3 research outputs found

    An All-Mach Number HLLC-Based Scheme for Multi-Phase Flow with Surface Tension

    Get PDF
    This paper presents an all-Mach method for two-phase inviscid flow in the presence of surface tension. A modified version of the Hartens–Lax–van Leer Contact (HLLC) solver is developed and combined for the first time with a widely used volume-of-fluid (VoF) method: the compressive interface capturing scheme for arbitrary meshes (CICSAM). This novel combination yields a scheme with both HLLC shock capturing as well as accurate liquid–gas interface tracking characteristics. It is achieved by reconstructing non-conservative (primitive) variables in a consistent manner to yield both robustness and accuracy. Liquid–gas interface curvature is computed via height functions and the convolution method. We emphasize the use of VoF in the interest of interface accuracy when modelling surface tension effects. The method is validated using a range of test-cases available in the literature. The results show flow features that are in sensible agreement with previous experimental and numerical work. In particular, the use of the HLLC-VoF combination leads to a sharp volume fraction and energy field with improved accuracy

    An all-Mach number HLLC-based scheme for multi-phase flow with surface tension

    Get PDF
    This paper presents an all-Mach method for two-phase inviscid flow in the presence of surface tension. A modified version of the Hartens–Lax–van Leer Contact (HLLC) solver is developed and combined for the first time with a widely used volume-of-fluid (VoF) method: the compressive interface capturing scheme for arbitrary meshes (CICSAM). This novel combination yields a scheme with both HLLC shock capturing as well as accurate liquid–gas interface tracking characteristics. It is achieved by reconstructing non-conservative (primitive) variables in a consistent manner to yield both robustness and accuracy. Liquid–gas interface curvature is computed via height functions and the convolution method. We emphasize the use of VoF in the interest of interface accuracy when modelling surface tension effects. The method is validated using a range of test-cases available in the literature. The results show flow features that are in sensible agreement with previous experimental and numerical work. In particular, the use of the HLLC-VoF combination leads to a sharp volume fraction and energy field with improved accuracy

    Surface tension for compressible fluids in ALE framework

    No full text
    International audienceWe describe an Arbitrary-Lagrangian-Eulerian (ALE) method for the compressible Euler system with capillary force. The algorithm is split in two steps. First, the Lagrangian step is based on cell-centred schemes [9], [20], [46]. The surface tension force is discretized in order to exactly verify the Laplace law at the discrete level. We also provide a second-order spatial extension and a low-Mach correction, which do not break the well-balanced property of the scheme. The Lagrangian scheme is assessed on several problems, particularly on a linear Richtmyer-Meshkov instability which is the targeted application. The second step is the rezoning and remapping done thanks to a swept-region method using exact intersections near the interface. We use a Volume Of Fluid (VOF) method to track the interface. We describe the treatment of mixed-cells, and in particular the thermodynamics closure and the curvature calculation. The new scheme is used to investigate the influence of surface tension on a non-linear Richtmyer-Meshkov instability
    corecore