1,986 research outputs found

    Deep Reinforcement Learning in Surgical Robotics: Enhancing the Automation Level

    Full text link
    Surgical robotics is a rapidly evolving field that is transforming the landscape of surgeries. Surgical robots have been shown to enhance precision, minimize invasiveness, and alleviate surgeon fatigue. One promising area of research in surgical robotics is the use of reinforcement learning to enhance the automation level. Reinforcement learning is a type of machine learning that involves training an agent to make decisions based on rewards and punishments. This literature review aims to comprehensively analyze existing research on reinforcement learning in surgical robotics. The review identified various applications of reinforcement learning in surgical robotics, including pre-operative, intra-body, and percutaneous procedures, listed the typical studies, and compared their methodologies and results. The findings show that reinforcement learning has great potential to improve the autonomy of surgical robots. Reinforcement learning can teach robots to perform complex surgical tasks, such as suturing and tissue manipulation. It can also improve the accuracy and precision of surgical robots, making them more effective at performing surgeries

    Smart Navigation in Surgical Robotics

    Get PDF
    La cirugía mínimamente invasiva, y concretamente la cirugía laparoscópica, ha supuesto un gran cambio en la forma de realizar intervenciones quirúrgicas en el abdomen. Actualmente, la cirugía laparoscópica ha evolucionado hacia otras técnicas aún menos invasivas, como es la cirugía de un solo puerto, en inglés Single Port Access Surgery. Esta técnica consiste en realizar una única incisión, por la que son introducidos los instrumentos y la cámara laparoscópica a través de un único trocar multipuerto. La principal ventaja de esta técnica es una reducción de la estancia hospitalaria por parte del paciente, y los resultados estéticos, ya que el trocar se suele introducir por el ombligo, quedando la cicatriz oculta en él. Sin embargo, el hecho de que los instrumentos estén introducidos a través del mismo trocar hace la intervención más complicada para el cirujano, que necesita unas habilidades específicas para este tipo de intervenciones. Esta tesis trata el problema de la navegación de instrumentos quirúrgicos mediante plataformas robóticas teleoperadas en cirugía de un solo puerto. En concreto, se propone un método de navegación que dispone de un centro de rotación remoto virtual, el cuál coincide con el punto de inserción de los instrumentos (punto de fulcro). Para estimar este punto se han empleado las fuerzas ejercidas por el abdomen en los instrumentos quirúrgicos, las cuales han sido medidas por sensores de esfuerzos colocados en la base de los instrumentos. Debido a que estos instrumentos también interaccionan con tejido blando dentro del abdomen, lo cual distorsionaría la estimación del punto de inserción, es necesario un método que permita detectar esta circunstancia. Para solucionar esto, se ha empleado un detector de interacción con tejido basado en modelos ocultos de Markov el cuál se ha entrenado para detectar cuatro gestos genéricos. Por otro lado, en esta tesis se plantea el uso de guiado háptico para mejorar la experiencia del cirujano cuando utiliza plataformas robóticas teleoperadas. En concreto, se propone la técnica de aprendizaje por demostración (Learning from Demonstration) para generar fuerzas que puedan guiar al cirujano durante la resolución de tareas específicas. El método de navegación propuesto se ha implantado en la plataforma quirúrgica CISOBOT, desarrollada por la Universidad de Málaga. Los resultados experimentales obtenidos validan tanto el método de navegación propuesto, como el detector de interacción con tejido blando. Por otro lado, se ha realizado un estudio preliminar del sistema de guiado háptico. En concreto, se ha empleado una tarea genérica, la inserción de una clavija, para realizar los experimentos necesarios que permitan demostrar que el método propuesto es válido para resolver esta tarea y otras similares

    The Influence of Surgical Robotics

    Get PDF
    Over the past thirty years, the presence of surgical robotics has increased dramatically. This type of robot is projected to increased surgical dexterity, decreased recovery time, and overall fewer complications. While surgical robotics is only in its beginnings, it promises to change the medical landscape so that surgeries can be carried out with more precision and accuracy. Many in the medical field are excited by these new developments, as it would lead to better patient care and more successful surgeries. However, there are those who are not convinced that soft robotics is safe for widespread use, due to the current limitations of the technology and materials

    SPRK: A Low-Cost Stewart Platform For Motion Study In Surgical Robotics

    Full text link
    To simulate body organ motion due to breathing, heart beats, or peristaltic movements, we designed a low-cost, miniaturized SPRK (Stewart Platform Research Kit) to translate and rotate phantom tissue. This platform is 20cm x 20cm x 10cm to fit in the workspace of a da Vinci Research Kit (DVRK) surgical robot and costs $250, two orders of magnitude less than a commercial Stewart platform. The platform has a range of motion of +/- 1.27 cm in translation along x, y, and z directions and has motion modes for sinusoidal motion and breathing-inspired motion. Modular platform mounts were also designed for pattern cutting and debridement experiments. The platform's positional controller has a time-constant of 0.2 seconds and the root-mean-square error is 1.22 mm, 1.07 mm, and 0.20 mm in x, y, and z directions respectively. All the details, CAD models, and control software for the platform is available at github.com/BerkeleyAutomation/sprk

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    A methodology for design and appraisal of surgical robotic systems

    Get PDF
    Surgical robotics is a growing discipline, continuously expanding with an influx of new ideas and research. However, it is important that the development of new devices take account of past mistakes and successes. A structured approach is necessary, as with proliferation of such research, there is a danger that these lessons will be obscured, resulting in the repetition of mistakes and wasted effort and energy. There are several research paths for surgical robotics, each with different risks and opportunities and different methodologies to reach a profitable outcome. The main emphasis of this paper is on a methodology for ‘applied research’ in surgical robotics. The methodology sets out a hierarchy of criteria consisting of three tiers, with the most important being the bottom tier and the least being the top tier. It is argued that a robotic system must adhere to these criteria in order to achieve acceptability. Recent commercial systems are reviewed against these criteria, and are found to conform up to at least the bottom and intermediate tiers, the most important first two tiers, and thus gain some acceptability. However, the lack of conformity to the criteria in the top tier, and the inability to conclusively prove increased clinical benefit, is shown to be hampering their potential in gaining wide establishment

    Fast and Reliable Autonomous Surgical Debridement with Cable-Driven Robots Using a Two-Phase Calibration Procedure

    Full text link
    Automating precision subtasks such as debridement (removing dead or diseased tissue fragments) with Robotic Surgical Assistants (RSAs) such as the da Vinci Research Kit (dVRK) is challenging due to inherent non-linearities in cable-driven systems. We propose and evaluate a novel two-phase coarse-to-fine calibration method. In Phase I (coarse), we place a red calibration marker on the end effector and let it randomly move through a set of open-loop trajectories to obtain a large sample set of camera pixels and internal robot end-effector configurations. This coarse data is then used to train a Deep Neural Network (DNN) to learn the coarse transformation bias. In Phase II (fine), the bias from Phase I is applied to move the end-effector toward a small set of specific target points on a printed sheet. For each target, a human operator manually adjusts the end-effector position by direct contact (not through teleoperation) and the residual compensation bias is recorded. This fine data is then used to train a Random Forest (RF) to learn the fine transformation bias. Subsequent experiments suggest that without calibration, position errors average 4.55mm. Phase I can reduce average error to 2.14mm and the combination of Phase I and Phase II can reduces average error to 1.08mm. We apply these results to debridement of raisins and pumpkin seeds as fragment phantoms. Using an endoscopic stereo camera with standard edge detection, experiments with 120 trials achieved average success rates of 94.5%, exceeding prior results with much larger fragments (89.4%) and achieving a speedup of 2.1x, decreasing time per fragment from 15.8 seconds to 7.3 seconds. Source code, data, and videos are available at https://sites.google.com/view/calib-icra/.Comment: Code, data, and videos are available at https://sites.google.com/view/calib-icra/. Final version for ICRA 201
    corecore