5 research outputs found

    On the Approximability of the Traveling Salesman Problem with Line Neighborhoods

    Get PDF
    We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in Rd\mathbb{R}^d, with d3d\ge 3, are NP\mathrm{NP}-hardness and an O(log3n)O(\log^3 n)-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in Rd\mathbb{R}^d is APX-hard for any d3d\ge 3. More generally, this implies that TSP with kk-dimensional flats does not admit a PTAS for any 1kd21\le k \leq d-2 unless P=NP\mathrm{P}=\mathrm{NP}, which gives a complete classification of the approximability of these problems, as there are known PTASes for k=0k=0 (i.e., points) and k=d1k=d-1 (hyperplanes). We are able to give a stronger inapproximability factor for d=O(logn)d=O(\log n) by showing that TSP with lines does not admit a (2ϵ)(2-\epsilon)-approximation in dd dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an O(log2n)O(\log^2 n)-approximation algorithm for the problem, albeit with a running time of nO(loglogn)n^{O(\log\log n)}

    On the Approximability of the Traveling Salesman Problem with Line Neighborhoods

    Get PDF
    We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in Rd\mathbb{R}^d, with d3d\ge 3, are NP\mathrm{NP}-hardness and an O(log3n)O(\log^3 n)-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in Rd\mathbb{R}^d is APX-hard for any d3d\ge 3. More generally, this implies that TSP with kk-dimensional flats does not admit a PTAS for any 1kd21\le k \leq d-2 unless P=NP\mathrm{P}=\mathrm{NP}, which gives a complete classification of the approximability of these problems, as there are known PTASes for k=0k=0 (i.e., points) and k=d1k=d-1 (hyperplanes). We are able to give a stronger inapproximability factor for d=O(logn)d=O(\log n) by showing that TSP with lines does not admit a (2ϵ)(2-\epsilon)-approximation in dd dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an O(log2n)O(\log^2 n)-approximation algorithm for the problem, albeit with a running time of nO(loglogn)n^{O(\log\log n)}

    Survivable network design for group connectivity in low-treewidth graphs

    Get PDF
    In the Group Steiner Tree problem (GST), we are given a (edge or vertex)-weighted graph G = (V,E) on n vertices, together with a root vertex r and a collection of groups {St}iϵ[h] : St ∪ V (G). The goal is to find a minimum-cost subgraph H that connects the root to every group. We consider a fault-tolerant variant of GST, which we call Restricted (Rooted) Group SNDP. In this setting, each group Si has a demand ki2 [k], k2 N, and we wish to find a minimum-cost subgraph H ∪ G such that, for each group Si, there is a vertex in the group that is connected to the root via ki (vertex or edge) disjoint paths. While GST admits O(log2 n log h) approximation, its higher connectivity variants are known to be Label-Cover hard, and for the vertex-weighted version, the hardness holds even when k = 2 (it is widely believed that there is no subpolynomial approximation for the Label-Cover problem [Bellare et al., STOC 1993]). More precisely, the problem admits no 2log1-n-approximation unless NP ∪ DTIME(npolylog(n)). Previously, positive results were known only for the edgeweighted version when k ≥2 [Gupta et al., SODA 2010; Khandekar et al., Theor. Comput. Sci., 2012] and for a relaxed variant where ki disjoint paths from r may end at different vertices in a group [Chalermsook et al., SODA 2015], for which the authors gave a bicriteria approximation. For k3, there is no non-trivial approximation algorithm known for edge-weighted Restricted Group SNDP, except for the special case of the relaxed variant on trees (folklore). Our main result is an O(log n log h) approximation algorithm for Restricted Group SNDP that runs in time nf(k,w), where w is the treewidth of the input graph. Our algorithm works for both edge and vertex weighted variants, and the approximation ratio nearly matches the lower bound when k and w are constants. The key to achieving this result is a non-trivial extension of a framework introduced in [Chalermsook et al., SODA 2017]. This framework first embeds all feasible solutions to the problem into a dynamic program (DP) table. However, finding the optimal solution in the DP table remains intractable. We formulate a linear program relaxation for the DP and obtain an approximate solution via randomized rounding. This framework also allows us to systematically construct DP tables for high-connectivity problems. As a result, we present new exact algorithms for several variants of survivable network design problems in low-treewidth graphs.Peer reviewe

    Approximation algorithms for network design and cut problems in bounded-treewidth

    Get PDF
    This thesis explores two optimization problems, the group Steiner tree and firefighter problems, which are known to be NP-hard even on trees. We study the approximability of these problems on trees and bounded-treewidth graphs. In the group Steiner tree, the input is a graph and sets of vertices called groups; the goal is to choose one representative from each group and connect all the representatives with minimum cost. We show an O(log^2 n)-approximation algorithm for bounded-treewidth graphs, matching the known lower bound for trees, and improving the best possible result using previous techniques. We also show improved approximation results for group Steiner forest, directed Steiner forest, and a fault-tolerant version of group Steiner tree. In the firefighter problem, we are given a graph and a vertex which is burning. At each time step, we can protect one vertex that is not burning; fire then spreads to all unprotected neighbors of burning vertices. The goal is to maximize the number of vertices that the fire does not reach. On trees, a classic (1-1/e)-approximation algorithm is known via LP rounding. We prove that the integrality gap of the LP matches this approximation, and show significant evidence that additional constraints may improve its integrality gap. On bounded-treewidth graphs, we show that it is NP-hard to find a subpolynomial approximation even on graphs of treewidth 5. We complement this result with an O(1)-approximation on outerplanar graphs.Diese Arbeit untersucht zwei Optimierungsprobleme, von welchen wir wissen, dass sie selbst in Bäumen NP-schwer sind. Wir analysieren Approximationen für diese Probleme in Bäumen und Graphen mit begrenzter Baumweite. Im Gruppensteinerbaumproblem, sind ein Graph und Mengen von Knoten (Gruppen) gegeben; das Ziel ist es, einen Knoten von jeder Gruppe mit minimalen Kosten zu verbinden. Wir beschreiben einen O(log^2 n)-Approximationsalgorithmus für Graphen mit beschränkter Baumweite, dies entspricht der zuvor bekannten unteren Schranke für Bäume und ist zudem eine Verbesserung über die bestmöglichen Resultate die auf anderen Techniken beruhen. Darüber hinaus zeigen wir verbesserte Approximationsresultate für andere Gruppensteinerprobleme. Im Feuerwehrproblem sind ein Graph zusammen mit einem brennenden Knoten gegeben. In jedem Zeitschritt können wir einen Knoten der noch nicht brennt auswählen und diesen vor dem Feuer beschützen. Das Feuer breitet sich anschließend zu allen Nachbarn aus. Das Ziel ist es die Anzahl der Knoten die vom Feuer unberührt bleiben zu maximieren. In Bäumen existiert ein lang bekannter (1-1/e)-Approximationsalgorithmus der auf LP Rundung basiert. Wir zeigen, dass die Ganzzahligkeitslücke des LP tatsächlich dieser Approximation entspricht, und dass weitere Einschränkungen die Ganzzahligkeitslücke möglicherweise verbessern könnten. Für Graphen mit beschränkter Baumweite zeigen wir, dass es NP-schwer ist, eine sub-polynomielle Approximation zu finden
    corecore