2,801 research outputs found

    An obstruction to Delaunay triangulations in Riemannian manifolds

    Get PDF
    Delaunay has shown that the Delaunay complex of a finite set of points PP of Euclidean space Rm\mathbb{R}^m triangulates the convex hull of PP, provided that PP satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be defined for arbitrary Riemannian manifolds. However, Delaunay's genericity assumption no longer guarantees that the Delaunay complex will yield a triangulation; stronger assumptions on PP are required. A natural one is to assume that PP is sufficiently dense. Although results in this direction have been claimed, we show that sample density alone is insufficient to ensure that the Delaunay complex triangulates a manifold of dimension greater than 2.Comment: This is a revision and extension of a note that appeared as an appendix in the (otherwise unpublished) report arXiv:1303.649

    Constructing Intrinsic Delaunay Triangulations of Submanifolds

    Get PDF
    We describe an algorithm to construct an intrinsic Delaunay triangulation of a smooth closed submanifold of Euclidean space. Using results established in a companion paper on the stability of Delaunay triangulations on δ\delta-generic point sets, we establish sampling criteria which ensure that the intrinsic Delaunay complex coincides with the restricted Delaunay complex and also with the recently introduced tangential Delaunay complex. The algorithm generates a point set that meets the required criteria while the tangential complex is being constructed. In this way the computation of geodesic distances is avoided, the runtime is only linearly dependent on the ambient dimension, and the Delaunay complexes are guaranteed to be triangulations of the manifold

    A Cosmic Watershed: the WVF Void Detection Technique

    Get PDF
    On megaparsec scales the Universe is permeated by an intricate filigree of clusters, filaments, sheets and voids, the Cosmic Web. For the understanding of its dynamical and hierarchical history it is crucial to identify objectively its complex morphological components. One of the most characteristic aspects is that of the dominant underdense Voids, the product of a hierarchical process driven by the collapse of minor voids in addition to the merging of large ones. In this study we present an objective void finder technique which involves a minimum of assumptions about the scale, structure and shape of voids. Our void finding method, the Watershed Void Finder (WVF), is based upon the Watershed Transform, a well-known technique for the segmentation of images. Importantly, the technique has the potential to trace the existing manifestations of a void hierarchy. The basic watershed transform is augmented by a variety of correction procedures to remove spurious structure resulting from sampling noise. This study contains a detailed description of the WVF. We demonstrate how it is able to trace and identify, relatively parameter free, voids and their surrounding (filamentary and planar) boundaries. We test the technique on a set of Kinematic Voronoi models, heuristic spatial models for a cellular distribution of matter. Comparison of the WVF segmentations of low noise and high noise Voronoi models with the quantitatively known spatial characteristics of the intrinsic Voronoi tessellation shows that the size and shape of the voids are succesfully retrieved. WVF manages to even reproduce the full void size distribution function.Comment: 24 pages, 15 figures, MNRAS accepted, for full resolution, see http://www.astro.rug.nl/~weygaert/tim1publication/watershed.pd

    Computing a Compact Spline Representation of the Medial Axis Transform of a 2D Shape

    Full text link
    We present a full pipeline for computing the medial axis transform of an arbitrary 2D shape. The instability of the medial axis transform is overcome by a pruning algorithm guided by a user-defined Hausdorff distance threshold. The stable medial axis transform is then approximated by spline curves in 3D to produce a smooth and compact representation. These spline curves are computed by minimizing the approximation error between the input shape and the shape represented by the medial axis transform. Our results on various 2D shapes suggest that our method is practical and effective, and yields faithful and compact representations of medial axis transforms of 2D shapes.Comment: GMP14 (Geometric Modeling and Processing

    The persistent cosmic web and its filamentary structure II: Illustrations

    Full text link
    The recently introduced discrete persistent structure extractor (DisPerSE, Soubie 2010, paper I) is implemented on realistic 3D cosmological simulations and observed redshift catalogues (SDSS); it is found that DisPerSE traces equally well the observed filaments, walls, and voids in both cases. In either setting, filaments are shown to connect onto halos, outskirt walls, which circumvent voids. Indeed this algorithm operates directly on the particles without assuming anything about the distribution, and yields a natural (topologically motivated) self-consistent criterion for selecting the significance level of the identified structures. It is shown that this extraction is possible even for very sparsely sampled point processes, as a function of the persistence ratio. Hence astrophysicists should be in a position to trace and measure precisely the filaments, walls and voids from such samples and assess the confidence of the post-processed sets as a function of this threshold, which can be expressed relative to the expected amplitude of shot noise. In a cosmic framework, this criterion is comparable to friend of friend for the identifications of peaks, while it also identifies the connected filaments and walls, and quantitatively recovers the full set of topological invariants (Betti numbers) {\sl directly from the particles} as a function of the persistence threshold. This criterion is found to be sufficient even if one particle out of two is noise, when the persistence ratio is set to 3-sigma or more. The algorithm is also implemented on the SDSS catalogue and used to locat interesting configurations of the filamentary structure. In this context we carried the identification of an ``optically faint'' cluster at the intersection of filaments through the recent observation of its X-ray counterpart by SUZAKU. The corresponding filament catalogue will be made available online.Comment: A higher resolution version is available at http://www.iap.fr/users/sousbie together with complementary material (movie and data). Submitted to MNRA

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Only distances are required to reconstruct submanifolds

    Get PDF
    In this paper, we give the first algorithm that outputs a faithful reconstruction of a submanifold of Euclidean space without maintaining or even constructing complicated data structures such as Voronoi diagrams or Delaunay complexes. Our algorithm uses the witness complex and relies on the stability of power protection, a notion introduced in this paper. The complexity of the algorithm depends exponentially on the intrinsic dimension of the manifold, rather than the dimension of ambient space, and linearly on the dimension of the ambient space. Another interesting feature of this work is that no explicit coordinates of the points in the point sample is needed. The algorithm only needs the distance matrix as input, i.e., only distance between points in the point sample as input.Comment: Major revision, 16 figures, 47 page
    corecore