122 research outputs found

    Fluid Survival Tool: A Model Checker for Hybrid Petri Nets

    Get PDF
    Recently, algorithms for model checking Stochastic Time Logic (STL) on Hybrid Petri nets with a single general one-shot transition (HPNG) have been introduced. This paper presents a tool for model checking HPNG models against STL formulas. A graphical user interface (GUI) not only helps to demonstrate and validate existing algorithms, it also eases use. From the output of the model checker, 2D and 3D plots can be generated. The extendable object-oriented tool has been developed using the Model-View-Controller and Facade patterns, Doxygen for documentation and Qt for GUI development written in C++

    Survivability modeling for cyber-physical systems subject to data corruption

    Get PDF
    Cyber-physical critical infrastructures are created when traditional physical infrastructure is supplemented with advanced monitoring, control, computing, and communication capability. More intelligent decision support and improved efficacy, dependability, and security are expected. Quantitative models and evaluation methods are required for determining the extent to which a cyber-physical infrastructure improves on its physical predecessors. It is essential that these models reflect both cyber and physical aspects of operation and failure. In this dissertation, we propose quantitative models for dependability attributes, in particular, survivability, of cyber-physical systems. Any malfunction or security breach, whether cyber or physical, that causes the system operation to depart from specifications will affect these dependability attributes. Our focus is on data corruption, which compromises decision support -- the fundamental role played by cyber infrastructure. The first research contribution of this work is a Petri net model for information exchange in cyber-physical systems, which facilitates i) evaluation of the extent of data corruption at a given time, and ii) illuminates the service degradation caused by propagation of corrupt data through the cyber infrastructure. In the second research contribution, we propose metrics and an evaluation method for survivability, which captures the extent of functionality retained by a system after a disruptive event. We illustrate the application of our methods through case studies on smart grids, intelligent water distribution networks, and intelligent transportation systems. Data, cyber infrastructure, and intelligent control are part and parcel of nearly every critical infrastructure that underpins daily life in developed countries. Our work provides means for quantifying and predicting the service degradation caused when cyber infrastructure fails to serve its intended purpose. It can also serve as the foundation for efforts to fortify critical systems and mitigate inevitable failures --Abstract, page iii

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies

    Hybrid Petri nets with multiple stochastic transition firings

    Get PDF
    This paper introduces an algorithm for the efficient computation of transient measures of interest in Hybrid Petri nets in which the stochastic transitions are allowed to fire an arbitrary but finite number of times. Each firing increases the dimensionality of the underlying discrete/continuous state space. The algorithm evolves around a partitioning of the multi-dimensional state-space into regions, making use of advanced algorithms (and libraries) for computational geometry. To bound the number of stochastic transition firings the notion of control tokens is newly introduced. While the new partitioning algorithm is general, the implementation is currently limited to only two stochastic firings. The feasibility and usefulness of the new algorithm is illustrated in a case study of a water refinery plant with cascading failures

    Petri Nets for Smart Grids: The Story So Far

    Full text link
    Since the energy domain is in a transformative shift towards sustainability, the integration of new technologies and smart systems into traditional power grids has emerged. As an effective approach, Petri Nets (PN) have been applied to model and analyze the complex dynamics in Smart Grid (SG) environments. However, we are currently missing an overview of types of PNs applied to different areas and problems related to SGs. Therefore, this paper proposes four fundamental research questions related to the application areas of PNs in SGs, PNs types, aspects modelled by PNs in the identified areas, and the validation methods in the evaluation. The answers to the research questions are derived from a comprehensive and interdisciplinary literature analysis. The results capture a valuable overview of PNs applications in the global energy landscape and can offer indications for future research directions

    A Constrained, Possibilistic Logical Approach for Software System Survivability Evaluation

    Get PDF
    In this paper, we present a logical framework to facilitate users in assessing a software system in terms of the required survivability features. Survivability evaluation is essential in linking foreign software components to an existing system or obtaining software systems from external sources. It is important to make sure that any foreign components/systems will not compromise the current system’s survivability properties. Given the increasing large scope and complexity of modern software systems, there is a need for an evaluation framework to accommodate uncertain, vague, or even ill-known knowledge for a robust evaluation based on multi-dimensional criteria. Our framework incorporates user-defined constrains on survivability requirements. Necessity-based possibilistic uncertainty and user survivability requirement constraints are effectively linked to logic reasoning. A proof-of-concept system has been developed to validate the proposed approach. To our best knowledge, our work is the first attempt to incorporate vague, imprecise information into software system survivability evaluation

    Quantitative dependability and interdependency models for large-scale cyber-physical systems

    Get PDF
    Cyber-physical systems link cyber infrastructure with physical processes through an integrated network of physical components, sensors, actuators, and computers that are interconnected by communication links. Modern critical infrastructures such as smart grids, intelligent water distribution networks, and intelligent transportation systems are prominent examples of cyber-physical systems. Developed countries are entirely reliant on these critical infrastructures, hence the need for rigorous assessment of the trustworthiness of these systems. The objective of this research is quantitative modeling of dependability attributes -- including reliability and survivability -- of cyber-physical systems, with domain-specific case studies on smart grids and intelligent water distribution networks. To this end, we make the following research contributions: i) quantifying, in terms of loss of reliability and survivability, the effect of introducing computing and communication technologies; and ii) identifying and quantifying interdependencies in cyber-physical systems and investigating their effect on fault propagation paths and degradation of dependability attributes. Our proposed approach relies on observation of system behavior in response to disruptive events. We utilize a Markovian technique to formalize a unified reliability model. For survivability evaluation, we capture temporal changes to a service index chosen to represent the extent of functionality retained. In modeling of interdependency, we apply correlation and causation analyses to identify links and use graph-theoretical metrics for quantifying them. The metrics and models we propose can be instrumental in guiding investments in fortification of and failure mitigation for critical infrastructures. To verify the success of our proposed approach in meeting these goals, we introduce a failure prediction tool capable of identifying system components that are prone to failure as a result of a specific disruptive event. Our prediction tool can enable timely preventative actions and mitigate the consequences of accidental failures and malicious attacks --Abstract, page iii

    Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review

    Get PDF
    YesSystem safety, reliability and risk analysis are important tasks that are performed throughout the system lifecycle to ensure the dependability of safety-critical systems. Probabilistic risk assessment (PRA) approaches are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to, Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). Growing complexity of modern systems and their capability of behaving dynamically make it challenging for classical PRA techniques to analyse such systems accurately. For a comprehensive and accurate analysis of complex systems, different characteristics such as functional dependencies among components, temporal behaviour of systems, multiple failure modes/states for components/systems, and uncertainty in system behaviour and failure data are needed to be considered. Unfortunately, classical approaches are not capable of accounting for these aspects. Bayesian networks (BNs) have gained popularity in risk assessment applications due to their flexible structure and capability of incorporating most of the above mentioned aspects during analysis. Furthermore, BNs have the ability to perform diagnostic analysis. Petri Nets are another formal graphical and mathematical tool capable of modelling and analysing dynamic behaviour of systems. They are also increasingly used for system safety, reliability and risk evaluation. This paper presents a review of the applications of Bayesian networks and Petri nets in system safety, reliability and risk assessments. The review highlights the potential usefulness of the BN and PN based approaches over other classical approaches, and relative strengths and weaknesses in different practical application scenarios.This work was funded by the DEIS H2020 project (Grant Agreement 732242)

    Dynamic corrosion risk-based integrity assessment of marine and offshore systems

    Get PDF
    Corrosion poses a serious integrity threat to marine and offshore systems. This critical issue leads to high rate of offshore systems degradation, failure, and associated risks. The microbiologically influenced corrosion (microbial corrosion), which is a type of corrosion mechanism, presents inherent complexity due to interactions among influential factors and the bacteria. The stochastic nature of the vital operating parameters and the unstable microbial metabolism affect the prediction of microbial corrosion induced failure and the systems’ integrity management strategy. The unstable and dynamic characteristics of the corrosion induced risk factors need to be captured for a robust integrity management strategy for corroding marine and offshore systems. This thesis proposes dynamic methodology for risk-based integrity assessment of microbially influenced corroding marine and offshore systems. Firstly, a novel probabilistic network based structure is presented to capture the non-linear interactions among the monitoring operating parameters and the bacteria (e.g., sulfate-reducing bacteria) for the microbial corrosion rate predictions. A Markovian stochastic formulation is developed for the corroding offshore system failure probability prediction using the degradation rate as the transition intensity. The analysis results show that the non-linear interactions among the microbial corrosion influential parameters increase the corrosion rate and decrease the corroding system's failure time. Secondly, a dynamic model is introduced to evaluate the offshore system's operational safety under microbial corrosion induced multiple defect interactions. An effective Bayesian network - Markovian mixture structure is integrated with the Monte Carlo algorithm to forecast the effects of defects interactions and the corrosion response parameters’ variability on offshore system survivability under multispecies biofilm architecture. The results reveal the impact of defects interaction on the system's survivability profile under different operational scenarios and suggest the critical intervention time based on the corrosivity index to prevent total failure of the offshore system. Finally, a probabilistic investigation is carried out to determine the parametric interdependencies' effects on the corroding system reliability using a Copula-based Monte Carlo algorithm. The model simultaneously captures the failure modes and the non-linear correlation effects on the offshore system reliability under multispecies biofilm structure. The research outputs suggest a realistic reliability-based integrity management strategy that is consistent with industry best practices. Furthermore, a dynamic risk-based assessment framework is developed considering the evolving characteristics of the influential microbial corrosion factors. A novel dynamic Bayesian network structure is developed to capture the corrosion's evolving stochastic process and the importance of input parameters based on their temporal interrelationship. The associated loss scenarios due to microbial corrosion induced failures are modeled using a loss aggregation technique. A subsea pipeline is used to demonstrate the model performance. The proposed integrated model provides a risk-based prognostic tool to aid engineers and integrity managers for making effective safety and risk strategies. This work explores the microbial corrosion induced failure mechanisms and develops dynamic risk-based tools under different operational scenarios for systems’ integrity management in the marine and offshore oil and gas industries

    Critical Infrastructures

    Get PDF
    • …
    corecore