98,049 research outputs found

    Connected systems in smart cities: use-cases of integration of buildings information with smart systems

    Get PDF
    Realisation of smart cities is highly dependent on innovative connections between the deployed systems in the cities. This implies that successfully deployment of individual smart systems which meet citizens’ needs, is not sufficient to make a city smart. Indeed, the smart cities require to innovate and connect establish infrastructures for the citizens and organisations. To enable connected systems in smart cities, the possibilities to exchange and integration information between different systems is essential. Construction industry is one of the domains which owns huge amount of valuable information asset. Buildings information can be utilised to create initiatives associated with various domains like, urban and infrastructure planning, maintenance/facility management, and energy monitoring. However, there are some barriers to realise these initiatives. This paper introduces and elaborates the details about three use-cases which need to utilise buildings information to present innovative smart services. The three use cases are: 1) Energy Usage Monitoring for positive energy usage district areas in Smart Cities (a use case from River City-anonymous name of the city); 2) Services for Facility Management Industry (a use-case from Estates office in Quay University); 3) Safety & risk management for buildings in 3D Hack event in Dublin. Each use-case considers various stakeholders’ perspectives. Also they include elaborated details related to the barriers and challenges associated with utilisation and integration of buildings information. This paper concludes by the detailed barriers to benefit from valuable buildings information to create innovative smart services. Further, recommendations are provided to overcome the presented challenges

    The role of urban living labs in a smart city

    Get PDF
    In a rapidly changing socio-technical environment cities are increasingly seen as main drivers for change. Against this backdrop, this paper studies the emerging Urban Living Lab and Smart City concepts from a project based perspective, by assessing a series of five Smart City initiatives within one local city ecosystem. A conceptual and analytical framework is used to analyse the architecture, nature and outcomes of the Smart City Ghent and the role of Urban Living Labs. The results of our analysis highlight the potential for social value creation and urban transition. However, current Smart City initiatives face the challenge of evolving from demonstrators towards real sustainable value. Furthermore, Smart Cities often have a technological deterministic, project-based approach, which forecloses a sustainable, permanent and growing future for the project outcomes. ‘City-governed’ Urban Living Labs have an interesting potential to overcome some of the identified challenges

    Sustainable Strategic Urban Planning: Methodology for Urban Renovation At District Level

    Get PDF
    Sustainable urban renovation is characterized by multiple factors (e.g. technical, socio-economic, environmental and ethical perspectives), different spatial scales and a number of administrative structures that should address the evaluation of alternative scenarios or solutions. This defines a complex decision problem that includes different stakeholders where several aspects need to be considered simultaneously. In spite of the knowledge and experiences during the recent years, there is a need of methods that lead the decision-making processes. In response, a methodology based on the global idea and implications of working towards a more sustainable and energy efficient cities as a holistic procedure for urban renovation at district level is proposed in the European Smart City project CITyFiED. The methodology has the energy efficiency as main pillar and the local authorities as client. It is composed of seven phases that ensures an effective dialogue among all the stakeholders, aiming to understand the objectives and needs of the city to define a set of Strategies for Sustainable Urban Renovation and their integration within the Strategic Urban Planning of the cities.This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement N° 609129. The authors would like to thank the rest of the partners of the CITyFiED project for their help and support

    Amplifying Quiet Voices: Challenges and Opportunities for Participatory Design at an Urban Scale

    Get PDF
    Many Smart City projects are beginning to consider the role of citizens. However, current methods for engaging urban populations in participatory design activities are somewhat limited. In this paper, we describe an approach taken to empower socially disadvantaged citizens, using a variety of both social and technological tools, in a smart city project. Through analysing the nature of citizens’ concerns and proposed solutions, we explore the benefits of our approach, arguing that engaging citizens can uncover hyper-local concerns that provide a foundation for finding solutions to address citizen concerns. By reflecting on our approach, we identify four key challenges to utilising participatory design at an urban scale; balancing scale with the personal, who has control of the process, who is participating and integrating citizen-led work with local authorities. By addressing these challenges, we will be able to truly engage citizens as collaborators in co-designing their city

    A Framework for Integrating Transportation Into Smart Cities

    Get PDF
    In recent years, economic, environmental, and political forces have quickly given rise to “Smart Cities” -- an array of strategies that can transform transportation in cities. Using a multi-method approach to research and develop a framework for smart cities, this study provides a framework that can be employed to: Understand what a smart city is and how to replicate smart city successes; The role of pilot projects, metrics, and evaluations to test, implement, and replicate strategies; and Understand the role of shared micromobility, big data, and other key issues impacting communities. This research provides recommendations for policy and professional practice as it relates to integrating transportation into smart cities

    Smart Cities and M<sup>3</sup>: Rapid Research, Meaningful Metrics and Co-Design

    Get PDF
    The research described in this paper is undertaken under the banner of the smart city, a concept that captures the way urban spaces are re-made by the incursion of new technology. Much of smart is centred on converting everyday activities into data, and using this data to generate knowledge mediated by technology. Ordinary citizens, those that may have their lives impacted by the technology, usually are not properly involved in the ‘smartification’ process. Their perceptions, concerns and expectations should inform the conception and development of smart technologies at the same extent. How to engage general public with smart cities research is the central challenge for the Making Metrics Meaningful (MMM) project. Applying a rapid participatory method, ‘Imagine’ over a five-month period (March – July) the research sought to gain insights from the general public into novel forms of information system innovation. This brief paper describes the nature of the accelerated research undertaken and explores some of the themes which emerged in the analysis. Generic themes, beyond the remit of an explicit transport focus, are developed and pointers towards further research directions are discussed. Participatory methods, including engaging with self- selected transport users actively through both picture creation and programmatically specific musical ‘signatures’ as well as group discussion, were found to be effective in eliciting users’ own concerns, needs and ideas for novel information systems

    Smart green infrastructure in a smart city – the case study of ecosystem services evaluation in Krakow based on i-Tree Evo software

    Get PDF
    It is a common perception that urban greenery does not bring any rational benefits, while profits from real estates are obvious. Therefore, the cities green infrastructure (urban forests, parks, trees, lawns, meadows, etc.) are constantly threatened with housing and development. However, urban greenery plays a substantial role in improving the quality of urbanites’ life, which is particularly significant in terms of predicted 70% urbanization rate by 2050. Healthy and well managed city green infrastructure can improve air quality, remove particulate matters (PM) and CO2 sequestrate carbon, cool down temperature or protect against winds. These functions of vegetation are known as ecosystem services (ES). Recognizing the value of ES provided by green infrastructure is crucial for urban planning and management in terms of assuring sustainable urban development. In our study we used the i-Tree Eco (USDA Forest Service) software, which quantifies vegetation structure, environmental effects and values of ES. The i-Tree Eco model is based on air pollution and local meteorological data along with the field data from inventory of city vegetation. Requiring easy to collect (e.g. based on LiDAR 3D point clouds) input data and having user-friendly interface, the i-Tree Eco has a potential of becoming a very useful tool for planners and managers in their everyday work. In this paper we present a case study of ES evaluation for the “Krakowski Park” in Krakow (582 trees on 4.77 hectares, with domination of Fraxinus excelsior, Ulmus laevis and Betula pendula). For the analysed 2015 year, the Krakowski Park trees stored in total 441.59 t of carbon, removed 184 kg of air pollutants and contributed to 220 m3 of avoided runoff. Total value of ecosystem services provided by the Krakowski Park in year 2015 was EUR 5.096 (EUR 8.76 tree/year). In our further work we intend to expand the ES evaluation on other green areas in Krakow and on a wider range of ES
    corecore