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Abstract—In this paper, we address a important and still
unanswered question in mobile cloud computing “how mobility
impacts the distributed processing power of network and com-
puting clouds formed from mobile ad-hoc networks ?”. Indeed,
mobile ad-hoc networks potentially offer an aggregate cloud of
resources delivering collectively processing, storage and network-
ing resources. We demonstrate that the mobility can increase
significantly the performances of distributed computation in such
networks. In particular, we show that this improvement can be
achieved more efficiently with mobility patterns that entail a
dynamic small-world network structure on the mobile cloud.
Moreover, we show that the small-world structure can improve
significantly the resilience of mobile cloud computing services.

Index Terms—Mobile cloud computing, mobility, quality of
service

I. INTRODUCTION

“Cloud computing” has recently appeared as a buzz word in
many medias in which the term refers both to the technology
advancement and also to the business model behind. The idea
is not new but roots from already developed technologies
such as distributed computing, autonomic computing, hard-
ware virtualization and web services. It’s the maturation and
convergence of all these technologies that makes cloud com-
puting viable today. By virtualizing the aggregated computing
resources in order to offer to users the on-demand utility
(e.g. computing, storage, software as service) in a pay-as-
you-go fashion, much like the power distribution grid system,
cloud computing appears as a main actor of information
industry today. This can be seen through the explosion of cloud
computing services deployed the Internet in recent years.

Besides, with the advances of electronic technologies, mo-
bile wireless devices have gradually become more and more
powerful in terms of processing, storage and communication
capacity. This potentially leads to the emergence of mo-
bile ad-hoc networks that deliver, without any infrastructure,
computing resource complementary to the existing infrastruc-
tured networks. These “mobile clouds”, which leverage on
opportunistic contacts between users, can potentially deliver
free communication, storage and processing services shared
between users according to peer to peer resource sharing
policies.

Although the application perspective sounds interesting, the
underlying technology challenges are not negligible due to
the difficulties raised by dynamic networks. The first obstacle

comes from the mobile nature of such network and raises
the question of “how the mobility impacts the distributed
processing performances of the mobile clouds?”. Indeed, the
unstable network topology makes that continuous end-to-end
communication unguaranteed and hence the service delivery
may be disrupted. Indeed, in the context of spontaneous and
infrastructureless networks, a kind of delay tolerant network,
nodes must rely on intermittent contacts leading to use the
store-carry-and-forward communication paradigm for inter-
node communication. Therefore, if the role of mobility on
communication performances such as end to end delay and
bandwidth has been already studied, the impact mobility
schemes on the global processing power delivered by a mobile
network cloud has not been studied yet.

In this paper, we address this issue and show that the
mobility can enhance significantly the computing capacity
of network clouds composed of mobile nodes. Considering
a dynamic network as an aggregate distributed computing
resource, we use Particle Swarm Optimization (PSO) - an
optimization method based on distributed autonomous agents-
coupled with a generic mobility model to assess the impact
of node mobility on distributed processing. The questions on
service resilience against network churn are also discussed.

The rest of the paper is structured as follows. First, Section
II discusses the state of the art of mobile cloud computing. In
Section III, we study the impact of mobility on the quality
of mobile cloud computing services. Section III studies of
the impact of dynamic network structures on mobile cloud
computing. In Section V, the question of service resilience is
discussed. Finally, Section VI concludes the paper.

II. STATE OF THE ART

Mobile cloud computing is still a young field and there
is still discussion on its definition. In its infancy, mobile
cloud computing has been considered as a derived branch of
cloud computing with two schools of thought (see [7] for a
survey). The first refers to performing computing activities
(data storage and processing) in infrastructured cloud and let
mobile devices be simple terminals to access to service. This
centralized approach has the advantage that mobile devices
don’t need to have a powerful computing capacity but the
drawback is that users depend strongly on the infrastructure
network and on its performances.



The second school of thought defines mobile cloud com-
puting as performing computing activities on mobile platform.
Therefore a mobile cloud network is an infrastructureless ex-
tension of the traditional infrastructure based cloud networks.
Mobile devices are clients of service but are also part of the
cloud, providing hardware and software resources. The benefit
of this distributed approach is the omnipresence and the speed
of service accessibility, the support of mobility and locality, the
freedom of deployment and use of new services as well as the
reduced hardware maintenance costs. Although the approach
is promising, its main challenge resides in the dynamic of
network which poses difficulties in communication and hence
service access. In this paper, we focus on this definition of
mobile cloud computing.

To the best of our knowledge, very few contributions have
been proposed for mobile cloud computing. Hyrax [2] is a
mobile-cloud infrastructure that enables smart-phone applica-
tions that are distributed both in terms of data and computation.
Hyrax allows applications to conveniently use data and execute
computing jobs on smart-phone networks and heterogeneous
networks of phones and servers. Its implementation is based
on Hadoop and tested on Android platform. But since An-
droid doesn’t support ad-hoc network yet, the phones have to
communicate through a WIFI central router.

Satyanarayanan et al. [4] present the cloudlet concept.
In this approach a mobile client is seen as a thin client
with respect to a service which is customized over a virtual
machine in the wireless LAN. Hence the cloudlet is a proxy
representation of a real service enhanced for the mobile device.
The main motivation is how bandwidth limits and latency over
wireless networks impacts over users services.

III. IMPACT OF MOBILITY ON MOBILE CLOUD
COMPUTING

In this section, we evaluate the impact of mobility on mobile
cloud computing. Let us consider that a mobile cloud network
created by several human portable devices offers a distributed
processing service such as optimizing a function via a Particle
Swarm Optimization (PSO) algorithm. According to PSO,
each node in the network has a local solution to the optimiza-
tion problem. Through intermittent contacts, mobile nodes
learn others’ solution to improve their local optimum and
hence accelerate the convergence towards the global optimum.
For the sake of simplicity, we make the following assumptions:

1) Each node in the network knows in advance the goal
function and its solution.

2) An external system (e.g. WIFI hot-spots) is responsible
for results retrieval from mobile nodes.

3) The service is considered delivered when the global
optimum reaches a goodness predefined by user.

In practice, the goal function as well as its solution is usually
unknown in advance and therefore we have to rely on a
diffusion technique to disseminate the information of the goal
function into the network. The obtained global optimum and
stopping condition in that case will depend on the current
solutions found by nodes (e.g. a node stops the computation
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Fig. 1. STEPS markovian mobility model

when its local solution no longer changes for a while). In this
theoretical work, we focus only on the impact of mobility on
computing delay and therefore the previous assumptions seem
reasonable.

A. Mobility model

In order to reproduce at the simulation level realistic human
mobility patterns, we use the STEPS mobility model [3]. As
we have shown in a previous work, this flexible parametric
model can express a large spectrum of mobility patterns: from
highly nomadic ones to localized ones. Therefore, STPES
makes it possible to evaluate the impact of different mo-
bility contexts on mobile cloud computing. In STEPS, the
network area is modeled as a torus divided in several zones.
The model implements the notion of preferential attachment
usually observed in human mobility in which each node is
attached to one or several preferential zones. Inside zones,
mobile nodes move according to the Random Waypoint model.
The movement of nodes between zones follows a Markov
chain of which the transition probability is given by a power
law distribution. This distribution is driven by a parameter of
the STEPS model which allows the nodes nomadism to be
enforced or reduced (i.e. the probability that a mode moving
outside his preferential zone has to return to that zone).
Figure 1 illustrates the underlying Markov chain of STEPS
with 4 zones.

B. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm [1] is an
optimization method based on swarm intelligence - a sub-field
of artificial intelligence which studies the collective intelligent
behavior emerging from the interactions between individu-
als of a swarm of autonomous agents. Swarm intelligence
considers intelligence as the combination of the knowledge
acquired by individuals through experiences in the past and
the knowledge acquired from the others through social in-
teractions. In PSO algorithm, a set of candidate solutions
called particles move around in the search space according
to a simple mathematical formula over the particle’s position
and velocity. Each particle’s movement is influenced by its
local best known position and also by the global best known
position found by other particles. The swarm is expected to
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Fig. 2. Typical static neighborhood topologies vs dynamic neighborhood
topology generated by STEPS

move collectively towards the optimal solution. Besides, this
method is able to solve a multimodal optimization problem.

In its simplest form, let ~xi be the multidimensional vector
of the particle i position, the position of the particle is updated
according to the formula

~xi(t+ 1) = ~xi(t) + ~vi(t) (1)

where ~xi(t) is the position of particle i at time t.
The velocity of the particle is updated according to the

formula

~vi(t) = ~vi(t− 1) + φ1 [~pi − ~xi(t− 1)] + φ2 [~pg − ~xi(t− 1)]
(2)

where
• φ1, φ2 are uniform random variables taking values in

[0, 1]. These variable represent the relativity between the
effect of individual experience and of social influence.

• ~pl denotes the best known position of particle i (“l” for
local).

• ~pg denotes the best known position of i’s neighbors (“g”
for global)

This formula entails wider and wider oscillations of particles
in the search space. One solution to this issue is based on
velocity damping, that is, if vid > Vmax then vid = Vmax

else if vid < −Vmax then vid = −Vmax where vid is the
dimension d of ~vi. In consequence, the particles move only in
a restricted search space.

In PSO, individual can be connected to one another ac-
cording to a great number of neighborhood topologies (Figure
2 illustrates the most used schemes). Each neighborhood
topology, traditionally considered as static conversely to our
analysis, results in different behaviors and performances for
the PSO algorithm.

In this work, since node moves, the neighborhood topology
is no longer static but dynamic. Indeed, when the mobility
degree is low, links between nodes is stable and the network
is nearly static. On the contrary, when the mobility is high,
links change rapidly over time and so does the neighborhood
topology. Therefore the goal of this experiment is to evaluate
the effect of mobility on the convergence delay of the algo-
rithm.

C. Simulation Results

We implemented the mobility model and the PSO algorithm
on MATLAB. At the beginning of each simulation, 100 nodes
are uniformly distributed over the network area which is

Number of nodes/particles 100
Number of zones 10× 10

Network size 100× 100 m2

Radio range 10 m
Node speed 3− 5 km/h

De Jong function Sphere
Number of dimensions 2

Stopping condition error <= 10−6

TABLE I
SIMULATION SETTINGS

divided in 10× 10 zones representing preferential attachment
according to STEPS model. The movement of node between
zones is driven by the locality degree parameter (α) of STEPS
model. We vary α between 0 and 8 to obtain a large spectrum
of mobility patterns. When α = 0 nodes are highly nomadic,
moving from a zone to one another in a random manner that
makes the network highly dynamic. On the contrary, when
α = 8, nodes are highly localized (i.e.sedentary) and therefore
there are less information exchange between distant zones.

The PSO algorithm is implemented in every mobile nodes
so that each node contains 1 particle. The position of particle
is randomly initialized, taking values in range [xmax,−xmax].
Particle’s position is updated at each contact with another node
according to the formula 2.

As goal function, we used the Sphere function from the
De-Jong test suite. This suite consists of goal functions with
different difficulties to measure the performances of optimiz-
ers. The Sphere function is the first and easiest function of the
suite. It is symmetric, unimodal and is often used to measure
the general efficiency of optimizers. That is

f(~x) =
D∑
i=1

xi
2

where D is the number of elements of ~x. The Sphere function
has a global optimum f(~x) = 0 at ~x = (0, 0, 0, . . . , 0).

We used root-mean-square error to measure the goodness of
the solution. The algorithm stops when the error is smaller than
a predefined threshold. The simulation settings are summarized
in Table I

Figure 3 shows the optimization convergence delay accord-
ing to nods’ locality degree. These results is are averaged
over 10 simulation runs. On the figure, we can see that the
more mobile nodes are, the smaller convergence delay is. This
result shows that nodes mobility can increase dramatically the
processing capacity of mobile cloud networks.

IV. IMPACT OF NETWORK STRUCTURE ON MOBILE
CLOUD COMPUTING

In this section, we evaluate the processing capacity of
mobile cloud computing under various dynamic network
structures. With the same approach as introduced in Section
III, we measure the convergence delay of a PSO algorithm
implemented on a mobile cloud network and show that this
delay can be significantly minimized if the network has a
dynamic small-world structure.
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Fig. 3. Impact of mobility on the convergence delay of PSO algorithm

The small-world phenomenon introduced by Watts and Stro-
gatz [6] refers to static graphs with high clustering coefficient
and low shortest path length. Through a process which consist
in rewiring randomly edges of a graph, by varying the rewiring
ratio, the authors showed that for an interval a rewiring ration
the resulting static graph, exhibit a small world structure which
cumulate short path observed in random graphs with high
clustering coefficient intrinsic to regular lattices. In a previous
work [3], we have shown that this small world behavior can
be observed in dynamic graphs too. We have shown that in
a dynamic networks, the analog of the rewiring process in
static graph is done from varying the ratio and intensity of
nomadic nodes. Moreover, we have shown that the STEPS
model is capable of exhibiting this small-world phenomenon
in dynamic networks.

Indeed, starting from the same network configuration as
in Section III, we divide mobile nodes in 2 categories. The
first consists in highly localized nodes which stay almost all
their time in their preferential zones. The second category
consists in highly nomadic modes which move constantly from
zone to zone. At the beginning of simulation, the nodes are
distributed over the network area so that nodes in different
preferential zones cannot communicate each other (Figure 4
shows the node spatial distribution). We vary the fraction of
mobile node pm from 0 to 1. When pm equals to 0, the
network consists in disconnected islands with only intra-zone
communications that entails a regular structure similar to the
one in static graphs. On the contrary, when pm equals to
1, the inter-zones movement of highly mobile nodes makes
that the network topology changes constantly which entails a
random network structure. Figure 5 shows the evolution of the
clustering coefficient and shortest path length according to the
fraction of highly mobile nodes.

We processed the PSO algorithm over all these network
structures and then measured the resulting convergence delay.
Figure 6 shows the results averaged over 10 simulations. These
simulation results show that the convergence delay of PSO
decreases rapidly down to an asymptotic part started when the
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network exhibits a small world structure. This original result is
significant because the small-world structure, which as shown
in this paper improves distributed processing, was shown to
emerge naturally in the great majority real dynamic networks
[5].

V. RESILIENCE OF MOBILE CLOUD COMPUTING SERVICE

Nowadays, mobile devices still have limited energy capacity
and communication as well processing are two important
sources of energy waste. Therefore nodes’ churn is intrinsic
to dynamic netwoks clouds. Nodes running out of battery
cannot contribute to distributed processing anymore and in
consequence, mobile cloud networks may suffer impredictible
nodes failures. Besides, mobile cloud networks may be the
target of attacks, for instance DDOS, which can potentialy
make unavailable parts of the network. In this section, we
evaluate, under various mobility contexts, the resilience of
distributed services deployed on such networks.

First, we assume that the evolution of number of inactive
nodes (i.e. attacked or out of battery) follows a Poisson
process. Therefore, the number of inactive nodes during a time
interval τ is distributed according to a Poisson distribution

P [(N(t+ τ)−N(t)) = k] =
exp−λτ(λτ)k

k!

where k = 0, 1, 2, . . . and λ is the arrival rate of inactive
nodes.

With the same simulation settings as introduced in Sec-
tion IV, we perform simulations with various values of λ
(1/15, 1/12.5, 1/10, 1/5) and under various mobility contexts
(i.e. by varying the fraction of mobile nodes). In these simula-
tions, we stop the PSO algorithm when 95 % nodes reach the
optimum. If this threshold is not reached before all the nodes
become inactive, as there is no recovery possible in this case,
the service will never be delivered and hence we assign the
simulation duration time to the convergence delay.

Figure 7 shows the results averaged over 20 simulations.
These simulations show that with dynamic small-world net-
works (Figure 7(b) and 7(c)), the distributed service resists
much better to departed nodes compared highly localized
network (Figure 7(a)) and offers approximately the same
resilience level than random networks (Figure 7(d)). These
results suggest that a small-world structure not only contribute
to enhancing distributed performances but also offers good
resilience properties.

VI. CONCLUSION

In this paper we not only show that nodes’ mobility enhance
the processing capacity of dynamic network cloud but we
also showed how mobility impacts the performance and the
resilience of these mobile clouds. In particular, we have shown
that significant performance improvement can be obtained
when dynamic networks exhibit a small-world structure and
moreover, this particular structure can improve the resilience
of the network against inactive nodes. This means that by
introducing even a small percentage of highly mobile nodes
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Fig. 7. Resilience of mobile cloud network distributed services under various
mobility contexts



in a high localized network, we can improve significantly the
processing capacity and resilience of mobile cloud computing.
These results open the way to adaptive strategies that would
aim to adapt dynamic network topology and behavior accord-
ing to their processing load and constraints. Moreover these
strategies have to consider also storage and energy consump-
tion which are critical in the context of handheld systems. Our
current work investigates these research directions.
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