However, collecting data during

the mission in the online case allows the UAV to adapt to dynamic changes in the com-

munication environment and adjust its position accordingly. Therefore, an appropriate

method should be chosen depending on mission environments.
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Chapter 5

Hybrid of Model-based and

Measurement-based for Partially

Known Urban Environments

In the previous chapter, we explored how UAVs communication relay performs with the

usage of a model-based communication strength prediction. Here we propose a hybrid

approach which combines learning based and model-based approaches to solve some of

the limitations of the previous model. In particular for the model-based approach to work

well, good knowledge of urban environment map (i.e. sizes and positions of buildings) was

required. To solve this issue, a statistical model of the city with neural network machine

learning is combined. To achieve that we use city model as defined by [46], which splits dif-

ferent urban environments into four different types: Suburban, Urban, Dense Urban and

High-Rise Urban. In each of those environment types, communication strength between

arbitrary points in the air and on the ground is predicted using a probability-based equa-

tion. This probabilist model is called low altitude platform (LAP). The equation is para-

meterised with different parameters, depending on the urban environment type. During a

mission, unmanned aerial vehicle (UAV) collects signal strength readings and angle from

ground nodes and uses a neural network to predict which one of the four environment UAV

is in. Thus this approach does not need as much information about urban environment

map as the previous one, just that it fits one of the pre-learned approaches. Similarly

to the last chapter, mobile ground nodes could also be used as communication strength

prediction is made with the probabilistic model once appropriate parameters have been

predicted.

With the new approach to calculating communication performance, non-linear model

predictive control (NMPC) trajectory planner from the previous chapter was extended to

supplement heading optimisation with velocity optimisation. Heading limitation occurred

due to highly computationally intensive communication performance prediction with the

previous model-based approach. Particularly determining the building obstruction was
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very computationally intensive. As a result, finding an optimal trajectory with both

heading and velocity and the previous model-based approach was very slow. Probabilistic

LAP model is significantly faster at predicting communication strength than previous

model-based approach; thus more complex optimisation was introduced.

5.1 Problem Overview

5.1.1 Assumptions

A sample scenario considered in this work is illustrated in Fig. 5.5. In this scenario,

there are a number of mobile ground nodes in an urban environment. UAVs fly in a way

to assist mobile ground nodes with their wireless communication equipment for better

communication performance.

Figure 5.1: Illustration of the communication relay scenario.

The assumptions made in this work are stated as follows: i) an urban environment

can be modelled as either of the four types: suburban, urban, dense urban and high-rise

urban depending on the density and height of buildings; ii) the communication channel

model consisting of path loss, transmitted power and shadow fading components is known

empirically for each environment type, however the environment type for a given scenario

is unknown; iii) ground nodes know their positions by using GPS and are able to share their

current positions with UAVs using wireless network, but their future paths are unknown

to the UAV; and iv) the position and the shape of buildings are unknown.

Assumption (iii) is vital for UAV to be able to predict communication strength cor-

rectly. If the ground node cannot communicate its position with the UAV, it would not be

considered during optimisation. To mitigate this issue following approach could be used.

First, UAV could predict where the ground node is based on apriori knowledge UAV has.

Then UAV could search to regain communication with the lost ground node. However,

this would result in temporarily worse communication improvement between other ground

nodes. This is not covered in this work and remains an interesting future direction.
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5.1.2 Overview of the Learning-Based Channel Prediction Algorithm

Figure 5.2 shows the overview of the optimal trajectory planning process with the hybrid

channel prediction approach. To plan the trajectory of communication relay UAVs, first

cross entropy optimiser (CEO) [103] randomly generates a set of possible trajectories.

For each trajectory, the LAP model is used to compute the communication quality of the

networked team. To use the correct LAP model, UAVs collect a pair of signal strength and

elevation angle between the UAV and ground nodes (hereafter such a pair is called signal

strength-angle pairs). With this data, the NN predictor is used to predict the current

urban environment type. Until convergence is reached, the CEO algorithm changes the

candidate trajectories and once the convergence criterion is satisfied, the best trajectory

is sent to UAVs for execution. Note that this entire process is periodically performed to

cope with the dynamic environment.

Figure 5.2: Overview of the optimal trajectory planning process for communication relay

UAVs.

5.2 Learning-Based Communication Channel Prediction

5.2.1 Air-to-Ground Channel Modelling

The communication channel model used in this work is based on the multiple ray tracing

simulation with four different types of urban environments: i) Suburban, ii) Urban, iii)

Dense urban and iv) High-rise urban [46, 112]. Urban environment types are defined by

three parameters: α0, β0 and γ0, where α0 is the ratio of the built-up land area to the

total land area, β0 is the mean number of buildings per unit area (buildings/km2) and

γ0 is a scale factor that describes the building heights in the Rayleigh probability density

function as:

P (h) =
h

γ2
0

exp

(
−h2

2γ2
0

)
, (5.1)
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where h is the building height in meters. The values of the parameters for each urban

environment are summarised in Table 5.1. To fully define a city, its layout is defined as a

standard city layout [46] as shown in Fig. 5.3. The benefit of using this city model is easy

generation of multiple cities with different heights for Monte Carlo simulations.

Table 5.1: different city environment parameters

Environment α0 β0 γ0

Suburban 0.1 750 8

Urban 0.3 500 15

Dense Urban 1 300 20

High-rise Urban 1 300 50

Figure 5.3: A sample city generated with parameters: α0 = 0.1, β0 = 750 and γ0 = 8.

With the above city model, the communication channel model can be defined as [45]:

Pr,ij = Pt,j − LdB,ij −Ψij (5.2)

where Pr,ij (dBm) is the received signal power strength of node i from node j. Pt,j (dBm) is

the transmitted power by node j, LdB,ij represents the free space path loss between nodes

i and j, and Ψij is the shadow fading component accounting for diffraction and multipath

fading. Ψ is assumed to be a Gaussian random variable defined as Ψij ∼ N
(
µij , σ

2
ij),

where µij and σ2
ij are the mean and variance parameters. LdB,ij can be represented as:

LdB,ij = 10α log10

(
4πfcdij

c

)
, (5.3)

where fc is the central frequency, α is the path loss exponent, dij is the distance between

nodes i and j, and c is the speed of light. Note that Pr,ij follows the Gaussian distribution

and can be expressed as:

Pr,ij ∼ N
(
Pt,ij − LdB,ij − µij , σ2

ij). (5.4)

To be more specific, the shadow fading Ψij can take either of two distributions: ΨLOS,ij ∼
N
(
µLOS,,ij , σ

2
LOS,ij) and ΨNLOS,ij ∼ N

(
µNLOS,ij , σ

2
NLOS,ij) for cases of line-of-sight (LOS)

and non-LOS (NLOS), respectively. In this work, µLOS,ij and µNLOS,ij are assumed to be
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known and constant for a given urban environment type, whereas σ2
LOS,ij and σ2

NLOS,ij

can be modelled as:

σ2
LOS = k1 exp(k2θij), and (5.5)

σ2
NLOS = g1 exp(g2θij), (5.6)

where θij is the elevation angle of the UAV with respect to the ground, and k1, k2, g1 and

g2 are positive constants dependent on the urban environment type.

5.2.2 LAP Communication Model

To allow the UAV to predict the communication strength of ground nodes during trajectory

planning, choice between ΨLOS,ij and ΨNLOS,ij needs to be made. For this, we use the

method from [11], which predicts the probability of LOS (or NLOS) occurrence based

on the elevation angle and urban environment type specified by α0, β0 and γ0. In this

approach, the LOS probability between two nodes can be determined as:

P (LOS) =

m∏
i=0

[1−

− exp

−
[
hTX − (i+1)(hTX−hRX)

m+1

]2

2γ2
0


 (5.7)

where m = floor(dij
√
α0β0−1), r is the ground distance between the UAV and the ground

node, hTX is the height of the UAV, and hRX is the height of the ground node. Using

Eq. (5.7) directly might incur a high computational time. This issue can be mitigated by

using a sigmoid function approximation as:

P (LOS, θij) =
1

1 + a exp(−b[θij − a])
, (5.8)

where θij is the elevation angle between the air and ground nodes and a and b are para-

meters of the S-curve dependent on α0, β0 and γ0 [11]. Then, the prediction of Ψ can be

made by defining a LOS probability threshold Pt as:

Ψij =

{
ΨLOS,ij , if P (LOS, θij) > Pt,

ΨNLOS,ij , otherwise.
(5.9)

5.2.3 Neural Network Channel Prediction

In this work, the input consists of 16 pairs of signal strength and elevation angles and the

output is the urban type. The choice of that number is described later on in this section.

Note that during the trajectory planning process, the urban type prediction by NN is

periodically performed with most recently collected data. In case of multiple UAVs are

involved, each UAV is assumed to be able to make its own prediction based on the reading

it has obtained, and then share its prediction with the rest of the group for improving
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the prediction accuracy. The output from NN is a vector y ∈ R1×4 where each element

is 0 or 1 and each element being responsible for one of the four environment types. For

instance, yi = 1 implies i-th urban environment type is predicted. NN was trained on 12

randomly generated scenarios (3 scenarios per each urban environment) with 12 stationary

ground vehicles. The UAV performed the back and forth search pattern and collected 2172

signal strength and elevation angle pairs per scenario. In the case of this learning whether

statrionary of mobile ground nodes were used didn’t matter as the prediction only depends

on angle between air and ground vehicles.

As introduced in 2.4.4 Neural network requires a fixed number of inputs. However

number of obtained RSSI-angle pairs is unknown prior to the mission start as it depends

on the data collection rate, mission length and a number of ground nodes. To mitigate

this constraint we limit the number of RSSI-angle pairs NN is processing at any given

timestep. The limit imposed needs to fulfil following requirements: i) be able to make

prediction relatively quickly to allow prediction with minimal data and ii) make prediction

accurate enough to allow completing of UAV mission. The choice of balance between those

two metrics is rather arbitrary, in here we assume that to fulfil those requirements Neural

Network should make a prediction with less than 32 of angle-RSSI pairs with 70% accuracy.

To test how many RSSI-angle pairs is sufficient we tested 4, 8, 16, 32 and 64 pairs and

compared the accuracy. Results of this test are summarised in table 5.2. It can be seen

that from 4 to 16 angle-RSSI pairs accuracy is increasing steadily by about 10% for each

increase in data points, while between 32 and 64 pairs increase is much smaller by 3%

only. Thus 16 is chosen as a compromise between accuracy and number of data points. 4

and 8 do not offer desirable accuracy, while 32 and 64 do not offer a significant boost in

accuracy to warrant an increase in datapoints requirements.

Table 5.2: prediction quality with different angle-RSSI pair

number of angle-RSSI pairs Accuracy

4 50.1%

8 60.8%

16 70.9%

32 73%

64 76%

To investigate the performance of NN, a confusion matrix is used as shown in Fig. 5.4.

The confusion matrix is a widely used technique for reporting quality of learning. It should

be read as follows In the matrix, bold numbers are numbers of samples classified as given

environment type, the percentage is the same number expressed as the percentage of the

total sample. diagonal terms (in green) are the number of correctly classified environment
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type along with the percentage of the total sample. The red off-diagonals elements are the

number of target environments incorrectly classified. The edges of the matrix in grey are

total percentages of correctly classified (green) and incorrectly classified (red) environment

type. Each row is an output environment class as predicted by NN while columns are the

target class i.e. what the prediction should be if NN made a correct prediction. Looking

at single row will provide information on how many of given class was classified correctly

(green box) and how many incorrectly and as what class they were classified (red box).

This figure shows that the majority of errors occurs between classes which are next to each

other. This is expected, environments which are close to each other are very similar in

terms of probability of blocking signal and effect on RSSI. Thus Neural network struggles

to make a correct prediction.

Figure 5.4: Confusion matrix for Neural Network

Finally, the proposed NN approach is compared against other machine learning tech-

niques: k-nearest neighbour, support vector machine and decision trees. All of those

approaches were trained on the same data set as NN. As it can be seen from Table 5.3,
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NN is at least 9% more accurate than any other method.

Table 5.3: Accuracy of methods

Method Accuracy

NN 70.9%

support vector machine 62.2 %

k-neareast neightbours 61.9 %

Decision tree 46 %

5.2.4 Communication Performance Metrics

To compute performance metrics which can be used to plan an optimal trajectory for

the UAV, two steps are necessary: i) conversion of Pr,ij to the probability of successful

communication and ii) computation of the global message connectivity (GMC) [8] to define

how much the UAV improves the communication performance of the networked group. To

define probability, the signal to noise ratio (SNR) needs to be defined by subtracting the

noise power Pn,ij from the mean received power strength Pr,ij in Eq. (5.4) as:

Γij ∼ N
(
µγ,ij , σ

2
ij). (5.10)

where µγ,ij = Pt,ij − LdB,ij − µij − Pn,ij and Pn,ij is a noise power (dBm) calculated as:

Pn,ij = 10 log10(KTBij) + 30, (5.11)

where K is a Boltzman constant, T is ambient temperature, and Bij is a bandwidth. Fol-

lowing integration steps from [114], the probability of sucesful communication is expressed

as:

Ps,ij(Γij ≥ γ) = Q

(
µγ,ij − γ
σij

)
, (5.12)

where γ is the required minimum SNR defined by the user and Q is the complementary

error function.

Thus, based on the predicted urban environment and its corresponding µ and σ2, the

UAV can make predictions of how it will improve communication in the group. It is worth

noting that some other metrics could be used instead of GMC. One example could be the

modified global message connectivity proposed in [9].

5.3 Receding Horizon-Based Online Trajectory Planning

Here we extend previous UAV model to allow change in both velocity and direction rather

than direction only. While this should result in better answers, more optimiser steps
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would be required to reach a good answer. However, Neural Network has a signficantly

smaller computational time than any other presented approach so far (computational time

needed) so it was deemed as a good compromise.

5.3.1 UAV Model

The model described in section 3.3.2 is adapted as:

ẋ

ẏ

ψ̇

v̇

ω̇


= f(x, u) =



vcosψ

vsinψ

ω

− 1
τv
v + 1

τv
uv

− 1
τω
ω + 1

τω
uω


(5.13)

where x =
(
x y ψ v ω

)T
are the inertial position, heading, speed and yaw rate of

the UAV, respectively. τv and τω are time constants account for actuator response delay,

which can be determined experimentally for a given UAV model. uω is a command input

in the form of the turning rate and uv is a command input in the form of velocity. It

is worth noting that v is constrained by maximum and minimum velocity vmin, vmax and

ω is constrained by maximum and minimum heading rate ωmin, ωmax due to physical

limitations of the fixed-wing UAV. Similarly to previous chapter Eq. (5.13) in the receding

horizon framework is discretised using Euler integration as:

xk+1 = fd(xk, uk) = xk + Tsf(xk, uk) (5.14)

where xk =
(
xk yk ψk vk ωk

)T
and Ts is a sampling time.

To predict trajectory of ground vehicle we use same kalman filter as described in 3.3.2.

5.3.2 Receding Horizon Problem Formulation

Similary to section 5.3.1. the receding horizon formulation needed to be adapated to

account for addtiional velocity term. The receding horizon-based trajectory planning is

formulated to find the optimal set of command inputs U i =
(
U iv, U

i
ω

)T
where U iv =(

uiv,0, u
i
v1, . . . , u

i
v,N−1

)
, U iω =

(
uiω,0, u

i
ω,1, . . . , u

i
ω,N−1

)
for i-th UAV, which minimises the

following performance index J :

min
U
J(U) , Φ(x̄N , x̄

g
N ) +

N−1∑
k=0

L(x̄k, x̄
g
k, uω,k, uv,k) (5.15)

s.t. xk+1 = fd(xk, uω,k, uv,k), (5.16)

ωmin ≤ uω,k ≤ ωmax, (5.17)

|uω,k − uω,k−1| ∈ {0,∆uω} (5.18)

vmin ≤ uv,k ≤ vmax, (5.19)

|uv,k − uv,k−1| ∈ {0,∆uv}, (5.20)
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where:

Φ(x̄N , x̄
g
N ) , pc

1

JGMC(x̄posN , x̄g,posN )
, (5.21)

L(x̄N , x̄
g
N , uω,k, uv,k) ,

1

2

[
qc

1

JGMC(x̄posk , x̄g,posk )
+

+rω

(
uω,k
ωmax

)
+ rv

(
uv,k
vmax

)]2 (5.22)

All terms retain their previous meaning unless stated otherwise. The major change come

from addtional constraint in eqs. (5.17)∼(5.20). The third and fourth constraints are

added to limit maximum nad minimum velocity of the UAV and discretises the problem

to ensure velocity difference is not bigger than {0,∆uv}. To compute optimal commands

input based on performance index, Cross Entropy optimiser is employed.

5.4 Numerical Simulation Results

In this section, the performance of the proposed approach is investigated through a set of

48 Monte Carlo simulations. Parameters of simulations and wireless communication are

given in Table 5.5 and 5.4, respectively. The proposed approach, receding horizon(RH)-

based trajectory planning with the hybrid channel prediction (termed as RH+NN with the

LAP model), is compared with three other approaches. First, the receding horizon-based

trajectory planning with the known map is an approach where building sizes, positions

and effects on the communication quality are fully known. It allows the UAV to make the

perfect prediction of the communication performance for arbitrary points. RH with the

known LAP model is similar to the proposed approach in that it uses Eq. (5.8) to predict

the probability of being in LOS, but α0, β0 and γ0 are assumed to be known a priori. RH

with the incorrect LAP model is an approach where incorrect α0, β0 and γ0 are used. For

the MST construction during the prediction stage, connections between ground nodes are

assumed to be in NLOS at all times.

Figure 5.5: A sample urban scenario with six ground nodes, two relay UAVs and buildings

with different heights.
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Table 5.4: Communication parameter

Parameter Value Unit

Transmission

power (Pt)

40 dBm

Frequency fc 2.0 GHz

Attenuation factor

(α)

2.5 n/a

Communication

Properties (k1, k2,

g1, g2)

(11.25, 0.06, 32.17,

0.03)

n/a

mean LOS fading

µLOS

0.1 n/a

mean NLOS fad-

ing µNLOS

21 n/a

Bandwidth Bij 5 MHz

Fig. 5.6 shows a sample scenario from Monte Carlo simulations with trajectories using

aforementioned four methods. In this scenario, issues with RH with the incorrect LAP

model (i.e. using incorrectly-guessed parameters) approach are apparent. Within the time

frame of the scenario, other three approaches send one UAV to around (x, y) = (1400, 500)

and the other to (x, y) = (400, 700) to serve as relay nodes there. However, RH with the

incorrect LAP model makes both UAVs to stay around the (x, y) = (400, 700) where they

can only help three ground nodes. It is likely that RH with the incorrect LAP computed

that there is no viable position where the relay UAV could help by flying to other position.

Such an erroneous decision is made as RH with the incorrect LAP uses a city with buildings

which are much higher and bigger than they actually are.

Figure 5.7 shows the comparison of the performance of four approaches. It can be

seen that RH with the known map has the best performance. This is closely followed by

RH with the known LAP model and RH+NN with the LAP model. RH+NN with the

LAP model is slightly worse than RH with the known LAP model. The reason for this

discrepancy is that there exists cases where NN makes the wrong prediction for the urban

environment type, thus lowering the performance of the approach. Finally, RH with the

incorrect LAP model shows the worst performance as the UAV would never reach the

optimal position due to incorrect parameters.

The quality of urban type prediction using NN is visualised on 3 randomly selected

scenarios from Monte Carlo simulations in Fig. 5.8. With each time step, the UAV collects

more communication data and makes a new prediction about its current environment. For
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Table 5.5: Simulation parameter

Parameter Value Unit

Actuator delay (τω, τv) (1/3,1/3) sec

speed constraints (vmin, vmax) (10, 30) m/s

Heading rate constraint

(ωmin, ωmax)

(−0.4, 0.4) rad/s

Receding horizon step (N) 5 N/A

Horizon steps (0.5, 4.5, 5, 5, 5) sec

Maximum heading rate change

(∆uω)

0.1 rad/s

Maximum velocity change (∆uv) 5 m/s

Weighting factors (pc, qc, rω) (−1000, pc/N, 1) N/A

Urban Enviroment Parameters (α0,

β0, γ0)

(0.1, 750, 8) N/A

Urban Enviroment Parameters (α0,

β0, γ0) for NMPC with incorrect

LAP model

(1 , 300, 20) N/A

Ambient temperature T 293 K

Number of UAVs n 2 N/A

number of ground nodes m 6 N/A

scenario id 6, predictions are good and consistent throughout the simulation. Predictions

for scenario id 22 and id 13 start off as incorrect, but about half way through the prediction

converges to the correct urban environment type.

The performance with the increasing number of UAVs is investigated in Fig. 5.9 where

the resuls are obtained by averaging from the final 20 seconds of 48 Monte Carlo simula-

tions. With no communication relay UAV in the area, there is a very low probability of

establishing a successful communication for the networked nodes of only 30%. With one

UAV, there is a significant increase in the probability of successful communication while

more UAVs provides higher probability but with lower increasing rate.

Finally, Fig. 5.5 shows a sample run from one of the 48 Monte carlo simulations. In

this scenario UAV 2 starts very close to ground nodes while UAV 1 needs to travel across

before it can fulfil its role as communication relay. It is also worth noting that UAV’s

my temporarily circle in place, but most of the time they try to move to improve wireless

communication the best. The proposed trajectory planning guides the UAV to improve

communciation strenght between the ground nodes as much as possible.

To complete the discussion we make a comparison of predicted trajectories by each
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(a) RH with the known map

(b) RH+NN with LAP mode

Figure 5.6: Simulation results using different approaches. The red lines represent the MST

with the corresponding probability of successful communication.

method. Fig. 5.6 shows a sample scenario out of 48 with trajectories outlined for each

of the methodologies. In this scenario, some problems with assuming the wrong model

in the LAP approach are clearly visible. Each of the other three approaches sends one

UAV to stay around x:1400 and y:500 to serve as a relay to the group of three nodes

there. However, NMPC with incorrect LAP model makes both UAVs to stay in the one

area where they can only help three nodes. In this work, incorrect LAP uses a city with

buildings which are much higher and bigger than they actually are. It is likely that NMPC

with incorrect LAP computed that there is no position where it could help those three

nodes thus it focuses both UAVs on helping the other three ground nodes.
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(c) RH with the known LAP model

(d) RH with the incorrect LAP model

Figure 5.6: Simulation results using different approaches. The red lines represent the MST

with the corresponding probability of successful communication (cont.).
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Figure 5.7: Performance comparison of the proposed method with others, averaged over

48 Monte Carlo simulations.

Figure 5.8: Prediction of the urban environment type with time for 3 randomly chosen

scenarios. Each scenario id corresponds to the random scenario from Monte Carlo simu-

lations.
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Figure 5.9: Averaged performance over 48 scenarios for the final 20 seconds of the flight

with the different number of UAVs. No UAV case indicates the scenario with just ground

nodes for the comparison purpose. As the number of UAVs increasess the probability of

successful communication increases.

5.5 Summary

In this work, the use of Neural Network in support of UAV communication relays was

explored. UAV relay was used to help communication amongst a group of mobile ground

nodes. It was shown that the proposed approach can quickly predict the right urban

environment type. It can be concluded that this approach is useful as it requires very little

knowledge about the mission area, yet it can perform quickly with improved performance.

Genetic Algorithm was replaced with cross entropy optimiser (CEO) as on average it

reaches the same answer in a fewer computational steps. The velocity was added to

trajectory planner to improve communication performance benefit offered by the UAV.
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Chapter 6

Experiment in Unknown

Simulated Urban Environment

The purpose of the experiment is to validate the GP channel prediction approach proposed

in Chap. 4 in an experimental setting. This experiment includes three objectives: i)testing

the sufficiency of computation speed, ii) testing the accuracy and consistency of GP made

predictions, and iii) proposing a way to simulate an urban environment in an indoor

area. Computational speed is a concern as UAV’s flight time is limited. If most of

this time is spend computing GP map, relay mission time would be heavily restricted.

Computation needs to be performed quickly enough to guarantee time for relay mission.

The second aim is to test GP performance in more realistic settings. In the simulation

chapter, several assumptions were made regarding signal strength in an urban environment

to simplify the model. Such assumptions do not necessarily translate very well to real-

world experiments. Finally, real-world testing in an urban environment is challenging to

perform due to flight restrictions in a real urban environment. Here an attempt is made

to simulate an urban environment at a small scale while keeping intrinsic properties of

the concerned environment. Since, water is good at absorbing wireless signal, even with

smaller dimensions, water containers are used to emulate the role of buildings in real-world

cities.

6.1 Overview

The snapshot of the experiment is shown in Fig. 6.1, while more detailed overview can be

seen in 6.2. The test consists of two ground nodes, and a single UAV in a 5m by 5m by 6m

(WxDxH) indoor area. The buildings are made of water containers. Water has excellent

absorption properties at 2.4 GHz band commonly used by commercial wireless networks.

UAV performs back and forth scan pattern on a fixed height to collect signal strength data

from ground nodes. Based on collected data, a GP grid map is created. The experiment

tests four different combinations between ground nodes and buildings. Those four tests
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are broadly split as i) one ground node in the middle of the room, ii) two ground nodes in

opposite sides of the room, iii) two ground nodes with one building blocking access to one

of the ground nodes and iv) two grounds at random positions in a randomly generated

city consisting of 15 buildings. The video of summary of the experiment can be found at

https://youtu.be/rFXolMM6CNA.

Figure 6.1: Snapshot of experiment

6.2 Experiment Prelimnaries

To perform the experiment, several aspects had to be considered and decided. Firstly, the

network topology had to be determined to be determined. Network topology defines what

is the structure of connections between vehicles. Secondly, the networking protocol had

to be chosen. Networking protocol is responsible for routing packets around the network

efficiently and organising and managing connections between different vehicles. Finally,

the experimental setup both in terms of vehicles and software is described.

6.2.1 Overview of Network Topologies

Network topology determines the structure of connections amongst nodes (vehicles). [115]

has presented a good overview of network topologies. In general, there are four different

topologies: ring, star, tree and mesh, represented in Figure 6.3
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Figure 6.2: Overview of experimental setup

Ring - In a ring network, each node is connected to two other neighbouring nodes in a ring

structure. To send data between nodes in the network, the message travels in a circle

until it reaches the destination node. One of the advantages of the ring network is

built-in redundancy for one connection failure, i.e. with one failed connection, data

can still reach all nodes albeit at a reduced throughput. In a ring network, the speed

of data transfer is slow due to the long distance between non-neighbouring nodes.

Star - In a star network, there is a single centre node connecting all others. Compared

to ring networks, the throughput is significantly higher as the path taken by data

is shorter. However, the redundancy is sacrificed by introducing a single point of

failure in the form of the central node. With central node failure, no other node can

exchange information.

Tree - Tree topology groups nodes in a hierarchical structure. Tree topology is essentially

multiple star topologies staggered on top of one another. The critical advantage of

tree topology is the ease of adding extra nodes to the network. Tree topology has a

high degree of redundancy, but it is relatively easy for a group of nodes to become

detached from the rest of the nodes in case of single node failure.

Mesh - Mesh topology is a structure where all nodes are connected. For practical reasons,

it is much more common to encounter partial mesh, where only specific connections

between nodes are allowed. The key advantage is built-in redundancy, where the

failure of a single link is unlikely to cause problems in the network. Another ad-
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vantage is the ease of adding new nodes to the system. However, redundancy is not

guaranteed. For example, it is possible for a mesh to have a single point of failure

when the only one connection between two groups of connected nodes is present.

(a) ring network topology

(b) star network topology

(c) tree network topology

(d) mesh network topology

Figure 6.3: Overview of network topologies which could be used in the experiment. The

blue filled circles represent a component of the network while black arrows are wireless

links. Each component could be either a ground or an air vehicle.

From all aforementioned topologies, mesh network appears to be most suitable for

UAV communication relay mission and this experiment. During relay mission, topology

is likely to change for two reasons, and mesh networks are more adaptable in terms of

topology changes than other types. First of all, the signal strength between nodes will
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change during mission time, causing connections to break or appear. Secondly, it might

be necessary to add or remove relays during mission time, for example for charging.

6.2.2 Overview of Mesh Networks Protocols

To allow data routing within mesh topology, the appropriate protocol had to be chosen.

Several criterions dictated the choice of a routing protocol. The most important require-

ment is compatibility with the Robot Operating System (ROS). ROS is supported by all

vehicles available for use in for this experiment. The second requirement is the ability

to send data quickly and reliably to facilitate the positional data transfer between Vicon

motion system and the UAV. This delay cannot be longer than 0.2 seconds; otherwise,

autopilot assumes data is too old and starts an emergency descent procedure. To fulfil

those requirements, three protocols BATMAN Adv. [116], IEEE 802.11s [117] and IEEE

802.15.4 ZigBee [118] were considered.

BATMAN Adv. - A better approach to mobile ad-hoc network (BATMAN) is designed

as a low computational complexity, distributed networking protocol. In this ap-

proach, each node on the network only holds information about neighbours and gen-

eral direction to the destination node, rather than full routing information. With

limited knowledge, each node can determine the sub-optimal route fast. BATMAN

is well documented and is capable of working with ROS.

802.11s - 802.11s is a standard of mesh networking developed by IEEE. It has several

distinct features compared to other approaches. First of all, each node on the network

can act as a mesh station, mesh access point or mesh portal. Mesh station is used to

connect 802.11s to other 802.11 based networks. A mesh access point can forward

and receive packets within the 802.11s network. Mesh portal has a very similar

function to access point but provides services to other non-802.11 networks such as

802.3. For data transfer, the following procedure is obeyed. Initially, path request

from the origin node to the destination node is sent out. Each node adds either its

own ID in sequence and forwards it to its neighbours, or if it knows the route to

the target node, it simply fills the rest of the table. Once the full destination node

is reached, the optimal route is determined, and a route table with confirmation of

destination is sent back to the origin. The route table is cached for some pre-specified

amount of time for future usage.

802.15.4 - 802.15.4 is a mesh implementation relying on ZigBee infrastructure. Zigbee is

a small low powered radio commonly found in UAVs’ application due to its weight

and size. In 802.15.4, one of the nodes is called the coordinator. The coordinator is

responsible for holding information about routes and make them available on request

from any of the ground nodes. With this single node holding all routing information,

routing can be performed almost optimally.
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6.2.3 Performance Comparison of Three Mesh Networks

A comparison between the performance of protocols was performed, To choose an ap-

propriate networking protocol. There does not exist a direct comparison of the three

protocols in literature to the best knowledge of the author. Thus the comparison is per-

formed between BATMAN against 802.11s based on work in [119] first. In this work, it was

shown that 802.11s had much lower throughput than BATMAN. The 802.11s standard is

using the 802.11g standard as underlying architecture, as opposed to the 802.11n standard

used in BATMAN. 802.11g has a maximum throughput of 54 Mbps while 802.11n has a

throughput of 300 Mbps. On the other hand, 802.11s showed an advantage in two areas:

reduced latency and increased data delivery reliability. Suboptimal routing methodology

in BATMAN meant that many packets were simply lost or took a very long route. It is

worth reiterating that one of the essential requirements was the reliability of data transfer

in the network, to facilitate fast transmission of positional data to the UAV. Moreover,

the high bandwidth is not that important as data size used in this experiment is small.

Thus 802.11s with its increased data delivery reliability, and reduced latency is a better

solution for this problem than BATMAN.

With 820.11s standard being better than BATMAN, it only remains to compare 802.11s

vs 802.15.4. The choice between those two standards can be made using the second

criterion, compatibility with ROS. 802.11s is compatible with ROS ’out of the box’ while

using 802.15.4 requires an external package such as [120]. Encoding and decoding data to

and from ROS would likely introduce delays in data transfer. This could result in slow

transmission of positional data, which can trigger an emergency landing procedure. With

concerns that 802.15.4 has for ROS implementation, it was decided to follow the 802.11s

standard in this experiment.

6.2.4 ROS Overview

This section will provide a brief overview of the robot operating system (ROS). ROS

is a series of open source software packages which are designed to simplify control and

communication between robots. In ROS, software is gathered into packages. A package

is a standalone entity responsible for a broader function. For example, MAVROS is a

package responsible for communication with mavlink enabled autopilots. Upon startup,

each package launches one or more nodes. One of the nodes in the network is assigned with

a master role, while others are slave nodes. The master is tasked with keeping track of a

number of nodes connected and routing data between them. Slave nodes can disconnect

and reconnect as necessary. However, once the master is initialised, it needs to stay

connected; otherwise, the connections break. Nodes are responsible for communicating

with each other to transfer various data types, such as positional data or motor commands.

To achieve that, nodes use the concept of topics and message types. Topics are responsible

to carry single message for a specific purpose, for example, topic \mavros \mocap \pose
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carries x, y, z position and x, y, z, w rotation from motion capture system. Message types

can be thought of as classes which define data structure within a given topic. For example,

in topic \mavros \mocap \pose x, y, z position and x, y, z, w rotation would be all defined

as float64 numbers. For a node to declare readiness to send data across the network, it is

said to publish to a given topic. It is often said that a given node is a publisher to a topic.

For a node to retrieve data from a given topic, it is said to subscribe to a given topic or

node is called a subscriber to a topic. Until there is a subscriber to a topic, the publishing

node will not send out any data to reduce the burden on networking. Each topic can have

multiple subscribers and publishers. Publishers and subscribers are connected directly,

with master used only initially to establish appropriate connections.

6.3 Experimental Hardware

6.3.1 Ground Vehicle

In this experiment turtlebot 3 burger UGV is utilised. The robot overview is shown in

Fig. 6.4. Turtlebot is equipped with Raspberry Pi, open CR board and LIDAR. LIDAR

is not utilised in this experiment so its description is omitted.

Raspberry Pi 3- Main computer onboard of turtlebot. It is running Ubuntu 16.04

with ROS kinetic. For wifi connectivity, the external dongle is attached. Although rasp-

berry pi has a built-in wi-fi module, its drivers are incompatible with 802.11s, so external

dongle had to be used. In turtlebot, the onboard computer is responsible for running the

turtlebot package called: turtlebot3 bringup to enable control over the robot. Raspberry

Pi is connecting the ROS node with an onboard OpenCR controller.

OpenCR- is a controller board for turtlebot. OpenCR board is responsible for trans-

lating commands from onboard computer to motors and power distribution. The board

is based on Arduino microcontroller and is using the serial port to communicate with the

raspberry pi computer. It is worth noting that LIDAR is not connected to OpenCR board,

instead, it is connected to raspberry pi directly via USB port.

6.3.2 Air Vehicle

In this experiment custom built quadcopter UAV shown in Figure 6.5 was used. It is a

standard F300 size frame with large 3 cell 5000 mAh battery for extended endurance. A

more specific component breakdown in both hardware and software is shown in Fig. 6.6.

What follows is a detailed breakdown of system components for a quadrotor UAV used

in this experiment.

Raspberry Pi - A popular microcomputer running Ubuntu 16.04 and ROS Kinetic.

The Pi on board the aircraft serves two main purposes. Firstly, it is used to connect

quadrotor with rest of the 802.11s network. Secondly, it acts as the interpreter and relay

for messages between various sources which would not be able to communicate directly.
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Figure 6.4: Overview of turtlebot 3 UGV used in this experiment with important com-

ponents highlighted

For example, MAVlink messages sent out by the Pixhawk on the serial port have to be

interpreted and made available to the ROS network so that it can be used by the controller

and read by the PC. Similarly, messages from the controller or PC need to be converted

to a suitable format to be sent to and understood by the Pixhawk. The Pi is powered via

its’ Micro USB port and communicates with the Pixhawk via a serial port, as shown in

Fig. 6.7.

MAVROS - [121] This is a ROS package which acts as a bridge between ROS and

the autopilot. It interprets messages emitted by the autopilot in the form of MAVLink

messages to ROS topics. MAVROS topics include, but are not limited to transmitter

output, position in a global and local frame, aircraft attitude and speed. One of the

critical features of MAVROS is the ability to send commands to a vehicle through a

facility called “offboard mode”. There are specific topics which allow control of attitude,
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Figure 6.5: Overview of quadrotor UAV used in this experiment with important compon-

ents highlighted

position and velocities in offboard mode namely

• /mavros/setpoint/attitude

• /mavros/setpoint/position local

• /mavros/setpoint/velocity

where velocities can be both linear and rotational. The offboard mode is fully compatible

with the PX4 autopilot stack. It can be activated by a switch which can be set up on

a transmitter using QGroundControl. With offboard mode disabled, the transmitter has

full control over the vehicle. While enabled, the offboard mode allows the vehicle to be

controlled through one of the topics mentioned above. As an added safety feature, if the

offboard mode switch is enabled and no information is provided on any of the control

topics, or if the message rate is too low, offboard mode will not engage. Such an approach

means that the pilot can always take over control if a tested algorithm does not behave

in a desired or safe manner. Two files used to launch mavros can be seen in Listings 6.1

and 6.2.

Wi-Fi Receiver - A Wi-Fi interface is used to provide connectivity between the

aircraft and other systems. The specific adapter used here is based on the rt5780 chipset

to ensure the best compatibility with the 802.11s standard.
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Figure 6.6: System overview for rotary wing aircraft.

Figure 6.7: Hardware overview of common ROS/Autopilot system components.

Pixhawk - The Pixhawk is a COTS autopilot which is popular in the small UAV

area. In terms of hardware, the Pixhawk provides a broad range of sensors including a

6 DOF IMU, pitot static airspeed sensor, GPS and barometer. On the software side,

the PX4 flight stack is used. With PX4 and the MAVlink protocol, most of the PX4

data inputs and outputs are available over the serial port. MAVROS interprets these on
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the Pi and made available to the controller. One of the key advantages of using ROS

to test experimental controllers is safety. Adding custom controllers into the Pixhawk

firmware is possible through source code modification. However, as well as requiring good

programming knowledge, this also introduces risk to the aircraft. A bug in custom code

can lead to crashing of the Pixhawk software, which would likely lead to the crashing of

the aircraft. Placing the custom code on the separate Raspberry Pi and not modifying

Pixhawk source code means there is a permanent and reliable fail-safe if an issue occurs

with the custom code. Control can be handed back to the Pixhawk with a single button

toggle on the transmitter.

Transmitter/Receiver - The transmitter and receiver provide a long-range wireless

control link between the aircraft and the pilot. The transmitter interprets manual control

inputs and sends them using radio signals to the receiver, which passes these on to the Pix-

hawk. The primary consideration for the transmitter and receiver is signal quality, which

dictates maximum operating range. Onboard the aircraft, multiple “satellite” (auxiliary)

receivers are connected to the primary receiver to improve signal quality by removing

dead zones which can arise from electrical and signal interference. As so many electrical

components are contained within a small area, interference is likely to occur. The use of

multiple receivers in different locations and orientations mitigates this risk. In the case of

loss of control link, the Pixhawk is configured to perform an emergency landing.

Actuators - these are the components which affect the physical motion of the test

platform. For a multirotor, the motors are considered as actuators.

For more details regarding the system the reader is invited to study recently publish

ROS overview [122].

6.3.3 City Model in Experimental Area

Performing an experiment involving UAV communication relay in the realistic urban en-

vironment is challenging. Regulations heavily restrict flights in an urban environment. It

could be possible to utilise military or firefighters urban training ground; however, such

an experiment would be limited in repeatability. The indoor test can solve both of those

limitations. As of the time of writing this thesis, flying indoors is mostly not sanctioned by

civil aviation authority (CAA). With the correct setup, the experiment can be repeated as

many times as necessary in the indoor area to obtain a meaningful number of experiments.

Indoor area poses one challenge of effectively emulating effects on wireless communic-

ation by the urban environment. First of all, due to the limited size of the buildings in

the scaled environment, typical buildings materials such as bricks and concrete are not

thick enough to attenuate signal significantly. This is mainly an issue considering the low

cost of wi-fi dongles used in this experiment, which are even less likely to detect small

differences in signal strength. The second challenge is making the indoor emulated urban

environment, easily adaptable and modifiable to test the performance of GP extensively.
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Listing 6.1: mavros node launch file

<launch>

<!−− vim : s e t f t=xml noet : −−>
<!−− example launch s c r i p t f o r PX4 based FCU’ s −−>

<arg name=” f c u u r l ” d e f a u l t =”/dev/ttyAMA0:921600” />

<arg name=”g c s u r l ” d e f a u l t =”” />

<arg name=”tgt sys tem ” d e f a u l t =”1” />

<arg name=”tgt component ” d e f a u l t =”1” />

<arg name=”log output ” d e f a u l t=”sc r e en ” />

<i n c lude f i l e =”$ ( f i n d mavros ) / launch /node . launch”>

<arg name=”p l u g i n l i s t s y a m l ” value=”$ ( f i n d

mavros ) / launch / p x 4 p l u g i n l i s t s . yaml” />

<arg name=”con f ig yaml ” value=”$ ( f i n d mavros ) /

launch / px4 con f i g . yaml” />

<arg name=” f c u u r l ” va lue=”$ ( arg f c u u r l ) ” />

<arg name=”g c s u r l ” va lue=”$ ( arg g c s u r l ) ” />

<arg name=”tgt sys tem ” value=”$ ( arg tgt sys tem ) ”

/>

<arg name=”tgt component ” value=”$ ( arg

tgt component ) ” />

<arg name=”log output ” value=”$ ( arg log output ) ”

/>

</inc lude>

</launch>

To solve those challenges usage of water containers as a material for buildings is pro-

posed. First water is excellent at absorbing 2.4 GHz wireless network [123] used by 802.11s

standard even with small obstruction. With such a significant change, cheap wi-fi dongles

are capable of detecting the difference quickly. Second, water containers can be easily

moved and stacked to create different city layouts as desired.

6.4 Empirical Communication Model

To accurately asses communication performance by GP, it is important to compare its per-

formance against model-based approaches. However, the communication model developed

in previous chapters could not be used in this experimental setting. The previously defined

models were intended for a much larger scale than that of an experiment. Additionally,
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Listing 6.2: mavros node launch file

<launch>

<!−− vim : s e t f t=xml noet : −−>
<!−− base node launch f i l e −−>

<arg name=” f c u u r l ” />

<arg name=”g c s u r l ” />

<arg name=”tgt sys tem ” />

<arg name=”tgt component ” />

<arg name=”p l u g i n l i s t s y a m l ” />

<arg name=”con f ig yaml ” />

<arg name=”log output ” d e f a u l t=”sc r e en ” />

<node pkg=”mavros” type=”mavros node” name=”mavros”

r equ i r ed=”true ” c l ear params=”true ” output=”$ ( arg

log output )”>

<param name=” f c u u r l ” va lue=”/dev/ttyAMA0

:921600” />

<param name=”g c s u r l ” va lue=”udp

: / / 1 0 . 0 . 0 . 1 2 1 : 1 4 5 5 1 @10 . 0 . 0 . 1 3 0 : 1 4 5 5 1 ” />

<param name=”t a r g e t s y s t e m i d ” value=”$ ( arg

tgt sys tem ) ” />

<param name=”target component id ” value=”$ ( arg

tgt component ) ” />

<!−−<param name=”use s im t ime ” value=”true ”

/>−−>
<!−−remap from=”/mavros/ v i s i o n p o s e / pose ” to=”/

vicon /miniQuad/miniQuad”/−−>

<!−− load b l a c k l i s t , c o n f i g −−>
<rosparam command=”load ” f i l e =”$ ( arg

p l u g i n l i s t s y a m l ) ” />

<rosparam command=”load ” f i l e =”$ ( arg con f i g yaml

) ” />

</node>

</launch>
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the buildings considered in those models are composed of different materials than water,

causing further inaccuracies. Thus the need for a communication model suitable for these

scenarios arises. It is worth noting that it is not the intention to claim that this is the

best possible model for the circumstances, nor that developing this model forms a sub-

stantial contribution to the area. The measurements performed here are bound to have an

error due to not using anechoic chamber and poor accuracy of measurement equipment.

However it is believed that this model is better than a general multi-purpose model in

the experimental area. To develop correct model, two experiments are performed; first to

determine the distance based model, and second to model effects of buildings on wireless

communication.

6.4.1 Distance Based Model

To compute the distance based model, the following procedure was followed:

1. quadrotor UAV was placed in one end of the room, but still within Vicon range.

Turtlebot UGV was positioned on the other end.

2. UAV was moved back and forth to and from turtlebot five times to collect signal

strength from UGV over the length of the room.

3. Turtlebot was rotated by 90 degrees. Step 2 was repeated until data was available

for all four sides of turtlebot. This step was necessary to account for possible small

directional differences antennas may have.

4. steps 2 and 3 were repeated for two different turtlebots. This step was performed

to account for small differences between dongles caused by an imperfection in the

manufacturing process.

5. The data for four sides of two turtlebots were combined into a single dataset.

6. Polynomial fit for the combined data was obtained

7. Polynomial equation can be used to predict signal strength versus distance relation-

ship.

With those steps completed, a new distance-based model suitable for our experimental

area Fig. 6.8 was created. While collected data is limited to 5 meters, it is sufficient for

our experiment as the experimental area is limited to 5m by 5m due to Vicon limitations.

The model is formulated as follows:

Wi = −46.05d0.1376 (6.1)

where Wi is signal strength between node i and the UAV and d is the distance.
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Figure 6.8: Signal strength versus distance relationship between turtlebot and quadrotor.

Due to relatively small distance RSSI reduction is small, but still noticable.

6.4.2 Effects of Buildings

To generate the effects of buildings for the empirical communication model, the following

procedure was employed:

1. The quadrotor and the turtlebot were placed with four sets of bottle waters between

them.

2. Signal strength from the turtlebot was collected over two minutes.

3. Buildings were removed one by one and step 2 was repeated after each removal, to

collect data with reducing the number of buildings.

4. Polynomial fit to the combined data was obtained.

5. Polynomial equation can be used to predict signal attenuation by a given length of

obstruction by building.

Fig. 6.9 shows the fit of a polynomial equation to the obtained data. It can be noted

that the fit is not a linear fit but a polynomial. First layers of water containers stop the

majority of the electromagnetic waves. Upon entering the next layer of water containers,

there are not as many electromagnetic waves; thus the probability any of them will meet a

water particle to be absorbed is significantly smaller. Thus the overall reduction in signal

strength will be smaller. The model can be formulated as:

Wbi = −2.204d0.2352 + 0.2642 (6.2)
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where Wbi is the strength of obstructions i and the UAV, d is the distance of the obstruc-

tions.

Figure 6.9: Distance of LoS obstruction and its effects on signal strength.

6.5 Experimental Setup

6.5.1 Experimental Overview

This section describes how each separate component from the previous section combines

together to form overall experiment.

Outline of vehicles and connection in this experiment is shown in Fig. 6.10. There are

one or two turtlebots and one quadrotor UAV connected using the 802.11s protocol in a

partial mesh topology. Additionally, one laptop is provided to act as a mesh station to

attach the mesh with the rest of the indoor network in the lab. Within the indoor network,

there are two additional desktop PCs, one to run the algorithm and other to compute

and propagate positional data from Vicon. Note the algorithm applied in experimental

settings is the same algorithm as described in details in Chapter 4. Positional data is then

transferred to the quadrotor which is running vrpn client ros ROS package. This package

is tasked with interpreting Vicon positional data into a ROS topic. The quadrotor is

running the ROS Vicon client package to reduce the time transfer of positional data to

the quadrotor.

It is also worth mentioning of some limitation caused by the driver for the rt5870

chipset. Namely, to measure the signal strength from a node at high frequency, the

node for which signal strength is measured needs to be sending data at high frequency.
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Figure 6.10: Diagram showing experiment setup. Turtlebots are only connected to quad-

rotor. Quadrotor is additionally connected to laptop. Laptop is responsible for obtaining

and propagating data from rest of the network such as vicon positional and control com-

mand data

Otherwise, the power saving feature causes the signal strength measurement rate to drop

significantly. Such a low rate is particularly a problem when the quadrotor UAV moves

relatively fast; thus misalignment between received signal strength and position occurs.

For this reason, the turtlebot needs to be continually sending data out to allow constant

update of signal strength.

6.5.2 Experimental Procedure

Each of the tests performed during the experiment followed the same procedure outlined

below

1. UAV takes off to the preprogrammed launch point.

2. UAV performs back and forth scan pattern flight to collect signal strength signal

from ground vehicles.

3. UAV returns to initial starting position while communication strength between ar-

bitrary positions in the air and fixed positions on the ground is predicted using

Gaussian Process.
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4. (where applicable) Based on GP prediction, the optimal point is found to be where

the sum of all signals from the ground vehicle is maximum. UAV moves to the

optimal point as predicted by GP

5. (where applicable) UAV stays in optimal point for 15 seconds to collect signal

strength data. This data is later used to compare performance between GP and

empirical model networking prediction.

6. (where applicable) methodology from chapter 3 is used to find optimal position using

communication model from 6.4. UAV gets to that position and again measures signal

strength for 15 seconds to collect signal strength data

7. UAV lands, data is saved, and the run concludes.

6.6 Results

Several types of experiments were performed to validate the proposed approach. The

first experiment with the single ground vehicle and UAV flying in a back and forth scan

pattern was performed. With this type of test, the initial validation of a simple case

was performed. For the second experiment, the second UGV was included, to compare

the performance of the GP and model in a simple case. For the third experiment type,

one building was added between two UGVs, to compare the performance of the GP and

model-based network prediction on the slightly more complicated scenario. Finally, two

UGVs and fully built-up, randomly generated city with the GP and model-based approach

were tested. In each of the experiment, half of the collected data points was used for the

GP prediction, while rest was used for error comparison and performance evaluation.

The number of data points collected varied slightly from experiment to experiment

and oscillated around 1800 per UGV. Computational time for GP was on average 11.4

seconds on quad-core Intel Core I7-5775 processor with Matlab with two UGVs. The

average was computed across all experiments involving more than one UGV. This time

includes both optimising the hyperparameters (described in Section 4.2.2) and generating

the grid points map (described in Section 4.2.3 ). This computational time is faster than

what is indicated in Fig. 4.12. There are two main reasons for this. Firstly, the CPU used

in the experiment has much faster per core performance compared to the one used in the

simulation. Secondly, in the simulation, only one core was used per simulation run, while

in the experiment Matlab is able to utilise multiple cores and threads for GP computation.

The distance between each grid point (dg) was set for 15 cm. The computational time

of 11.4 seconds shows that the proposed approach is sufficiently fast for a periodical near

real-time updates of predictions during the relay mission. Particularly as relay missions

are expected to last tens of minutes, 11.4 seconds for GP update is an acceptable time.

Moreover, it could be improved with implementation in a much faster language such as
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C++. Also, the GP map update can happen on a separate core of the CPU, thus not

affecting the computation of trajectory.

6.6.1 Single UGV

For the experiment of single UGV, it was placed in the centre of the room so that the

USB wifi dongle on trutlebot was at the origin (0, 0) x and y coordinates. Examining

experimental trials from Fig. 6.11, it can be seen that across the tests, maximum signal

strength prediction occurs on or close to the origin (0, 0). This is expected behaviour; signal

strength should be the strongest closest to the dongle. It can be noted that sometimes on

the edge of the scenario GP predicts high signal strength value. This is caused by random

one or two high signal strength values on the sides during the back and forth scan pattern,

which creates peak prediction further down.

Error in prediction is analysed in Fig. 6.12. The number of points in an error bin

deceases with the increase of the error bounds. This implies that the prediction error gen-

erally satisfiers a normal distribution with less points having a large error. The relatively

high error of very few data points can be explained by smoothing tendencies of GP. GP

prediction will never fully match actual signal strength close to wi-fi dongles. In GP such

a high reading is smoothed out by relatively low signal strength reading nearby. This is

one of the well-known limitations of GP and can be fixed by usage of Gaussian Process

mixture techniques such as one described in [124].

6.6.2 Two UGVs

In this section two UGVs are introduced for the first time in the experimental settings.

The primary purpose of this experiment is to compare the performance of GP against

the created model. For the sake of space saving, hereafter only GP prediction results are

presented, while raw data figures can be found in Appendix A for reference.

With this simple scenario without buildings, the performance of both communication

models can be compared. For model-based communication prediction, the optimal point

is in the middle between two ground nodes. For measurement based GP, optimal position

varies (see Fig. A.3 for details). In this case, the variation can be either due to the error

of prediction or due to a different characteristic of the wireless network at the time of the

experiment. Those two behaviours can be clearly distinguished by examining Table 6.1 for

each of the scenarios which show a 15-second average of signal strength from two ground

nodes, at both optimal positions. For scenario ID 4 and 5, GP performance is better

despite not being close to the middle. The reasons for such behaviour are unknown and

are assumed to be caused by the stochastic nature of the wireless signal. Besides here the

interest is not to explain those effect but to compare the performance of a simple model

to GP. On average, however, the GP has a slight performance advantage compared to the

model-based approaches. Fig. 6.14 shows very similar tendency as for the single UGV
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(a) Collected signal strength raw data trial 1 (b) GP prediction for trial 1

(c) Collected signal strength raw data trial 2 (d) GP prediction for trial 2

(e) Collected signal strength raw data trial 3 (f) GP prediction for trial 3

(g) Collected signal strength raw data trial 4 (h) GP prediction for trial 4

Figure 6.11: Summary of experimental trials. Each trial is represented as raw data and

GP prediction. About half data points in raw data were used for prediction
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(i) collected signal strength raw data trial 5 (j) GP prediction for trial 5

Figure 6.11: Summary of experimental trials. Each trial is represented as raw data and

GP prediction. About half data points in raw data were used for prediction s (cont.)

Figure 6.12: Error histogram between five trials. Half of the data was used for developing

the model for prediction, while the other half was used for calculating the error.

case.

6.6.3 Two UGVs and One Building

In this part, one additional building is placed close to one of the turtlebots as a line of

sight obstruction between the two. Initial comparison of GP and empirical model in a

more complex setting can be performed. From Fig. 6.15, it can be noted that predicted

position for the UAV with the empirical model and GP are very different. However based

on Table 6.2, using the two solutions are on average very similar with a slight advantage of

GP based approach. This is a promising result, implying in a realistic setting GP can have
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(a) GP prediction for trial 1

(b) GP prediction for trial 2

(c) GP prediction for trial 3

Figure 6.13: Summary of experimental trials. Each trial is represented as a sum between

two GP prediction for two UGVs.
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Table 6.1: Summary of results across multiple runs for two UAVs

scenario id signal strength for GP op-

timal position (dBm)

signal strength for model op-

timal position (dBm)

1 −91.15 −92.79

2 −86.44 −92.87

3 −95.46 −99.66

4 −96.53 −99.33

5 −94.93 −100.86

mean −92.90 −97.10

performance very similar to that of a good model. Unlike the model, the GP can achieve

this without relying on a number of correctly estimated parameters. Error histogram

(Fig. 6.16) shows correct trends that the number of points in an error bin decreases with

the the bounds of the bin.

Table 6.2: Summary of results across multiple runs for two UAVs with single building

scenario id signal strength for GP op-

timal position (dBm)

signal strength for model op-

timal position (dBm)

1 −95.90 −98.91

2 −96.74 −95.33

3 −93.4 −98.5

4 −96.08 −97.94

5 −98.06 −95.97

mean −96.04 −97.34

6.6.4 Two UGVs, Full City

Finally, a full city is introduced to the experimental setting. Nine random and one pre-

defined city were considered. Random cities consisted of the same height of buildings but

different positions and rotations for each run. Random cities were developed to show the

robustness of the proposed algorithm in different scenarios, while the pre-defined city was

designed to show performance in more realistic city-like environment. All cities layout are

shown in Fig. 6.17. The cities for each scenario alongside the results are presented below,

while raw data is shown in Appendix A.

Comparing the results from Fig. 6.17, it can be noted that best positions varied widely

between the empirical model and the GP learned model. Table 6.3 reflects this difference
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(d) GP prediction for trial 4

(e) GP prediction for trial 5

Figure 6.13: Summary of experimental trials. Each trial is represented as a sum between

two GP prediction for two UGVs.

by showing vastly different performance results across the runs. On average, GP has a

very similar performance as the empirical model approach, with a slight advantage for

GP, which is consistent with earlier results. It can be noted that unlike the other two

approaches, in a few scenarios model based is significantly better than the GP approach.

In such a complex scenario, the stochastic nature of wireless communication is particularly

prominent, meaning it is easier for GP to make an erroneous prediction. Error histogram

(Fig. 6.18) is also following same trend as the previous two sections.

6.6.5 Conclusions

In this chapter, experiment to assess the performance of Gaussian Process channel predic-

tion in an urban environment was performed. For this assessment, one UAV was utilised
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Figure 6.14: Error histogram between five trials. Half of the data was used for prediction,

while the other half was used for calculating the error.

to fly at a constant height and try to optimise communication relay between two ground

vehicles. The urban environment consisted of buildings made out of water due to its ex-

cellent signal absorption properties. Four different experiments were performed: i)with a

single ground node, ii)with two ground nodes, iii)with two ground nodes and one building,

and finally, iv) the fully simulated city. It was shown that prediction from GP is consistent

across the runs using a single ground node. The first experiment served to show general

performance and consistency of GP prediction. On the other side, the other three has

demonstrated that regardless of scenario complexity, GP based approach can achieve sim-

ilar performance as a model-based approach. Although for given indoor environments, the

performance of them are identical; for unknown environments, it is difficult to make the

experimental communication model accurately, in the first place. For example, a empirical

model created is unlikely to work correctly in any other environment due to the stochastic

nature of wireless communication. That’s why the GP approach was advocated to learn

the communication loss model in real-time. The experiment should be extended in the

future to include scenarios with mobile ground nodes both with known and unknown tra-

jectory. This would require significant improvement in computational power, for example

by using GPU. GP can benefit from parallel execution offered by the GPUs. Also, GP

should be extended to sparse GP approach to further improve computational speed in an

experimental setting. Finally, for unknown trajectory experiment, Kalman filter would

need to be implemented to predict future positions of ground nodes.
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(a) map for two ground nodes with one

building (b) GP prediction for trial 1

(c) GP prediction for trial 2 (d) GP prediction for trial 3

(e) GP prediction for trial 4 (f) GP prediction for trial 5

Figure 6.15: Summary of experimental trials. Each trial is represented as a sum between

two GP prediction for two UGVs. In each of the trials single building was used with

position depicted in 6.15a
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Figure 6.16: Error histogram between five trials. Half of the data was used for prediction,

while the other half was used for calculating the error.

Table 6.3: Summary of results across multiple runs for two UAVs with full city

scenario id signal strength for GP op-

timal position (dBm)

signal strength for model op-

timal position (dBm)

1 −101.33 −97.20

2 −94.70 −111.62

3 −91.27 −98.30

4 −99.57 −99.09

5 −98.51 −100.63

6 −97.81 −103.98

7 −95.56 −92.68

8 −92.57 −94.73

9 −95.26 −93.23

10 −101.48 −94.17

mean −97.10 −98.56
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(a) city outline for trial 1 (b) GP prediction for trial 1]

(c) city outline for trial 2 (d) GP prediction for trial 2

(e) city outline for trial 3 (f) GP prediction for trial 3

(g) city outline for trial 4 (h) GP prediction for trial 4

Figure 6.17: Summary of experimental trials. Each trail is represented as a raw data and

GP prediction. From raw data about half, data points were used for prediction
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(i) city outline for trial 5 (j) GP prediction for trial 5

(k) city outline for trial 6 (l) GP prediction for trial 6

(m) city outline for trial 7 (n) GP prediction for trial 7

(o) city outline for trial 8 (p) GP prediction for trial 8

Figure 6.17: Summary of experimental trials. Each trial is represented as a raw data and

GP prediction. From raw data about half, data points were used for prediction (cont.)
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(q) city outline for trial 9 (r) GP prediction for trial 9

(s) city outline for trial 10 (t) GP prediction for trial 10

Figure 6.17: Summary of experimental trials. Each trail is represented as a raw data and

GP prediction. From raw data about half, data points were used for prediction (cont.)

Figure 6.18: Error histogram between five trials. Half of the data was used for prediction,

while the other half was used for calculating the error.
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Chapter 7

Conclusion and Future Work

7.1 Summary

This thesis explored the trajectory planning and positioning of Unmanned Aerial Vehicles

(UAVs) communication relays in urban environments in three different scenarios with

varying knowledge levels about the environment. Chapter 3 analysed scenario where

wireless communication between air and ground can be fully predicted using a model with

relatively good knowledge about the urban environment. Chapter 4 showed approach

where wireless communication strength can be predicted based on one of the four pre-

defined urban environments types. Chapter 5 explored a scenario where wireless signal

strength between air and ground is initially unknown and needs to be fully learned. A

final experiment to confirm the approach from chapter 5 in experimental settings was also

presented in Chapter 6.

7.1.1 Scenario I: Known Urban Environments

Chapter 3 discussed a model-based approach for wireless communication strength predic-

tion with the assumption of good knowledge about the effects of the urban environment.

This chapter explored two aspects: improving the trajectory planning and positioning of

UAVs relays and enhancing the method of communication improvement amongst ground

nodes.

In this work, the model-based approach for wireless communication strength prediction

was combined with a non-linear model predictive control (NMPC) based trajectory planner

for path planning and particle swarm optimisation (PSO) for positioning. For the first

time, these techniques were used in an urban environment.

A new communication metric, modified global message connectivity (mGMC), was

also proposed to help with communication improvement amongst ground nodes. Unlike

approaches from the past which focused on either single weakest connection or sum of all

connection, an mGMC approach focused on a certain number of connections which are

weaker than the acceptable threshold. With a sum of all connections, UAVs could improve
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connections which already have sufficiently high bandwidth good, thus not providing real

benefit to the group of ground nodes. On the other hand, focusing on only weakest con-

nection could result in UAV focusing on single weak connection, rather than improving a

group of better, but still not that good connections, resulting in an overall worse improve-

ment to the group. MGMC addresses those issues by ignoring connections of sufficient

quality, while considering improvements to all weak connections at the same time. Addi-

tionally mGMC in the future, could be used to determine a sufficient number of UAVs for

relay mission.

7.1.2 Scenario II: Unknown Urban Environments

The model used in Chapter 4 still required that an urban environment fits into one of

the predefined types. This limited implementation of UAV relay in a realistic urban

environment. The work in Chapter 5 tried to fully predict the communication model by

using a machine learning technique, a Gaussian Process (GP).

The GP is a non-parametric machine learning technique which is useful for regression

when the input is a random variable. With the GP technique, signal strength between

the air and the ground could be fully predicted as a continuous function of a position

of the UAV. However, the mobility of the ground nodes had to be sacrificed due to the

high computational and data collection time demands. It was shown that the GP does

not reach as good a performance as model-based networking. However, it was better

than flying with the wrong model or no communication model at all. With GP approach

it was possible for the UAV to perform relay missions with no knowledge about urban

environments. In real life, UAV relay missions can often be performed at last minute notice,

and good knowledge about mission environment may not be available. GP approach can

mitigate that thus it is possible for UAVs relays to perform missions where previously not

possible. Implementation and analysis of the GP in the urban environment was the main

contribution of this chapter.

7.1.3 Scenario III: Partially Known Urban Environments

Fully predictable communication strength required a good knowledge of the urban environ-

ment, which is usually not the case. In Chapter 4, the level of the knowledge requirement

was reduced by using a probabilistic-based approach with a learning-based approach.

The parameters of the probabilistic model were different depending on one of the four

urban environment types. Depending on the parameters, the prediction of the signal

strength between arbitrary positions in the air and on the ground changed. The neural

network (NN) learning based approach was used to predict one of the four of urban en-

vironment types based on the signal strength received by the UAV and angle between

air and ground vehicles. Neural Network was adopted to reduce data volume and com-

putational time required. By combining this model with the NMPC controller, it was
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shown that performance could quickly reach a similar level to model-based wireless sig-

nal strength prediction. It is worth noting that, this approach can achieve similar level

performance with significantly reduced required knowledge of the urban environment and

reduced computational cost. Both advantages mean UAV relay missions can be performed

in more environments than ever before. Moreover, this is a completely novel and unique

approach to predicting communication strength.

7.1.4 Experiment in Unknown Simulated Urban Environment

To prove the practicality of the GP approach proposed in Chapter 5, the performance of

the experiment was reported in Chapter 6.

In this experiment, a quadrotor UAV was acting as a communication relay between

two stationary ground nodes in an urban environment. The UAV would first fly in a back

and forth pattern and collect RSSI signal to create a communication map. Based on this

map, an optimal UAV position was chosen where the sum of RSSI was the highest. To

simulate the city, a set of water containers was used as water is a great 2.4 GHz wireless

signal absorber. For the need of the chapter, a new communication model was created to

compare against the GP approach. It was shown that position created based on the GP

communication map is as good or better than the one based on the model. it was also

shown that the GP communication map could be created relatively fast, in about 11.4

seconds. With such a small computational time the practicality of the GP based approach

is proven.

This experiment was the first attempt to simulate an urban environment realistically

in the field with stationary ground nodes.

7.2 Future Work

Three challenges should be addressed in the future: i) computational time and quality

of prediction with the GP, ii) the efficiency of the NMPC based path planner, iii) and

improving the prediction of Neural Network.

The GP is a promising technique to solve this problem, however, it requires high

computational time and sometimes outputs a low quality of prediction.

Computational time is dependant on the number of collected data points, i.e. the more

data points collected, the slower the computation. There exist solutions which should be

explored to address this problem. For example, sparse GP approach attempts to group

points with similar values into a single entry to GP, thus reducing the computational load

significantly [125].

Another issue stems from how the GP fits the data. Sudden changes in predictions are

treated as errors and are either over or underestimated. To solve this issue, a GP mixtures

approach could be used [126], where multiple GPs are computed at the same time and

combined via separate covariance functions.
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The performance of NMPC based path planners could also be improved. The NMPC

based path planner only plans paths within a certain time horizon, which allows it to be

more efficient. This often sacrifices optimality of the proposed path, due to insufficient

horizon length. Approaches like a rapidly-exploring random tree (RRT) and RRT* also

plan within a certain horizon time; however, they can plan paths with much longer time

horizon with the same computational time. RRT approaches should be tested to determine

whether they offer better performance.

Also, the NN has shown about 70 % accuracy in prediction of the urban environment

type. Deep learning approaches (particularly long short-term memory (LSTMs) networks

[127]) can offer much higher accuracy. LSTMs are particularly suitable to this problem

as it is a time series problem, where inputs at the very beginning can hold significant

information about prediction and should be remembered for future usage.

Finally, mobile grounds with the unknown urban environment should be considered.

This would allow full measurement-based approach in a dynamic urban environment. This

could be achieved with extending of GP to utilise more computational power or using other

machine learning technique.
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Appendix A

A.1 Raw Data for Two UGV Experiment

(a) Raw experimental data for UGV 1 and trial 1

(b) Raw experimental data for UGV 1 and trial 2

Figure A.1: Summary of raw experimental data for UGV 2
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A. Appendix

(c) Raw experimental data for UGV 1 and trial 3

(d) Raw experimental data for UGV 1 and trial 4

(e) Raw experimental data for UGV 1 and trial 5

Figure A.1: Summary of raw experimental data for UGV 1
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(a) Raw experimental data for UGV 2 and trial 1

(b) Raw experimental data for UGV 2 and trial 2

(c) Raw experimental data for UGV 2 and trial 3

Figure A.2: Summary of raw experimental data for UGV 2
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(d) Raw experimental data for UGV 2 and trial 4

(e) Raw experimental data for UGV 2 and trial 5

Figure A.2: Summary of raw experimental data for UGV 2

155



A. Appendix

A.2 Raw Data for Two UGV One Building Experiment

(a) Raw experimental data for UGV 2 and trial 1

(b) Raw experimental data for UGV 1 and trial 2

Figure A.3: Summary of raw experimental data for UGV 1 with one building
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(c) Raw experimental data for UGV 1 and trial 3

(d) Raw experimental data for UGV 1 and trial 4

(e) Raw experimental data for UGV 1 and trial 5

Figure A.3: Summary of raw experimental data for UGV 1 with one building
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(a) Raw experimental data for UGV 2 and trial 1

(b) Raw experimental data for UGV 2 and trial 2

(c) Raw experimental data for UGV 2 and trial 3

Figure A.4: Summary of raw experimental data for UGV 2 with one building
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(d) Raw experimental data for UGV 2 and trial 4

(e) Raw experimental data for UGV 2 and trial 5

Figure A.4: Summary of raw experimental data for UGV 2 with one building
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A.3 Raw Data for Two UGV Full City Experiment

(a) Raw experimental data for UGV 1 and trial 1

(b) Raw experimental data for UGV 1 and trial 2

(c) Raw experimental data for UGV 1 and trial 3

Figure A.5: Summary of raw experimental data for UGV 1 with full city
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(d) Raw experimental data for UGV 1 and trial 4

(e) Raw experimental data for UGV 1 and trial 5

(f) Raw experimental data for UGV 1 and trial 6

Figure A.5: Summary of raw experimental data for UGV 1 with full city
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(g) Raw experimental data for UGV 2 and trial 7

(h) Raw experimental data for UGV 1 and trial 8

(i) Raw experimental data for UGV 1 and trial 9

Figure A.5: Summary of raw experimental data for UGV 1 with full city
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(j) Raw experimental data for UGV 1 and trial 10

Figure A.5: Summary of raw experimental data for UGV 1 with full city
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(a) Raw experimental data for UGV 2 and trial 1

(b) Raw experimental data for UGV 2 and trial 2

(c) Raw experimental data for UGV 2 and trial 3

Figure A.6: Summary of raw experimental data for UGV 2 with full city
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(d) Raw experimental data for UGV 2 and trial 4

(e) Raw experimental data for UGV 2 and trial 5

(f) Raw experimental data for UGV 2 and trial 6

Figure A.6: Summary of raw experimental data for UGV 2 with full city
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(g) Raw experimental data for UGV 2 and trial 7

(h) Raw experimental data for UGV 2 and trial 8

(i) Raw experimental data for UGV 2 and trial 9

Figure A.6: Summary of raw experimental data for UGV 2 with full city
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(j) Raw experimental data for UGV 1 and trial 10

Figure A.6: Summary of raw experimental data for UGV 2 with full city
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