32,096 research outputs found

    Swarm robot social potential fields with internal agent dynamics

    Get PDF
    Swarm robotics is a new and promising approach to the design and control of multiagent robotic systems. In this paper we use a model for a second order non-linear system of self-propelled agents interacting via pair-wise attractive and repulsive potentials. We propose a new potential field method using dynamic agent internal states to successfully solve a reactive path-planning problem. The path planning problem cannot be solved using static potential fields due to local minima formation, but can be solved by allowing the agent internal states to manipulate the potential field. Simulation results demonstrate the ability of a single agent to perform reactive problem solving effectively, as well as the ability of a swarm of agents to perform problem solving using the collective behaviour of the entire swarm

    How mobility increases mobile cloud computing processing capacity

    Get PDF
    In this paper, we address a important and still unanswered question in mobile cloud computing ``how mobility impacts the distributed processing power of network and computing clouds formed from mobile ad-hoc networks ?''. Indeed, mobile ad-hoc networks potentially offer an aggregate cloud of resources delivering collectively processing, storage and networking resources. We demonstrate that the mobility can increase significantly the performances of distributed computation in such networks. In particular, we show that this improvement can be achieved more efficiently with mobility patterns that entail a dynamic small-world network structure on the mobile cloud. Moreover, we show that the small-world structure can improve significantly the resilience of mobile cloud computing services

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    A System Complexity Approach to Swarm Electrification

    Get PDF
    The study investigates a bottom-up concept for microgrids. Financial analysis is performed through a business model approach to test for viability when replacing a researched energy expenditure baseline in Bangladesh. A literature review compares the approach to current trends in microgrids. A case study of Bangladesh illustrates the potential for building on the existing infrastructure base of solar home systems. Opportunities are identified to improve access to reliable energy through a microgrid approach that aims at community-driven economic and infrastructure development by building on network effects generated through the inclusion of localized economies with strong producer-consumer linkages embedded within larger systems of trade and exchange. The analysed approach involves the linking together of individual stand-alone energy systems to form a microgrid that can eventually interconnect with present legacy infrastructure consisting of national or regional grids. The approach is likened to the concept of swarm intelligence, where each individual node brings independent input to create a conglomerate of value greater than the sum of its parts

    Swarm potential fields with internal agent states and collective behaviour

    Get PDF
    Swarm robotics is a new and promising approach to the design and control of multi-agent robotic systems. In this paper we use a model for a system of self-propelled agents interacting via pairwise attractive and repulsive potentials. We develop a new potential field method using dynamic agent internal states, allowing the swarm agents' internal states to manipulate the potential field. This new method successfully solves a reactive path planning problem that cannot be solved using static potential fields due to local minima formation. Simulation results demonstrate the ability of a swarm of agents that use the model to perform reactive problem solving effectively using the collective behaviour of the entire swarm in a way that matches studies based on real animal group behaviour
    • 

    corecore