9,589 research outputs found

    Hierarchic plate and shell models based on p-extension

    Get PDF
    Formulations of finite element models for beams, arches, plates and shells based on the principle of virtual work was studied. The focus is on computer implementation of hierarchic sequences of finite element models suitable for numerical solution of a large variety of practical problems which may concurrently contain thin and thick plates and shells, stiffeners, and regions where three dimensional representation is required. The approximate solutions corresponding to the hierarchic sequence of models converge to the exact solution of the fully three dimensional model. The stopping criterion is based on: (1) estimation of the relative error in energy norm; (2) equilibrium tests, and (3) observation of the convergence of quantities of interest

    GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    Get PDF
    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D

    Structural Response Analyses of Piezoelectric Composites using NURBS

    Get PDF
    Variational method deduced on the basis of the minimum potential energy is an efficient method to find solutions for complex engineering problems. In structural mechanics, the potential energy comprises strain energy, kinetic energy and the work done by external actions. To obtain these, the displacement are required as a priori. This research is concerned with the development of a numerical method based on variational principles to analyze piezoelectric composite plates and solids. A Non-Uniform Rational B-Spline (NURBS) function is used for describing both the geometry and electromechanical displacement fields. Two dimensional plate models are formulated according to the first order shear deformable plate theory for mechanical displacement. The electric potential varies non-linearly through the thickness, this variation is modelled by a discrete layer-wise linear variation. The matrix equations of motion are reported for piezoelectric sensors, actuator, and power harvester. Normal mode summation technique is applied to study the frequency response of displacement, voltage and the power output. A full three dimensional model is also developed to study the dynamics of piezoelectric sandwich structures. Simulations are provided for thick plates using plate theory and three dimensional models to verify the applicability of those theories in their regime. Newmark’s direct integration technique and a fourth order Runge-Kutta method were used to study the transient vibration. The variational method developed in this thesis can be applied to other structural mechanics problem

    Steady and Stable: Numerical Investigations of Nonlinear Partial Differential Equations

    Full text link
    Excerpt: Mathematics is a language which can describe patterns in everyday life as well as abstract concepts existing only in our minds. Patterns exist in data, functions, and sets constructed around a common theme, but the most tangible patterns are visual. Visual demonstrations can help undergraduate students connect to abstract concepts in advanced mathematical courses. The study of partial differential equations, in particular, benefits from numerical analysis and simulation

    Reduced-order modeling of transonic flows around an airfoil submitted to small deformations

    Get PDF
    A reduced-order model (ROM) is developed for the prediction of unsteady transonic flows past an airfoil submitted to small deformations, at moderate Reynolds number. Considering a suitable state formulation as well as a consistent inner product, the Galerkin projection of the compressible flow Navier–Stokes equations, the high-fidelity (HF) model, onto a low-dimensional basis determined by Proper Orthogonal Decomposition (POD), leads to a polynomial quadratic ODE system relevant to the prediction of main flow features. A fictitious domain deformation technique is yielded by the Hadamard formulation of HF model and validated at HF level. This approach captures airfoil profile deformation by a modification of the boundary conditions whereas the spatial domain remains unchanged. A mixed POD gathering information from snapshot series associated with several airfoil profiles can be defined. The temporal coefficients in POD expansion are shape-dependent while spatial POD modes are not. In the ROM, airfoil deformation is introduced by a steady forcing term. ROM reliability towards airfoil deformation is demonstrated for the prediction of HF-resolved as well as unknown intermediate configurations

    Approximation of the critical buckling factor for composite panels

    Get PDF
    This article is concerned with the approximation of the critical buckling factor for thin composite plates. A new method to improve the approximation of this critical factor is applied based on its behavior with respect to lamination parameters and loading conditions. This method allows accurate approximation of the critical buckling factor for non-orthotropic laminates under complex combined loadings (including shear loading). The influence of the stacking sequence and loading conditions is extensively studied as well as properties of the critical buckling factor behavior (e.g concavity over tensor D or out-of-plane lamination parameters). Moreover, the critical buckling factor is numerically shown to be piecewise linear for orthotropic laminates under combined loading whenever shear remains low and it is also shown to be piecewise continuous in the general case. Based on the numerically observed behavior, a new scheme for the approximation is applied that separates each buckling mode and builds linear, polynomial or rational regressions for each mode. Results of this approach and applications to structural optimization are presented

    Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Memory Networks

    Full text link
    We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.Comment: 31 page

    Compact modeling of thin-film silicon transistors fabricated on glass

    Get PDF
    The semiconductor industry, now entering its seventh decade, continues to innovate and evolve at a breakneck pace. E. O. Wilson, the famous Harvard biologist who is an expert on ants, estimates that there are 1017 ants on earth. The semiconductor industry is now shipping 100 transistors per ant every year. In addition, the pace of growth means we are building more electronics in a year than existed on January 1st of that year! A major driver for this growth in recent years is the portable consumer electronics market which includes cell phones, personal digital assistants, and tablets. The focus of this dissertation is centered on a new thin-film silicon technology on glass introduced by Corning Inc., and targeted to meet the needs of the portable product display market. The work presented in this dissertation revolves around a new technology developed by Corning Inc. known as Silicon on Glass or SiOG which permits the transfer of a thin single-crystal silicon film to a glass substrate. This technology coupled with a low-temperature CMOS process has the potential to create devices with performance characteristics rivaling those developed using conventional bulk CMOS processes. These higher performing devices permit an increased level of circuit integration directly on the glass substrate and have the potential to enable new display technologies such as OLED (Organic Light Emitting Diode). The SiOG CMOS devices are distinctly different from traditional thin-film, silicon-on-insulator, and bulk CMOS devices in that they rely on both surface and bulk conduction. Furthermore, their current-voltage characteristics are heavily influenced by fringing electric fields in the glass substrate. This dissertation presents an overview of display technology as well as a review of computer- aided design tools for integrated circuit development with a focus on compact modeling. In addition, some early work on developing advanced OLED display driver circuits using SiOG technology is presented.The bulk of this dissertation is focused on the development of compact models which properly describe the electrical characteristics of SiOG CMOS devices. For all but the most trivial cases, the set of coupled nonlinear partial differential equations that describe semiconductor device behavior has not been solved analytically. Even when the semiconductor equations that represent current flow, charge distribution, and potential distribution are decoupled and device-specific simplifications are applied, analytic solutions remain elusive. Two different methods for developing compact models for the SiOG CMOS devices are presented with distinct methods for developing approximate solutions. In addition, a model for the fringing electric field is developed using conformal mapping techniques, and its effect on drain current is explored. Finally, a new technique for solving the nonlinear semiconductor equations is explored. The application of a new mathematical technique known as the Homotopy Analysis Method (HAM) is presented as it relates to the general Poisson\u27s equation for semiconductor devices
    corecore