12,197 research outputs found

    Beyond Sparsity: Tree Regularization of Deep Models for Interpretability

    Get PDF
    The lack of interpretability remains a key barrier to the adoption of deep models in many applications. In this work, we explicitly regularize deep models so human users might step through the process behind their predictions in little time. Specifically, we train deep time-series models so their class-probability predictions have high accuracy while being closely modeled by decision trees with few nodes. Using intuitive toy examples as well as medical tasks for treating sepsis and HIV, we demonstrate that this new tree regularization yields models that are easier for humans to simulate than simpler L1 or L2 penalties without sacrificing predictive power.Comment: To appear in AAAI 2018. Contains 9-page main paper and appendix with supplementary materia

    NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation

    Full text link
    Complex computational models are often designed to simulate real-world physical phenomena in many scientific disciplines. However, these simulation models tend to be computationally very expensive and involve a large number of simulation input parameters which need to be analyzed and properly calibrated before the models can be applied for real scientific studies. We propose a visual analysis system to facilitate interactive exploratory analysis of high-dimensional input parameter space for a complex yeast cell polarization simulation. The proposed system can assist the computational biologists, who designed the simulation model, to visually calibrate the input parameters by modifying the parameter values and immediately visualizing the predicted simulation outcome without having the need to run the original expensive simulation for every instance. Our proposed visual analysis system is driven by a trained neural network-based surrogate model as the backend analysis framework. Surrogate models are widely used in the field of simulation sciences to efficiently analyze computationally expensive simulation models. In this work, we demonstrate the advantage of using neural networks as surrogate models for visual analysis by incorporating some of the recent advances in the field of uncertainty quantification, interpretability and explainability of neural network-based models. We utilize the trained network to perform interactive parameter sensitivity analysis of the original simulation at multiple levels-of-detail as well as recommend optimal parameter configurations using the activation maximization framework of neural networks. We also facilitate detail analysis of the trained network to extract useful insights about the simulation model, learned by the network, during the training process.Comment: Published at IEEE Transactions on Visualization and Computer Graphic

    Processing Internal Hard Drives - no cover page

    Get PDF

    Processing Internal Hard Drives - cover page

    Get PDF
    As archives receive born digital materials more and more frequently, the challenge of dealing with a variety of hardware and formats is becoming omnipresent. This paper outlines a case study that provides a practical, step-by-step guide to archiving files on legacy hard drives dating from the early 1990s to the mid-2000s. The project used a digital forensics approach to provide access to the contents of the hard drives without compromising the integrity of the files. Relying largely on open source software, the project imaged each hard drive in its entirety, then identified folders and individual files of potential high use for upload to the University of Texas Digital Repository. The project also experimented with data visualizations in order to provide researchers who would not have access to the full disk images—a sense of the contents and context of the full drives. The greatest challenge philosophically was answering the question of whether scholars should be able to view deleted materials on the drives that donors may not have realized were accessible
    • …
    corecore