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Abstract 

Swarm robotics is a new and promising 
approach to the design and control of multi-agent 
robotic systems. In this paper we use a model for a 
system of self-propelled agents interacting via pair-
wise attractive and repulsive potentials. We 
develop a new potential field method using 
dynamic agent internal states, allowing the swarm 
agents’ internal states to manipulate the potential 
field. This new method successfully solves a 
reactive path planning problem that cannot be 
solved using static potential fields due to local 
minima formation. Simulation results demonstrate 
the ability of a swarm of agents that use the model 
to perform reactive problem solving effectively 
using the collective behaviour of the entire swarm 
in a way that matches studies based on real animal 
group behaviour. 

1   Introduction 

The design and control of artificial swarms has become a 
topic of growing interest. Swarm robotics has a range of 
applications in both civilian and military fields from 
space and subsea exploration to the deployment of teams 
of interacting artificial agents in disposal systems 
(Leonard and Fiorelli, 2001). The study of agent-based 
systems begins with a definition of the term agent (Maes, 
1994). An individual agent may be programmed to be 
fully autonomous, but its abilities may be limited 
according to resource and physical constraints. On the 
other hand, swarms of self-organizing agents that 
exchange information may have a greater functionality 
than the individual members. Natural examples of 
interacting swarms of agents can be found in ants, bees, 
birds and schools of fish in the way that they create 
complex patterns with new and useful group properties 
(Camazine et al., 2003). In recent years, an understanding 
of the operating principles of natural swarms has proven 
to be a useful tool for the intelligent design and control of 

artificial robotic agents (Bonabeau et al., 1999); (Gazi 
and Passino, 2003).  
 Swarming robotic systems are often modelled as 
a two-dimensional collection of point agents in which 
members may interact with one another through 
attractive-repulsive pair-wise interactions. Specific 
choices of potential field lead agents to self-organize into 
coherent patterns (Levine et al., 2000); (Gazi and Passino, 
2002). More recently swarm stabilization or collapse with 
increasing constituent number in different zones of the H-
stability diagram, shown in Fig. 1, has been predicted. 
Many swarming systems have been investigated and 
complex behaviour such as phase transitions and 
emergent patterns have been observed Fig. 2, (D’Orsogna 
et al., 2006); (Mabrouk and McInnes, 2007). In these 
studies, the connection between the so-called H-stable 
nature of the interaction potential and resulting 
aggregating patterns have been found using tools from 
statistical mechanics. Virtual leaders (Chuang et al., 
2007); (Mabrouk and McInnes, 2007) and structural 
potential functions (Olfati-Saber, 2006) have also been 
introduced to provide provable group behaviour to ensure 
vehicles can avoid obstacles or form desired patterns. The 
actual realizations of self-propelled vehicles interacting 
according to virtual Morse potentials have been 
investigated (Nguyen et al., 2005). 

 

 
 
Fig. 1. H-stability phase diagram of the Morse potential (D’Orsogna et 
al., 2006a) 

 

 



 
Fig. 2. Patterns of swarm of agents in different H-stability diagram 

catastrophic regions and different interaction parameters (Mabrouk and 
McInnes, 2007). (a) Vortex, region VII, Np =200, lr =0.5, la =2, Cr =1, Ca 
=0.5, α =1.6, β =0.5 (b) Clumps, region I, Np =100, lr = 0.5, la =1, Cr 
=0.6, Ca =1, α =1, β =0.5 (c) Ring, region II , Np =100, lr =0.5, la =1, Cr 
=0.5, Ca =1, α =1, β =0.5 (d) Ring clumping, region IV,  Np =100, lr 
=1.2, la =1, Cr =0.6, Ca =1, α =1, β =0.5 

 

These prior studies assume that the free 
parameters of the potential field are fixed a priori. In 
(Mabrouk and McInnes, 2007) the parameters were 
assumed to be internal states for each agent through 
which the agent can manipulate the potential field. The 
dynamics of these internal states are defined through sets 
of first order differential equations. The behaviour 
observed was similar to the behaviour of honey bees, 
where the individuals that sense a threat release a 
pheromone which stimulates an alarm response in other 
bees in the colony to gather around those individuals.  

In this paper we develop our work to introduce a 
simpler model of driven self-propelled agents, which also 
experience some dissipative frictional force. The model 

consists of NP agents with mass mi, position 
→

i
r  and 

relative distance ||
→

ijr  between the i
th

 and j
th

 agents. For 

simplicity, we will consider unit mass agents and to 
prevent the agents from reaching large speeds, a 
dissipative frictional force with coefficient β is added 
(D’Orsogna et al., 2006). The agents interact by means of 

a two-body generalized Morse potential )(
→

irU , which 

decays exponentially at large distances and represents a 
comparatively realistic description of natural swarming 
agents. The potential is characterized by attractive and 
repulsive potential fields of strength Ca and Cr with 
ranges la and lr respectively. The equations of motion for 
Np agents are then defied by: 
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2. Problem Definition: 

In recent years new assumptions about the architecture 
needed for intelligence have emerged. These approaches 
attempt to emulate natural, rather than artificial 
intelligence and are based on, or at least inspired by, 

biology. In an attempt to build a control system for 
autonomous agents, Balkenius presented a general 
architecture for behaviour-based control (Balkenius, 
1994). He proposed a number of architectural principles 
which make it possible to combine reactive control with 
problem solving in a coherent way. He used the term 
behaviour to denote the system internal to the agent that is 
responsible for the externally observed behaviour.  
 The problem of local minima (trapped states), 
shown in Fig. 3, was discussed by Balkenius. The reactive 
problem for an agent, or swarm of agents, attracted to a 
goal point at position G can be defined such that an 
artificial potential field at G induces motion towards the 
goal. When the agent, or swarm of agents, moves towards 
the goal the velocity of each individual agent rises, and 
the agents translate to the goal along the gradient of the 
potential field. However, in order to prevent collision 
with a static obstacle, an additional repulsive potential 
field is required. These two potential fields are then 
superimposed to form a global potential field which 
describes the workspace of the problem. In general 
however, a local minimum may form due to the 
superposition of the goal potential and that of the 
obstacles, resulting in the agent, or swarm of agents, 
becoming trapped in a state other than the goal G. 

 

 

Fig.3 Classical reactive problem for a single agent 

Considering this problem, the entire swarm, or part of the 
swarm will be trapped at the obstacle since the agents 
trapped inside the obstacle will experience two virtual 
forces; the first force is the attraction to the goal while the 
other will be the repulsion from the obstacle. Moreover in 
most cases there will be no opportunity for the swarm 
members to escape from the local minimum due to the 
pair-wise interaction potential - particularly when the goal 
potential is of large amplitude. This problem motivates 
the use of the collective swarm behaviour to avoid such 
trapping in local minima; further discussion of the 
problem is given in appendix.  

3. Agent Internal State Model: 

Escape from complex workspaces can be seen in many 
natural systems in which the system consists of a number 
of agents enclosed in a trap. An example is a system of 



gas molecules which are enclosed in a single-exit 
container while the molecules experience a change in 
their state, due to a rise in temperature for example. The 
change of the internal state of the system simply changes 
the trap region from a local minimum into a region of 
maximum potential from which all the agents are emitted 
as if squeezed out. The repulsive interaction potential of 
each agent increases, leading both to an increase in 
repulsion between agents and between the walls of the 
trap (Mabrouk and McInnes, 2007). 

The use of agent internal states (potential field 
free parameters) will now be considered as a means of 
allowing agents to manipulate the potential field in which 
they are maneuvering. This concept will be used for a 
swarm of agents maneuvering towards a goal in a 
potential field which contains a local minimum. The 
agents’ internal states will now be defined through a set 
of differential equations which will allow the swarm of 
agents to manipulate the potential field in which it is 
maneuvering and so escape from a local minimum. 

For a fixed obstacle, the repulsion potential 
range affecting the i

th
 agent (loi) can be represented as a 

function of an obstacle constant (lo), which characterizes 
the physical nature of the obstacle, and the particle 
repulsion potential range (lri) which characterizes the 
agent internal state while the repulsion potential strength 
affecting the i

th 
agent (Coi) can be represented as the 

obstacle constant (Co). The attraction potential range of 
the goal affecting the i

th
 agent (lgi) can also be represented 

as a function of a goal constant (lg), which characterizes 
the physical nature of the goal, and the particle attraction 
potential range (lai) which characterizes the agent internal 
state while the attraction potential strength of the goal 
affecting the i

th
 agent (Cgi) can also be represented as the 

goal constant (Cg) such that: 

oio CC =       (4) 
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When an agent approaches an obstacle it suffers an elastic 
collision which pushes the agent away from the goal. The 
goal then attracts the agent back and the agent will never 
attempt to maneuver around the obstacle simply because 
it never knows it is trapped. Therefore if a swarm of 
agents enters a local minimum of the potential field it will 
be under the two forces; repulsion from the obstacles and 
attraction to the goal; this will cause in that the swarm 
center speed to increase as it approaches the goal and 
decreases as it is repelled.    

The swarm center speed, which is the mean of all 
individuals’ velocities, is now used as a means to increase 
the perception of the swarm about the environment to 
avoid trapping in local minima. The following differential 
equations are now used to express the internal states of 
the agents: 
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Equations (8-11) express the repulsion amplitude and 
range and the attraction amplitude and range of the i

th
 

agent, according to the speed of each agent as well as 
swarm center. Moreover, Eq. (12) ensures a smooth 
maneuver around obstacles by slowing agents, which are 
moving away from the obstacle by linking the dissipation 
coefficient β of each agent to the swarm center speed. The 
damping terms in Eq. (8-12) ensure that the deviation of 
the agent internal state is minimized and the internal 
states can return to an equilibrium value. The coefficients 
(Ar, Br, Aa, Ba, Aβ, λr, λa, λβ) are employed to manipulate 
these terms. The benefit of using this model is that when 
the agents are repelled the swarm center speed is 
decreased, loi takes higher values which turns the 
workspace in the neighbourhood of the obstacles into a 
zone of maximum potential. This then leads to escape 
from the local minima (Mabrouk and McInnes, 2007), 
while the potential field relaxes after escape due to the 
damping terms in the differential equations for the 
internal states. The swarm leader concept, generated by 
Eq.(10,11), is used to make the swarm aggregate together 
simulating the behaviour of real animals (Shettleworth 
1998) as well as increase the attraction potential of those 
agents who have found a path around the obstacles 
towards the goal.  

4. Model Analysis: 

Using the dynamic internal states defined in Eq. 8-12, the 
potential field is now a function of four parameters for 
each agent. The generalized Morse potential function is 
defined as: 
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 Assuming no obstacles and no goals at present, 
the system energy will then be defined as follows: 
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where Ui  is the potential energy of the i

th
 agent. Then: 
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where the (

o
) notation stands for time derivative. 

Substituting from Eq.2 it can be seen that: 
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While the internal states now have their own dynamics, 
the damping terms in Eq. 8-11, ensure that these states 
return to their equilibrium values as shown in Fig.4. This 

ensures that jjjj aarr lClC
oooo

,,,  tend to zero, which will 
yield: 
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Fig.4 Interaction parameters of one of the free swarm agents  

 
 
 

 
Fig.5. Attraction potential strength of different agents in the free 

swarm  

 

 
Fig.6. The free swarm system total energy versus time 

 
Therefore the swarm will come to equilibrium. The 
dissipation coefficient β while having a non zero value, 
results in Fig.6 show the swarm energy approaching a 
constant. We can also see in Fig.5 that the agents’ 
attraction potential will reach equilibrium, so that the 
swarm agents prefer to remain as a group in a way that 
matches the studies based on real animal group behaviour.  

5. Simulation Results: 

First, the case of a swarm whose agents use fixed internal 
states will be considered. Here the free parameters 
describing the potential field, and so the potential field 
itself, are constant. The simulation results in Fig. 7 show a 
swarm of agents in which part of the swarm becomes 
trapped in the local minimum of the potential field while 
the rest of the swarm, according to their initial positions, 
reach the goal. This is typical of conventional 
implementations of the artificial potential field method to 
path planning problems. 

For dynamic internal states the simulation results 
shown in Fig. 8 show that the swarm, which is given the 
same initial conditions as the swarm in Fig.7, enters the 



local minimum and when repelled the repulsion potential 
of the agents increases in a way that converts the obstacle 
to be a zone of maximum potential to the agents. As the 
agents escape from the local minimum the potential field 
relaxes due to the damping terms in Eqs. (8-12) and in 
addition, the dissipation coefficient β ensures smooth 
maneuvering of the trapped agents. The goal potential 
field then drags the agents away from the obstacle zone 
and defines a gradient path that the agents follow directly 
to the goal. The comparison between the results in Fig. 7 
and Fig. 8 clearly shows the effect of using the internal 
state dynamics to solve the reactive problem effectively.  

Finally, we can see the use of the swarm leader 
concept in the simulation results Fig. 9 which show a 
swarm that splits into two groups. Group (a) whose 
individuals use the internal state dynamic model that 
manipulates the potential according to the agents’ internal 
states and group (b) whose individuals still use the static 
potential. It can be seen that group (a) have a clear path to 
the goal while group (b) is trapped in a local minimum. 
Group (a) swarm individuals, according to the internal 
state model, acquire leader properties (large Ca ) in a way 
that the individuals trapped in the local minimum are 
attracted to them rather than to the goal. The behaviour is 
similar to related work concerning pedestrian dynamics 
(Helbing and Molnar, 1995) 

 

 
 

 
 

 
 

Fig. 7. Behaviour of a swarm with fixed internal states 

 

 
 

 
 

 
 

 
 

 
 

 
 

Fig.8. Swarm solving a reactive problem using the internal state model 
 
 



 
 

 
 

 
 

 
 

 
 

 
 
Fig.9. Part of swarm uses the internal state model (*) while the rest of 

the swarm uses fixed internal states. 

Conclusions: 

A new model for a system of self-propelled agents 
interacting via pair-wise attractive and repulsive 
potentials is presented. The model proves to be stable 
and provides similarities with the behaviour of real 
groups of animals. Using the model, along with a 
potential field method which uses the concept of agent 
internal states to allow agents to manipulate the 
potential field in which they maneuver, allows a 
swarm of agents to escape from and maneuver around 
a local minimum in the potential field to reach a goal. 
Rather than moving in a static potential field, the 
agents are able to manipulate the potential according 
to their estimation of whether they are moving towards 
or away from the goal.  
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Appendix 

A. The parameters on which the depth of the local 
minimum depends 

The depth of the local minimum is affected by 
some parameters, such as strength of goal attraction 
potential, (goal – obstacles) separating distance and 
strength of obstacle repulsion potential. The following 
figures demonstrate further discussion of the problem: 

 

(a) 

 

(b) 

Fig.A1 the depth of the local minimum increases as the (goal – obstacle) 
separating distance decreases 

 

 

(a) 

 

(b) 

Fig.A2 the depth of the local minimum increases as the goal attraction 
amplitude increases (a) Cg=50 (b) Cg=25 

 

 

(a) 

 

(b) 

Fig.A3 the depth and shape of the local minimum differs as the obstacle 
repulsion amplitude differs (a) Co=4, lo=0.05 (b) Co=7, lo=0.5 

 


