968 research outputs found

    An OpenEaagles Framework Extension for Hardware-in-the-Loop Swarm Simulation

    Get PDF
    Unmanned Aerial Vehicle (UAV) swarm applications, algorithms, and control strategies have experienced steady growth and development over the past 15 years. Yet, to this day, most swarm development efforts have gone untested and thus unimplemented. Cost of aircraft systems, government imposed airspace restrictions, and the lack of adequate modeling and simulation tools are some of the major inhibitors to successful swarm implementation. This thesis examines how the OpenEaagles simulation framework can be extended to bridge this gap. This research aims to utilize Hardware-in-the-Loop (HIL) simulation to provide developers a functional capability to develop and test the behaviors of scalable and modular swarms of autonomous UAVs in simulation with high confidence that these behaviors will prop- agate to real/live ight tests. Demonstrations show the framework enhances and simplifies swarm development through encapsulation, possesses high modularity, pro- vides realistic aircraft modeling, and is capable of simultaneously accommodating four hardware-piloted swarming UAVs during HIL simulation or 64 swarming UAVs during pure simulation

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    Get PDF
    Current military affairs indicate that future military warfare requires safer, more accurate, and more fault-tolerant weapons systems. Unmanned Aerial Vehicles (UAV) are one answer to this military requirement. Technology in the UAV arena is moving toward smaller and more capable systems and is becoming available at a fraction of the cost. Exploiting the advances in these miniaturized flying vehicles is the aim of this research. How are the UAVs employed for the future military? The concept of operations for a micro-UAV system is adopted from nature from the appearance of flocking birds, movement of a school of fish, and swarming bees among others. All of these natural phenomena have a common thread: a global action resulting from many small individual actions. This emergent behavior is the aggregate result of many simple interactions occurring within the flock, school, or swarm. In a similar manner, a more robust weapon system uses emergent behavior resulting in no weakest link because the system itself is made up of simple interactions by hundreds or thousands of homogeneous UAVs. The global system in this research is referred to as a swarm. Losing one or a few individual unmanned vehicles would not dramatically impact the swarms ability to complete the mission or cause harm to any human operator. Swarming reconnaissance is the emergent behavior of swarms to perform a reconnaissance operation. An in-depth look at the design of a reconnaissance swarming mission is studied. A taxonomy of passive reconnaissance applications is developed to address feasibility. Evaluation of algorithms for swarm movement, communication, sensor input/analysis, targeting, and network topology result in priorities of each model\u27s desired features. After a thorough selection process of available implementations, a subset of those models are integrated and built upon resulting in a simulation that explores the innovations of swarming UAVs

    GUARDIANS final report part 1 (draft): a robot swarm assisting a human fire fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire fighters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist re ghters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting re ghters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus the robot swarm is able to provide guidance information to the humans. Together with the fire fighters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Zero Touch Coordinated UAV Network Formation for 360{\deg} Views of a Moving Ground Target in Remote VR Applications

    Full text link
    Unmanned aerial vehicles (UAVs) with on-board cameras are widely used for remote surveillance and video capturing applications. In remote virtual reality (VR) applications, multiple UAVs can be used to capture different partially overlapping angles of the ground target, which can be stitched together to provide 360{\deg} views. This requires coordinated formation of UAVs that is adaptive to movements of the ground target. In this paper, we propose a joint UAV formation and tracking framework to capture 360{\deg} angles of the target. The proposed framework uses a zero touch approach for automated and adaptive reconfiguration of multiple UAVs in a coordinated manner without the need for human intervention. This is suited to both military and civilian applications. Simulation results demonstrate the convergence and configuration of the UAVs with arbitrary initial locations and orientations. The performance has been tested for various number of UAVs and different mobility patterns of the ground target

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    UAV based distributed automatic target detection algorithm under realistic simulated environmental effects

    Get PDF
    Over the past several years, the military has grown increasingly reliant upon the use of unattended aerial vehicles (UAVs) for surveillance missions. There is an increasing trend towards fielding swarms of UAVs operating as large-scale sensor networks in the air [1]. Such systems tend to be used primarily for the purpose of acquiring sensory data with the goal of automatic detection, identification, and tracking objects of interest. These trends have been paralleled by advances in both distributed detection [2], image/signal processing and data fusion techniques [3]. Furthermore, swarmed UAV systems must operate under severe constraints on environmental conditions and sensor limitations. In this work, we investigate the effects of environmental conditions on target detection performance in a UAV network. We assume that each UAV is equipped with an optical camera, and use a realistic computer simulation to generate synthetic images. The automatic target detector is a cascade of classifiers based on Haar-like features. The detector\u27s performance is evaluated using simulated images that closely mimic data acquired in a UAV network under realistic camera and environmental conditions. In order to improve automatic target detection (ATD) performance in a swarmed UAV system, we propose and design several fusion techniques both at the image and score level and analyze both the case of a single observation and the case of multiple observations of the same target

    Virtual environment UAV swarm management using GPU calculated digital pheromones

    Get PDF
    Our future military force will be complex: a highly integrated mix of manned and unmanned units. These unmanned units could function individually or within a swarm. The readiness of future warfighters to work alongside and utilize these new forces depends on the creation of usable interfaces and training simulators. The difficulty is that current unmanned aerial vehicle (UAV) control interfaces require too much operator attention and common swarm control methods require expensive computational power. This dissertation discusses how to improve upon current user interfaces and how to improve the performance of a common swarm control method, the digital pheromone field. This method uses digital pheromones to bias the movements of individual units within a swarm toward areas that are attractive and away from areas that are dangerous or unattractive. A more efficient method for performing pheromone field calculations is introduced, one that harnesses the power of the GPU (graphics processing unit) in today\u27s graphics cards by reshaping the ADAPTIV swarm control algorithm into a form acceptable to the GPU\u27s pipeline. The GPU ADAPTIV implementation is tested in scenarios that involve up to 50,000 virtual UAVs. When compared to its counterpart CPU implementation, the GPU version performed over 30 times faster than the CPU version. This gain translates directly into lower costs for training the future warfighter today and fielding the swarms of tomorrow. Finally, this dissertation presents a vision for combining these new interface ideas and performance enhancements into an effective swarm control interface and training simulator

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation
    • …
    corecore