3 research outputs found

    Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic information as model predictors

    No full text
    Air temperature modelling is a paramount task for practical applications such as agricultural production, designing energy-efficient buildings, harnessing of solar energy, health-risk assessments, and weather prediction. This paper entails the design and application of data-intelligent models for air temperature estimation without climate-based inputs, where only the geographic factors (i.e., latitude, longitude, altitude, & periodicity or the monthly cycle) are used in the model design procedure performed for a large spatial study region of Madhya Pradesh, central India. The evaluated data-intelligent models considered are: generalized regression neural network (GRNN), multivariate adaptive regression splines (MARS), random forest (RF), and extreme learning machines (ELM), where the forecasted results are cross-validated independently at 11 sparsely distributed sites. Observed and forecasted temperature is benchmarked with the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe’s coefficient (E), Legates & McCabe’s Index (LMI), and the spatially-represented temperature maps. In accordance with statistical metrics, the temperature forecasting accuracy of the GRNN model exceeds that of the MARS, RF and ELM models, as did the overall areal-averaged results for all tested sites. In terms of the global performance indicator (GPI; as a universal metric combining the expanded uncertainty, U95 and t-statistic at 95% confidence interval with conventional metrics, bias error, R2, RMSE) providing a complete assessment of the site-averaged results, the GRNN model yielded a GPI = 0.0181 vs. 0.0451, 0.1461 and 0.6736 for the MARS, RF and ELM models, respectively, which concurred with deductions made using U95 and t-statistic. Spatial maps for the cool winter, hot summer and monsoon seasons also confirmed the preciseness of the GRNN model, as did the 12-monthly average annual maps, and the inter-model evaluation of the most accurate and the least accurate sites using Taylor diagrams comparing the RMSE-centered difference and the correlations with observed data. In accordance with the results, the study ascertains that the GRNN model was a qualified data-intelligent tool for temperature estimation without a need for climate-based inputs, at least in the present investigation, and this model can be explored for its utility in energy management, building and construction, agriculture, heatwave studies, health and other socio-economic areas, particularly in data-sparse regions where only geographic and topographic factors are utilized for temperature forecasting

    Disruptive Technologies in Agricultural Operations: A Systematic Review of AI-driven AgriTech Research

    Get PDF
    YesThe evolving field of disruptive technologies has recently gained significant interest in various industries, including agriculture. The fourth industrial revolution has reshaped the context of Agricultural Technology (AgriTech) with applications of Artificial Intelligence (AI) and a strong focus on data-driven analytical techniques. Motivated by the advances in AgriTech for agrarian operations, the study presents a state-of-the-art review of the research advances which are, evolving in a fast pace over the last decades (due to the disruptive potential of the technological context). Following a systematic literature approach, we develop a categorisation of the various types of AgriTech, as well as the associated AI-driven techniques which form the continuously shifting definition of AgriTech. The contribution primarily draws on the conceptualisation and awareness about AI-driven AgriTech context relevant to the agricultural operations for smart, efficient, and sustainable farming. The study provides a single normative reference for the definition, context and future directions of the field for further research towards the operational context of AgriTech. Our findings indicate that AgriTech research and the disruptive potential of AI in the agricultural sector are still in infancy in Operations Research. Through the systematic review, we also intend to inform a wide range of agricultural stakeholders (farmers, agripreneurs, scholars and practitioners) and to provide research agenda for a growing field with multiple potentialities for the future of the agricultural operations

    Sources of Atmospheric Fine Particles and Adsorbed Polycyclic Aromatic Hydrocarbons in Syracuse, New York

    Get PDF
    Land surface temperature (LST) images from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor have been widely utilized across scientific disciplines for a variety of purposes. The goal of this dissertation was to utilize MODIS LST for three spatial modeling applications within the conterminous United States (CONUS). These topics broadly encompassed agriculture and human health. The first manuscript compared the performance of all methods previously used to interpolate missing values in 8-day MODIS LST images. At low cloud cover (\u3c30%), the Spline spatial method outperformed all of the temporal and spatiotemporal methods by a wide margin, with median absolute errors (MAEs) ranging from 0.2°C-0.6°C. However, the Weiss spatiotemporal method generally performed best at greater cloud cover, with MAEs ranging from 0.3°C-1.2°C. Considering the distribution of cloud contamination and difficulty of implementing Weiss, using Spline under all conditions for simplicity would be sufficient. The second manuscript compared the corn yield predictive capability across the US Corn Belt of a novel killing degree day metric (LST KDD), computed with daily MODIS LST, and a traditional air temperature-based metric (Tair KDD). LST KDD was capable of predicting annual corn yield with considerably less error than Tair KDD (R2 /RMSE of 0.65/15.3 Bu/Acre vs. 0.56/17.2 Bu/Acre). The superior performance can be attributed to LST’s ability to better reflect evaporative cooling and water stress. Moreover, these findings suggest that long-term yield projections based on Tair and precipitation alone will contain error, especially for years of extreme drought. Finally, the third manuscript assessed the extent to which daily maximum heat index (HI) across the CONUS can be estimated by MODIS multispectral imagery in conjunction with land cover, topographic, and locational factors. The derived model was capable of estimating HI in 2012 with an acceptable level of error (R 2 = 0.83, RMSE = 4.4°F). LST and water vapor (WV) were, by far, the most important variables for estimation. Expanding this analytical framework to a more extensive study area (both temporally and spatially) would further validate these findings. Moreover, identifying an appropriate interpolation and downscaling approach for daily MODIS imagery would substantially increase the utility of the corn yield and HI models
    corecore