451 research outputs found

    Supporting multi-resolution out-of-core rendering of massive LiDAR point clouds through non-redundant data structures

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE on 28 Nov 2018, available at: https://doi.org/10.1080/13658816.2018.1549734[Abstract]: In recent years, the evolution and improvement of LiDAR (Light Detection and Ranging) hardware has increased the quality and quantity of the gathered data, making the storage, processing and management thereof particularly challenging. In this work we present a novel, multi-resolution, out-of-core technique, used for web-based visualization and implemented through a non-redundant, data point organization method, which we call Hierarchically Layered Tiles (HLT), and a tree-like structure called Tile Grid Partitioning Tree (TGPT). The design of these elements is mainly focused on attaining very low levels of memory consumption, disk storage usage and network traffic on both, client and server-side, while delivering high-performance interactive visualization of massive LiDAR point clouds (up to 28 billion points) on multiplatform environments (mobile devices or desktop computers). HLT and TGPT were incorporated and tested in ViLMA (Visualization for LiDAR data using a Multi-resolution Approach), our own web-based visualization software specially designed to work with massive LiDAR point clouds.This research was supported by Xunta de Galicia under the Consolidation Programme of Competitive Reference Groups, co-founded by ERDF funds from the EU [Ref. ED431C 2017/04]; Consolidation Programme of Competitive Research Units, co-founded by ERDF funds from the EU [Ref. R2016/037]; Xunta de Galicia (Centro Singular de Investigación de Galicia accreditation 2016/2019) and the European Union (European Regional Development Fund, ERDF) under Grant [Ref. ED431G/01]; and the Ministry of Economy and Competitiveness of Spain and ERDF funds from the EU [TIN2016-75845-P].Xunta de Galicia; ED431C 2017/04Xunta de Galicia; R2016/037Xunta de Galicia; ED431G/0

    Multi feature-rich synthetic colour to improve human visual perception of point clouds

    Get PDF
    Although point features have shown their usefulness in classification with Machine Learning, point cloud visualization enhancement methods focus mainly on lighting. The visualization of point features helps to improve the perception of the 3D environment. This paper proposes Multi Feature-Rich Synthetic Colour (MFRSC) as an alternative non-photorealistic colour approach of natural-coloured point clouds. The method is based on the selection of nine features (reflectance, return number, inclination, depth, height, point density, linearity, planarity, and scattering) associated with five human perception descriptors (edges, texture, shape, size, depth, orientation). The features are reduced to fit the RGB display channels. All feature permutations are analysed according to colour distance with the natural-coloured point cloud and Image Quality Assessment. As a result, the selected feature permutations allow a clear visualization of the scene's rendering objects, highlighting edges, planes, and volumetric objects. MFRSC effectively replaces natural colour, even with less distorted visualization according to BRISQUE, NIQUE and PIQE. In addition, the assignment of features in RGB channels enables the use of MFRSC in software that does not support colorization based on point attributes (most commercially available software). MFRSC can be combined with other non-photorealistic techniques such as Eye-Dome Lighting or Ambient Occlusion.Xunta de Galicia | Ref. ED481B-2019-061Xunta de Galicia | Ref. ED431F 2022/08Agencia Estatal de Investigación | Ref. PID2019-105221RB-C43Universidade de Vigo/CISU

    Big Data Geospatial Processing for Massive Aerial LiDAR Datasets

    Get PDF
    [Abstract] For years, Light Detection and Ranging (LiDAR) technology has been considered as a challenge when it comes to developing efficient software to handle the extremely large volumes of data this surveying method is able to collect. In contexts such as this, big data technologies have been providing powerful solutions for distributed storage and computing. In this work, a big data approach on geospatial processing for massive aerial LiDAR point clouds is presented. By using Cassandra and Spark, our proposal is intended to support the execution of any kind of heavy time-consuming process; nonetheless, as an initial case of study, we have focused on fast ground-only rasters obtention to generate digital terrain models (DTMs) from massive LiDAR datasets. Filtered clouds obtained from the isolated processing of adjacent zones may exhibit errors located on the boundaries of the zones in the form of misclassified points. Usually, this type of error is corrected through manual or semi-automatic procedures. In this work, we also present an automated strategy for correcting errors of this type, improving the quality of the classification process and the DTMs obtained while minimizing user intervention. The autonomous nature of all computing stages, along with the low processing times achieved, opens the possibility of considering the system as a highly scalable service-oriented solution for on-demand DTM generation or any other geospatial process. Said solution would be a highly useful and unique service for many users in the LiDAR field, and one which could get near to real-time processing with appropriate computational resources.Xunta de Galicia; ED431C 2017/04Consolidation Programme of Competitive Research Units; R2016/037Xunta de Galicia; ED431G/01Ministerio de Economía y Competitividad; TIN2016-75845-

    Durability of Wireless Charging Systems Embedded Into Concrete Pavements for Electric Vehicles

    Get PDF
    Point clouds are widely used in various applications such as 3D modeling, geospatial analysis, robotics, and more. One of the key advantages of 3D point cloud data is that, unlike other data formats like texture, it is independent of viewing angle, surface type, and parameterization. Since each point in the point cloud is independent of the other, it makes it the most suitable source of data for tasks like object recognition, scene segmentation, and reconstruction. Point clouds are complex and verbose due to the numerous attributes they contain, many of which may not be always necessary for rendering, making retrieving and parsing a heavy task. As Sensors are becoming more precise and popular, effectively streaming, processing, and rendering the data is also becoming more challenging. In a hierarchical continuous LOD system, the previously fetched and rendered data for a region may become unavailable when revisiting it. To address this, we use a non-persistence cache using hash-map which stores the parsed point attributes, which still has some limitations, such as the dataset needing to be refetched and reprocessed if the tab or browser is closed and reopened which can be addressed by persistence caching. On the web, popularly persistence caching involves storing data in server memory, or an intermediate caching server like Redis. This is not suitable for point cloud data where we have to store parsed and processed large point data making point cloud visualization rely only on non-persistence caching. The thesis aims to contribute toward better performance and suitability of point cloud rendering on the web reducing the number of read requests to the remote file to access data.We achieve this with the application of client-side-based LRU Cache and Private File Open Space as a combination of both persistence and non-persistence caching of data. We use a cloud-optimized data format, which is better suited for web and streaming hierarchical data structures. Our focus is to improve rendering performance using WebGPU by reducing access time and minimizing the amount of data loaded in GPU. Preliminary results indicate that our approach significantly improves rendering performance and reduce network request when compared to traditional caching methods using WebGPU

    Scalable exploration of 3D massive models

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e as Comunicacións. 5032V01[Resumo] Esta tese presenta unha serie técnicas escalables que avanzan o estado da arte da creación e exploración de grandes modelos tridimensionaies. No ámbito da xeración destes modelos, preséntanse métodos para mellorar a adquisición e procesado de escenas reais, grazas a unha implementación eficiente dun sistema out- of- core de xestión de nubes de puntos, e unha nova metodoloxía escalable de fusión de datos de xeometría e cor para adquisicións con oclusións. No ámbito da visualización de grandes conxuntos de datos, que é o núcleo principal desta tese, preséntanse dous novos métodos. O primeiro é unha técnica adaptabile out-of-core que aproveita o hardware de rasterización da GPU e as occlusion queries para crear lotes coherentes de traballo, que serán procesados por kernels de trazado de raios codificados en shaders, permitindo out-of-core ray-tracing con sombreado e iluminación global. O segundo é un método de compresión agresivo que aproveita a redundancia xeométrica que se adoita atopar en grandes modelos 3D para comprimir os datos de forma que caiban, nun formato totalmente renderizable, na memoria da GPU. O método está deseñado para representacións voxelizadas de escenas 3D, que son amplamente utilizadas para diversos cálculos como para acelerar as consultas de visibilidade na GPU. A compresión lógrase fusionando subárbores idénticas a través dunha transformación de similitude, e aproveitando a distribución non homoxénea de referencias a nodos compartidos para almacenar punteiros aos nodos fillo, e utilizando unha codificación de bits variable. A capacidade e o rendemento de todos os métodos avalíanse utilizando diversos casos de uso do mundo real de diversos ámbitos e sectores, incluídos o patrimonio cultural, a enxeñería e os videoxogos.[Resumen] En esta tesis se presentan una serie técnicas escalables que avanzan el estado del arte de la creación y exploración de grandes modelos tridimensionales. En el ámbito de la generación de estos modelos, se presentan métodos para mejorar la adquisición y procesado de escenas reales, gracias a una implementación eficiente de un sistema out-of-core de gestión de nubes de puntos, y una nueva metodología escalable de fusión de datos de geometría y color para adquisiciones con oclusiones. Para la visualización de grandes conjuntos de datos, que constituye el núcleo principal de esta tesis, se presentan dos nuevos métodos. El primero de ellos es una técnica adaptable out-of-core que aprovecha el hardware de rasterización de la GPU y las occlusion queries, para crear lotes coherentes de trabajo, que serán procesados por kernels de trazado de rayos codificados en shaders, permitiendo renders out-of-core avanzados con sombreado e iluminación global. El segundo es un método de compresión agresivo, que aprovecha la redundancia geométrica que se suele encontrar en grandes modelos 3D para comprimir los datos de forma que quepan, en un formato totalmente renderizable, en la memoria de la GPU. El método está diseñado para representaciones voxelizadas de escenas 3D, que son ampliamente utilizadas para diversos cálculos como la aceleración las consultas de visibilidad en la GPU o el trazado de sombras. La compresión se logra fusionando subárboles idénticos a través de una transformación de similitud, y aprovechando la distribución no homogénea de referencias a nodos compartidos para almacenar punteros a los nodos hijo, utilizando una codificación de bits variable. La capacidad y el rendimiento de todos los métodos se evalúan utilizando diversos casos de uso del mundo real de diversos ámbitos y sectores, incluidos el patrimonio cultural, la ingeniería y los videojuegos.[Abstract] This thesis introduces scalable techniques that advance the state-of-the-art in massive model creation and exploration. Concerning model creation, we present methods for improving reality-based scene acquisition and processing, introducing an efficient implementation of scalable out-of-core point clouds and a data-fusion approach for creating detailed colored models from cluttered scene acquisitions. The core of this thesis concerns enabling technology for the exploration of general large datasets. Two novel solutions are introduced. The first is an adaptive out-of-core technique exploiting the GPU rasterization pipeline and hardware occlusion queries in order to create coherent batches of work for localized shader-based ray tracing kernels, opening the door to out-of-core ray tracing with shadowing and global illumination. The second is an aggressive compression method that exploits redundancy in large models to compress data so that it fits, in fully renderable format, in GPU memory. The method is targeted to voxelized representations of 3D scenes, which are widely used to accelerate visibility queries on the GPU. Compression is achieved by merging subtrees that are identical through a similarity transform and by exploiting the skewed distribution of references to shared nodes to store child pointers using a variable bitrate encoding The capability and performance of all methods are evaluated on many very massive real-world scenes from several domains, including cultural heritage, engineering, and gaming

    3-D Scene Reconstruction from Aerial Imagery

    Get PDF
    3-D scene reconstructions derived from Structure from Motion (SfM) and Multi-View Stereo (MVS) techniques were analyzed to determine the optimal reconnaissance flight characteristics suitable for target reconstruction. In support of this goal, a preliminary study of a simple 3-D geometric object facilitated the analysis of convergence angles and number of camera frames within a controlled environment. Reconstruction accuracy measurements revealed at least 3 camera frames and a 6 convergence angle were required to achieve results reminiscent of the original structure. The central investigative effort sought the applicability of certain airborne reconnaissance flight profiles to reconstructing ground targets. The data sets included images collected within a synthetic 3-D urban environment along circular, linear and s-curve aerial flight profiles equipped with agile and non-agile sensors. S-curve and dynamically controlled linear flight paths provided superior results, whereas with sufficient data conditioning and combination of orthogonal flight paths, all flight paths produced quality reconstructions under a wide variety of operational considerations

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Big Data Analytics for Earth Sciences: the EarthServer approach

    Get PDF
    Big Data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced e-infrastructures. Earth and Environmental sciences are likely to benefit from Big Data Analytics techniques supporting the processing of the large number of Earth Observation datasets currently acquired and generated through observations and simulations. However, Earth Science data and applications present specificities in terms of relevance of the geospatial information, wide heterogeneity of data models and formats, and complexity of processing. Therefore, Big Earth Data Analytics requires specifically tailored techniques and tools. The EarthServer Big Earth Data Analytics engine offers a solution for coverage-type datasets, built around a high performance array database technology, and the adoption and enhancement of standards for service interaction (OGC WCS and WCPS). The EarthServer solution, led by the collection of requirements from scientific communities and international initiatives, provides a holistic approach that ranges from query languages and scalability up to mobile access and visualization. The result is demonstrated and validated through the development of lighthouse applications in the Marine, Geology, Atmospheric, Planetary and Cryospheric science domains

    3D Modelling from Real Data

    Get PDF
    The genesis of a 3D model has basically two definitely different paths. Firstly we can consider the CAD generated models, where the shape is defined according to a user drawing action, operating with different mathematical “bricks” like B-Splines, NURBS or subdivision surfaces (mathematical CAD modelling), or directly drawing small polygonal planar facets in space, approximating with them complex free form shapes (polygonal CAD modelling). This approach can be used for both ideal elements (a project, a fantasy shape in the mind of a designer, a 3D cartoon, etc.) or for real objects. In the latter case the object has to be first surveyed in order to generate a drawing coherent with the real stuff. If the surveying process is not only a rough acquisition of simple distances with a substantial amount of manual drawing, a scene can be modelled in 3D by capturing with a digital instrument many points of its geometrical features and connecting them by polygons to produce a 3D result similar to a polygonal CAD model, with the difference that the shape generated is in this case an accurate 3D acquisition of a real object (reality-based polygonal modelling). Considering only device operating on the ground, 3D capturing techniques for the generation of reality-based 3D models may span from passive sensors and image data (Remondino and El-Hakim, 2006), optical active sensors and range data (Blais, 2004; Shan & Toth, 2008; Vosselman and Maas, 2010), classical surveying (e.g. total stations or Global Navigation Satellite System - GNSS), 2D maps (Yin et al., 2009) or an integration of the aforementioned methods (Stumpfel et al., 2003; Guidi et al., 2003; Beraldin, 2004; Stamos et al., 2008; Guidi et al., 2009a; Remondino et al., 2009; Callieri et al., 2011). The choice depends on the required resolution and accuracy, object dimensions, location constraints, instrument’s portability and usability, surface characteristics, working team experience, project’s budget, final goal, etc. Although aware of the potentialities of the image-based approach and its recent developments in automated and dense image matching for non-expert the easy usability and reliability of optical active sensors in acquiring 3D data is generally a good motivation to decline image-based approaches. Moreover the great advantage of active sensors is the fact that they deliver immediately dense and detailed 3D point clouds, whose coordinate are metrically defined. On the other hand image data require some processing and a mathematical formulation to transform the two-dimensional image measurements into metric three-dimensional coordinates. Image-based modelling techniques (mainly photogrammetry and computer vision) are generally preferred in cases of monuments or architectures with regular geometric shapes, low budget projects, good experience of the working team, time or location constraints for the data acquisition and processing. This chapter is intended as an updated review of reality-based 3D modelling in terrestrial applications, with the different categories of 3D sensing devices and the related data processing pipelines
    corecore