1,444 research outputs found

    Learning Deep Representations of Appearance and Motion for Anomalous Event Detection

    Full text link
    We present a novel unsupervised deep learning framework for anomalous event detection in complex video scenes. While most existing works merely use hand-crafted appearance and motion features, we propose Appearance and Motion DeepNet (AMDN) which utilizes deep neural networks to automatically learn feature representations. To exploit the complementary information of both appearance and motion patterns, we introduce a novel double fusion framework, combining both the benefits of traditional early fusion and late fusion strategies. Specifically, stacked denoising autoencoders are proposed to separately learn both appearance and motion features as well as a joint representation (early fusion). Based on the learned representations, multiple one-class SVM models are used to predict the anomaly scores of each input, which are then integrated with a late fusion strategy for final anomaly detection. We evaluate the proposed method on two publicly available video surveillance datasets, showing competitive performance with respect to state of the art approaches.Comment: Oral paper in BMVC 201

    Efficient illumination independent appearance-based face tracking

    Get PDF
    One of the major challenges that visual tracking algorithms face nowadays is being able to cope with changes in the appearance of the target during tracking. Linear subspace models have been extensively studied and are possibly the most popular way of modelling target appearance. We introduce a linear subspace representation in which the appearance of a face is represented by the addition of two approxi- mately independent linear subspaces modelling facial expressions and illumination respectively. This model is more compact than previous bilinear or multilinear ap- proaches. The independence assumption notably simplifies system training. We only require two image sequences. One facial expression is subject to all possible illumina- tions in one sequence and the face adopts all facial expressions under one particular illumination in the other. This simple model enables us to train the system with no manual intervention. We also revisit the problem of efficiently fitting a linear subspace-based model to a target image and introduce an additive procedure for solving this problem. We prove that Matthews and Baker’s Inverse Compositional Approach makes a smoothness assumption on the subspace basis that is equiva- lent to Hager and Belhumeur’s, which worsens convergence. Our approach differs from Hager and Belhumeur’s additive and Matthews and Baker’s compositional ap- proaches in that we make no smoothness assumptions on the subspace basis. In the experiments conducted we show that the model introduced accurately represents the appearance variations caused by illumination changes and facial expressions. We also verify experimentally that our fitting procedure is more accurate and has better convergence rate than the other related approaches, albeit at the expense of a slight increase in computational cost. Our approach can be used for tracking a human face at standard video frame rates on an average personal computer

    Metrics with prescribed horizontal bundle on spaces of curve

    Full text link
    We study metrics on the shape space of curves that induce a prescribed splitting of the tangent bundle. More specifically, we consider reparametrization invariant metrics GG on the space Imm(S1,R2)\operatorname{Imm}(S^1,\mathbb R^2) of parametrized regular curves. For many metrics the tangent space TcImm(S1,R2)T_c\operatorname{Imm}(S^1,\mathbb R^2) at each curve cc splits into vertical and horizontal components (with respect to the projection onto the shape space Bi(S1,R2)=Imm(S1,R2)/Diff(S1)B_i(S^1,\mathbb R^2)=\operatorname{Imm}(S^1,\mathbb R^2)/\operatorname{Diff}(S^1) of unparametrized curves and with respect to the metric GG). In a previous article we characterized all metrics GG such that the induced splitting coincides with the natural splitting into normal and tangential parts. In these notes we extend this analysis to characterize all metrics that induce any prescribed splitting of the tangent bundle.Comment: 7 pages in Proceedings of Math On The Rocks Shape Analysis Workshop in Grundsund. Zenod

    Object Tracking and Mensuration in Surveillance Videos

    Get PDF
    This thesis focuses on tracking and mensuration in surveillance videos. The first part of the thesis discusses several object tracking approaches based on the different properties of tracking targets. For airborne videos, where the targets are usually small and with low resolutions, an approach of building motion models for foreground/background proposed in which the foreground target is simplified as a rigid object. For relatively high resolution targets, the non-rigid models are applied. An active contour-based algorithm has been introduced. The algorithm is based on decomposing the tracking into three parts: estimate the affine transform parameters between successive frames using particle filters; detect the contour deformation using a probabilistic deformation map, and regulate the deformation by projecting the updated model onto a trained shape subspace. The active appearance Markov chain (AAMC). It integrates a statistical model of shape, appearance and motion. In the AAMC model, a Markov chain represents the switching of motion phases (poses), and several pairwise active appearance model (P-AAM) components characterize the shape, appearance and motion information for different motion phases. The second part of the thesis covers video mensuration, in which we have proposed a heightmeasuring algorithm with less human supervision, more flexibility and improved robustness. From videos acquired by an uncalibrated stationary camera, we first recover the vanishing line and the vertical point of the scene. We then apply a single view mensuration algorithm to each of the frames to obtain height measurements. Finally, using the LMedS as the cost function and the Robbins-Monro stochastic approximation (RMSA) technique to obtain the optimal estimate

    Modeling and tracking relative movement of object parts

    Get PDF
    Video surveillance systems play an important role in many civilian and military applications, for the purposes of security and surveillance. Object detection is an important component in a video surveillance system, used to identify possible objects of interest and to generate data for tracking and analysis purposes. Not much exploration has been done to track the moving parts of the object which is being tracked. Some of the promising techniques like Kalman Filter, Mean-shift algorithm, Matching Eigen Space, Discrete Wavelet Transform, Curvelet Transform, Distance Metric Learning have shown good performance for keeping track of moving object. Most of this work is focused on studying and analyzing various object tracking techniques which are available. Most of the techniques which are available for object tracking have heavy computation requirements. The intention of this research is to design a technique, which is not computationally intensive and to be able to track relative movements of object parts in real time. The research applies a technique called foreground detection (also known as background subtraction) for tracking the object as it is not computationally intensive. For tracking the relative movement of object parts, a skeletonization technique is used. During implementation, it is found that using skeletonization technique, it is harder to extract the objects parts
    corecore