768 research outputs found

    Analyzing Attacks on Cooperative Adaptive Cruise Control (CACC)

    Full text link
    Cooperative Adaptive Cruise Control (CACC) is one of the driving applications of vehicular ad-hoc networks (VANETs) and promises to bring more efficient and faster transportation through cooperative behavior between vehicles. In CACC, vehicles exchange information, which is relied on to partially automate driving; however, this reliance on cooperation requires resilience against attacks and other forms of misbehavior. In this paper, we propose a rigorous attacker model and an evaluation framework for this resilience by quantifying the attack impact, providing the necessary tools to compare controller resilience and attack effectiveness simultaneously. Although there are significant differences between the resilience of the three analyzed controllers, we show that each can be attacked effectively and easily through either jamming or data injection. Our results suggest a combination of misbehavior detection and resilient control algorithms with graceful degradation are necessary ingredients for secure and safe platoons.Comment: 8 pages (author version), 5 Figures, Accepted at 2017 IEEE Vehicular Networking Conference (VNC

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    A transparent distributed ledger-based certificate revocation scheme for VANETs

    Get PDF
    The widespread adoption of Cooperative, Connected, and Automated Mobility (CCAM) applications requires the implementation of stringent security mechanisms to minimize the surface of cyber attacks. Authentication is an effective process for validating user identity in vehicular networks. However, authentication alone is not enough to prevent dangerous attack situations. Existing security mechanisms are not able to promptly revoke the credentials of misbehaving vehicles, thus tolerate malicious actors to remain trusted in the system for a long time. The resulting vulnerability window allows the implementation of complex attacks, thus posing a substantial impairment to the security of the vehicular ecosystem. In this paper we propose a Distributed Ledger-based Vehicular Revocation Scheme that improves the state of the art by providing a vulnerability window lower than 1 s, reducing well-behaved vehicles exposure to sophisticated and potentially dangerous attacks. The proposed scheme harnesses the advantages of the underlying Distributed Ledger Technology (DLT) to implement a privacy-aware revocation process while being fully transparent to all participating entities. Furthermore, it meets the critical message processing times defined by EU and US standards, thus closing a critical gap in the current international standards. Theoretical analysis and experimental validation demonstrate the effectiveness and efficiency of the proposed scheme, where DLT streamlines the revocation operation overhead and delivers an economically viable yet scalable solution against cyber attacks on vehicular systems

    Towards a Reliable Machine Learning Based Global Misbehavior Detection in C-ITS: Model Evaluation Approach

    Get PDF
    International audienceGlobal misbehavior detection in Cooperative Intelligent Transport Systems (C-ITS) is carried out by a central entity named Misbe-havior Authority (MA). The detection is based on local misbehavior detection information sent by Vehicle's On-Board Units (OBUs) and by RoadSide Units (RSUs) called Misbehavior Reports (MBRs) to the MA. By analyzing these Misbehavior Reports (MBRs), the MA is able to compute various misbehavior detection information. In this work, we propose and evaluate different Machine Learning (ML) based solutions for the internal detection process of the MA. We show through extensive simulation and several detection metrics the ability of solutions to precisely identify different misbehavior types

    RSU-Based Online Intrusion Detection and Mitigation for VANET

    Full text link
    Secure vehicular communication is a critical factor for secure traffic management. Effective security in intelligent transportation systems (ITS) requires effective and timely intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-service (DDoS) attacks, especially the stealthy DDoS attacks, targeting the integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel statistical intrusion detection and mitigation techniques based on centralized communications through roadside units (RSU) are proposed for the considered attacks. The performance of the proposed methods are evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior performance of the proposed methods in terms of quick and accurate detection and localization of cyberattacks
    corecore