798 research outputs found

    Pharmacokinetics, in-vitro activity, therapeutic efficacy and clinical safety of aztreonam vs. cefotaxime in the treatment of complicated urinary tract infections

    Get PDF
    The minimal inhibitory concentrations (MICs) of aztreonam and cefotaxime were determined against 400 isolates from urological in-patients with complicated and/or hospital acquired urinary tract infections (UTI). Against the Gram-negative rods the activities of both antibiotics were comparable except for higher activity of aztreonam against Pseudomonas aeruginosa. The pharmacokinetic study in nine elderly patients showed a prolonged plasma half life of aztreonam (2.7 h) as compared to younger volunteers (1.6-1.9 h). In a prospective randomized study 39 urological patients with complicated and/or hospital acquired UTI were treated with 1 g aztreonam or cefotaxime iv twice daily for 4 to 15 days. Cure was obtained in 5 out of 18 patients in the aztreonam and 7 out of 20 patients in the cefotaxime group. There were 3 superinfections, 7 relapses and 3 reinfections in the aztreonam group and 1 failure, 1 superinfection, 6 relapses and 5 reinfections in the cefotaxime group. There was no significant difference in therapeutic efficacy between the two antibiotics. Both antibiotics were tolerated well and seem to be equally effective in the treatment of complicated UTI caused by sensitive organisms

    Outstanding Teachers Receive Awards

    Get PDF
    News release announces outstanding teaching honors from the University of Dayton and the Western Ohio Education Association; Doris Swabb received the award for elementary teaching; Marge Mott was honored for secondaryeducation

    The Cedarville Herald, July 4, 1947

    Get PDF

    A Mathematical Model of Liver Cell Aggregation In Vitro

    Get PDF
    The behavior of mammalian cells within three-dimensional structures is an area of intense biological research and underpins the efforts of tissue engineers to regenerate human tissues for clinical applications. In the particular case of hepatocytes (liver cells), the formation of spheroidal multicellular aggregates has been shown to improve cell viability and functionality compared to traditional monolayer culture techniques. We propose a simple mathematical model for the early stages of this aggregation process, when cell clusters form on the surface of the extracellular matrix (ECM) layer on which they are seeded. We focus on interactions between the cells and the viscoelastic ECM substrate. Governing equations for the cells, culture medium, and ECM are derived using the principles of mass and momentum balance. The model is then reduced to a system of four partial differential equations, which are investigated analytically and numerically. The model predicts that provided cells are seeded at a suitable density, aggregates with clearly defined boundaries and a spatially uniform cell density on the interior will form. While the mechanical properties of the ECM do not appear to have a significant effect, strong cell-ECM interactions can inhibit, or possibly prevent, the formation of aggregates. The paper concludes with a discussion of our key findings and suggestions for future work

    Tau Aggregation Inhibitor Therapy : An Exploratory Phase 2 Study in Mild or Moderate Alzheimer's Disease

    Get PDF
    ACKNOWLEDGMENTS We thank patients and their caregivers for their participation in the study and are indebted to all the investigators involved in the study, particularly Drs. Douglas Fowlie and Donald Mowat for their helpful contributions to the clinical execution of the study in Scotland. We thank Sharon Eastwood, Parexel, for assistance in preparing initial drafts of the manuscript. We acknowledge constructive comments provided by Professors G. Wilcock and S. Gauthier on drafts of the article. CMW, CRH, and JMDS are officers of, and hold beneficial interests in, TauRx Therapeutics. RTS, PB, KK, and DJW are paid consultants to TauRx Therapeutics. The study was financed entirely by TauRx TherapeuticsPeer reviewedPublisher PD

    A computational fluid dynamics approach to determine white matter permeability

    Get PDF
    Glioblastomas represent a challenging problem with an extremely poor survival rate. Since these tumour cells have a highly invasive character, an effective surgical resection as well as chemotherapy and radiotherapy is very difficult. Convection-enhanced delivery (CED), a technique that consists in the injection of a therapeutic agent directly into the parenchyma, has shown encouraging results. Its efficacy depends on the ability to predict, in the pre-operative phase, the distribution of the drug inside the tumour. This paper proposes a method to compute a fundamental parameter for CED modelling outcomes, the hydraulic permeability, in three brain structures. Therefore, a bidimensional brain-like structure was built out of the main geometrical features of the white matter: axon diameter distribution extrapolated from electron microscopy images, extracellular space (ECS) volume fraction and ECS width. The axons were randomly allocated inside a defined border, and the ECS volume fraction as well as the ECS width maintained in a physiological range. To achieve this result, an outward packing method coupled with a disc shrinking technique was implemented. The fluid flow through the axons was computed by solving Navier–Stokes equations within the computational fluid dynamics solver ANSYS. From the fluid and pressure fields, an homogenisation technique allowed establishing the optimal representative volume element (RVE) size. The hydraulic permeability computed on the RVE was found in good agreement with experimental data from the literature

    Radiation Modulator System

    Get PDF
    A radiation modulator system and related method for actively controlling a flame in a combustion system are provided. The system includes a plurality of radiation modulators positioned adjacent the flame. A sensor arrangement is provided for sensing combustion characteristics of the flame and generating a sensor signal representative of the combustion characteristics. The sensor signal is received in a computer which then generates a control signal for transmission to a linkage arrangement which provides for the repositioning of the radiation modulators. Thus, the flame is actively controlled by continually repositioning the modulators in response to the sensor signal and the control signal. The related method broadly includes the steps of: (1) positioning the radiation modulators adjacent the flame; (2) sensing combustion characteristics of the flame; and (3) repositioning the radiation modulators responsive to the combustion characteristics

    EXXON donor solvent coal liquefaction process

    Get PDF
    A solvent coal liquefaction process to produce low-sulfur liquid products from a wide range of coals is described. An integrated program of laboratory and engineering research and development in conjunction with operation of a 250 T/D pilot plant is discussed
    corecore