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ABSTRACT
In recent years, the evolution and improvement of LiDAR (Light Detection and
Ranging) hardware has increased the quality and quantity of the gathered data,
making the storage, processing and management thereof particularly challenging.
In this work we present a novel, multi-resolution, out-of-core technique, used for
web-based visualization and implemented through a non-redundant, data point or-
ganization method, which we call Hierarchically Layered Tiles (HLT), and a tree-like
structure called Tile Grid Partitioning Tree (TGPT). The design of these elements
is mainly focused on attaining very low levels of memory consumption, disk stor-
age usage and network traffic on both, client and server-side, while delivering high
performance interactive visualization of massive LiDAR point clouds (up to 28 bil-
lion points) on multiplatform environments (mobile devices or desktop computers).
HLT and TGPT were incorporated and tested in ViLMA (Visualization for LiDAR
data using a Multi-resolution Approach), our own web-based visualization software
specially designed to work with massive LiDAR point clouds.
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1. Introduction

LiDAR (Light Detection and Ranging) technology provides extremely useful high-
resolution data in the form of point clouds that can be applied in a wide range of fields,
such as agriculture, archaeology, biology, geology or forestry. Earth-science applications
of LiDAR include coastal-change studies (Sallenger et al. 1999), extraction of geo-
morphologic features (Passalacqua et al. 2010), creation of detailed large-scale city
models (Lafarge and Mallet 2012), analysis of land sliding process (Ventura et al.
2011), volcanoes (Kereszturi et al. 2012) and active tectonics (Arrowsmith and Zielke
2009, Brunori et al. 2013), among others. Useful reviews of the use of LiDAR data in
earth surface processes are provided in Roering et al. (2013), Tarolli (2014), Yan et al.
(2015).

The use of LiDAR technology has been experiencing notable growth in many sci-
entific fields, particularly in recent years, with the rise of unmanned aerial vehicles
(UAV). Nowadays, the huge amount of spatial information that may be acquired by
modern LiDAR hardware entails an enormous challenge when developing applications
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focused on handling and managing such amounts of data. On the server-side of GIS
centres, or any other large company that constantly generates those volumes of in-
formation, the simple storage demands a significant cost in terms of economic and
technical resources. On the client-side, the popularization of tablets, laptop hybrids
and smartphones, in addition to the release of HTML5, has favoured the appearance
of applications with high portability, flexibility and availability. This is a major ad-
vance in comparison with classic desktop applications which, in many cases, are only
designed for one specific operating system or device. Nevertheless, the advantages of
web applications come with an important handicap, as there are strong restrictions on
main memory and disk storage capacities and performance in terms of execution time.
The need of processing and visualization algorithms for LiDAR datasets becomes a
key point in different fields, such as in González-Ferreiro et al. (2013), where the ex-
amination of point clouds is required in order to provide forest inventory and biomass
estimation. Real-time interaction with the 3D point clouds or the storage capabili-
ties for holding LiDAR datasets are some of the particularly sensitive problems to be
addressed, as can be seen in other fields, such as neuroscience (Al-Awami et al. 2014).

In this article, we present a novel, multi-resolution, out-of-core technique, imple-
mented through a point data organization method which we call Hierarchically Lay-
ered Tiles (HLT), used offline during a preprocessing stage, together with a tree-like
structure called Tile Grid Partitioning Tree (TGPT), created only in runtime to effi-
ciently manage the point clouds. Both elements have a non-redundant data design, and
lossless compression methods are applied over all preprocessed data, greatly reducing
the amounts of data to be handled. The storage requirements are lower than for other
multi-resolution strategies using conventional static precomputed models with high
data redundancy. The concept of layered points with a view to avoiding redundant
data was explored in Gobbetti and Marton (2004) but with totally different goals,
approaches and context. These techniques were tested in ViLMA (Visualization for
LiDAR data using a Multi-resolution Approach), our web application specially de-
signed to work with massive LiDAR point clouds with up to 28 billion points even in
devices with relatively few resources, achieving very low memory consumption, client
and server-side disk storage usage and network traffic, while maintaining real-time
interaction and allowing data queries based on spatial restrictions to be made.

The rest of the article is organized as follows. In Section 2, related work is reviewed.
In Section 3, the general system structure and design of ViLMA is described. Section
4 presents the HLT and TGPT data structures. In Section 5, several design decisions
regarding performance are discussed, while in Section 6, we evaluate our proposals
using ViLMA. Finally, Section 7 presents the main conclusions and future work.

2. Related Work

The visualization of point clouds is a widely discussed topic and there are currently a
number of software solutions capable of handling all kinds of point clouds.

Multi-resolution strategies provide great performance benefits in a wide variety of
applications involving large point clouds (Comino et al. 2017, Yuan et al. 2017) being
particularly relevant in graphics. In Kovač and Žalik (2010), the visualization of large
LiDAR datasets is introduced using real-time point-based rendering techniques. A
similar approach is used in Kuder and Žalik (2011) for a web-based environment. An
approach that addresses the 2.5D nature of aerial LiDAR points is proposed in Gao
et al. (2014), wherein an interactive and visually-complete rendering of aerial LiDAR
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point clouds of cities is proposed. Rodŕıguez et al. (2013) propose a web system for
mobile devices based on a compressed, multi-resolution model and an efficiency-based
mesh representation. Interactive visualization of massive 3D point clouds, which exceed
available memory resources and rendering capabilities, is achieved by out-of-core or
external memory algorithms (Goswami et al. 2013, Richter et al. 2015). Spatial data
structures and level of detail (LOD (Tomas Akenine-Möller 2008)) techniques are used
in these proposals. In Goswami et al. (2013), the authors achieve the rendering of
massive points using geo-morphing and smooth point interpolation. In Richter et al.
(2015), an interactive, out-of-core rendering is presented based on a layered, multi-
resolution kd-tree. In Discher et al. (2017), an out-of-core, real-time rendering system
for massive 3D point clouds is combined with interactive and view-dependent see-
through lenses to enhance recognition of objects, semantics, and temporal changes
within 3D point cloud depictions.

Currently available platforms focused on web visualization and handling of LiDAR
data include: Dielmo3D1, Potree2, MegaTree3 or GVLiDAR (Deibe et al. 2017). All
of these platforms use their own file formats, data structures and multi-resolution
methods. In order to evaluate our proposals (HLT and TGPT), we have used our own
web-based visualization software, ViLMA, that will be presented in following Section
3. ViLMA has been designed with the goal of providing specific measurement tools to
help Agricultural Engineers in specific tasks of their field of knowledge, as this type
of tools were not offered by any other platform. For example, the creation of complex
volumetric objects that could help on wood mass estimations(González-Ferreiro et al.
2013). GVLiDAR offers this type of tools, but it lacks of multi-resolution out-of-core
capabilities, while Potree is very focused on visualization, using very efficient multi-
resolution out-of-core techniques, but lacking of specific tools. On the other hand, with
ViLMA, we have tried to offer both elements, in addition to data queries based on
spatial restrictions. We should note here that, the concepts presented in this work
regarding non-redundant data structures, could be applied to any other visualization
software besides ViLMA. In Section 6.6, a comparison between Potree and ViLMA
is presented, as, among the currently available web applications, Potree is the most
similar to ViLMA.

3. Structure of ViLMA

ViLMA is a web-based application designed for the interactive 3D visualization and
exploration of large LiDAR point clouds achieving real-time interaction; i.e., over
24 frames per second (FPS). ViLMA was developed for being used by Agricultural
Engineers and was intended to meet the requirements of these type of professionals;
hence it was mainly focused on providing accurate geospatial measurement tools to
be used directly over the 3D point clouds and allowing data queries based on spatial
restrictions. None of the applications cited at the end of Section 2 were designed
following such requirements, with the exception of GVLiDAR which lacks of multi-
resolution out-of-core capabilities.

Figure 1 shows the general system structure of ViLMA. It follows the conven-
tional client-server structure used in most web applications. The front-end, written
in JavaScript and HTML5, can be executed in any WebGL-compatible web browser.

1Dielmo3D website: http://www.dielmo.com/en/
2Potree website: http://potree.org/
3MegaTree website: http://wiki.ros.org/megatree
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Figure 1. General structure of ViLMA.

For the back-end, an Apache HTTP Server4 was deployed for serving the application
code and the point data requests. Although ViLMA is a web application that mainly
provides data on-demand from the Apache server, it is also designed to work with
local data. In addition to the public datasets available online, users may select a local
folder to which their own preprocessed LiDAR datasets can be loaded.

As can be observed in Figure 1, the structure of ViLMA is divided into two dif-
ferent stages: the Preprocessing Stage and the Interactive Stage. The Preprocessing
Stage takes place off-line on the server-side and/or on the client-side. Datasets pre-
processed on the server-side are intended to be public and accessed online through the
Apache server; meanwhile, datasets preprocessed on the client-side are loaded directly
by ViLMA from the user’s local disk. During the Preprocessing Stage, points from the
original LiDAR datasets are rearranged and stored avoiding data redundancy in order
to support efficient, multi-resolution and out-of-core techniques together with data
queries based on spatial restrictions. This is achieved through HLT and TGPT data
structures, in addition to lossless compression methods applied over the preprocessed
data, which will be discussed further in the following sections.

The Interactive Stage takes place online on the client-side, where users are able
to visualize, interact and analyse LiDAR point clouds through their web browser.
Regions of interest (ROI) can be requested from the entire point cloud using geographic
coordinates. The use of ROIs has several performance implications that are further
discussed in Section 6.4.

ViLMA includes several options for the visualization and filtering of the point clouds
based on LiDAR properties such as classification, intensity, return number or RGB.
It also incorporates measuring tools, such as distance between points, areas on an
orthographic projection, fully 3D surface areas and complex volume measurements
comprising a polygonal contour, irregular bottom surface and orthographic projected
top surface.

4Apache server website: https://httpd.apache.org/
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Although the objective of ViLMA is not to provide an ultra-realistic representa-
tion of the point clouds, three image enhancement techniques have been included
in order to improve the quality of the images in terms of object recognition, object
definition and depth perception. Circular points, dynamic point size and Eye-Dome
Lighting (Boucheny 2009), have been implemented through the programmable com-
ponents (shaders) of the graphic processing unit (GPU). More information about this
kind of image enhancements can be found in Gross and Pfister (2007).

4. Multi-Resolution Out-Of-Core Data Structures

The interactive visualization of massive LiDAR point clouds, exceeding available mem-
ory resources, demands the use of multi-resolution out-of-core techniques. Our proposal
is focused on the following factors: minimizing the consumption of both, system mem-
ory (RAM) and GPU memory (VRAM), leveraging of communications between the
client browser and the data server, and reducing disk storage usage on both client and
server-sides. In this section, we present the two main data structures used for reaching
those goals, HLT (Section 4.1) and TGPT (Section 4.2). Section 4.3 is dedicated to
explain the fundamentals of the rending process using the cited data structures.

4.1. Hierarchically-Layered-Tiles (HLT)

Traditionally, in computer graphics, multi-resolution approaches involve the creation
of several different detailed versions of the same 3D model, which implies data redun-
dancy among all model versions (further information about multi-resolution models
can be found in Tomas Akenine-Möller (2008) and Gross and Pfister (2007)). Our pro-
posal avoids data redundancy in order to achieve the above factors. There are no static,
precomputed, multi-resolution models of the point clouds, but a specific rearrangement
and storage of the points, aimed to act as separate pieces with which to create the
different multi-resolution models at runtime joining those pieces as necessary.

To achieve this, the bounding box of the point clouds is divided into T equally-sized
tiles forming a regular grid (see Figure 2(a) as an example of gird of tiles). Points are
distributed in the tiles using their geographic position. For each tile in the grid, points
are scattered into L layers, creating a heap of layers of different point densities. An
input parameter, called downsampling factor (df), defines the percentage of points that
are scattered in each layer of a tile. The points in each layer are uniformly distributed
over the surface. Given a tile t containing a total amount of Nt points, the number of
points in the layer l is defined by:

Nt,l =

 Nt × (1 − df)L−l × df l > 1

Nt × (1 − df)L−1 l = 1
(1)

No point is repeated in more than one layer, so this, the superposition of the points of
all layers from a given tile, is an identical representation of the original tile. Thus, LOD
representation of a tile with a level LODl consists of the overlapping of the points of
its layers, from layer 1 to layer l:
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(a)

(b)

(c)

Figure 2. Construction of a TGPT from an arbitrary ROI and its posterior usage for computing the different
levels of detail of the image. (a) Illustration of an ROI defined by user (inner shaded rectangle, overlapping
16 × 18 tiles) over a dataset grid (outer rectangle, 32 × 39 tiles). (b) TGPT structure generated during the
multi-resolution process fitting the ROI shown in (a). (c) Point cloud rendered by ViLMA obtained from the
TGPT shown in (b).
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Figure 3. Layer generation of a single tile carried out during the Preprocessing Stage. Starting with the
original point set (upper square) four layers are generated (labelled squares).

LODl =

l⋃
i=1

Li (2)

where Li is the layer i of a given tile.
Figure 3 shows an example of layer generation. In the example given, a df = 0.5

was used for simplification purposes; hence, all subsets contain half of the points of
their parent set. The top square (labelled as Original) represents a tile from the grid
containing all the points. The points are split into two subsets: the subset on the right
is stored in an individual file labelled as Layer 4 ; while, the subset on the left is split
again into a further two subsets, repeating the same process. The subset on the right
is then stored in a separate file labelled as Layer 3, while the subset on the left is split
again. Finally, the last two subsets are stored in files with the labels Layer 1 and Layer
2, respectively. All files generated during this stage are lossless compressed, adhering
to a method that will be discussed in Section 5.3. Point subsets labelled as: LOD 1,
LOD 2, LOD 3 and LOD 4 are reconstructed in main memory during run-time from
the points contained in the different layers and they work as the actual 3D models
used during the rendering process.

The layering approach of the HLT avoids any kind of data redundancy, which implies
a considerable reduction in memory and disk storage usage on both server and client
sides, as well as a reduction in network bandwidth requirements.

Following the example above and considering Nt = 1000, in a traditional approach
to multi-resolution, each LOD would have associated a precomputed 3D model stored
on server-side, in this case, 4 files containing 1000, 500, 250 and 125 points. The amount
of points stored after creating the different LODs is 1.875 times the original amount
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of points, while with our approach the amount would always be the same. This level
of redundancy may vary depending on the number of LODs used, the type of tree
structure used (quadtree, kdtree, octree, ...) or how many points are selected for each
LOD. In this small example data increase almost by 2, for very large and dense point
clouds, managed by deep and complex tree structures, the level of redundancy may
be notable.

4.2. Tile Grid Partitioning Tree (TGPT)

The management and handling of the tiles into which a point cloud is divided is done
though the tree-like structure, TGPT. Unlike other classic data structures, such as
quadtrees or octrees, which may have been entirely precomputed and stored in disk
(on server or client-side), the TGPT is not a static, precomputed structure but a
structure generated on the client-side, at runtime as needed and always fitting a given
ROI. The TGPT is stored in the client RAM. Once an ROI is defined, the TGPT is
initially built, creating the root node which represents all tiles overlapping the ROI.
The layer 1 of each of those overlapped tiles is retrieved from server. This initial set of
points is the lowest resolution reconstruction of the point cloud within the ROI. The
information contained in the layer 1 includes the number of points in the remaining
layers and the minimum and maximum values of the coordinates X, Y and Z in each
tile. Using these coordinates, a bounding box (the minimum volume that wraps the
entire set of points) is created for the root node. This is the initial and most basic
state of the TGPT. On the basis thereof, the tree grows as needed, depending on the
decisions of the multi-resolution techniques. We should stress here that the nodes of
the TGPT do not store any points at all, they only stand as a set or subset of tiles
from the ROI storing the indices that indicate the range of tiles they contain, the
bounding box that encloses those tiles, and other minor variables.

All nodes of the TGPT are created as needed during the rendering process using a
criterion based on the screen projections of their bounding boxes (this will be further
detailed in Section 4.3). Both, the number of new children created for a given parent
node and the subsets of tiles assigned to each child, depend on the number of tiles
in the parent. The width and length (in tile units) of the parent node are divided by
two in order to delimit subsets as proportionally as possible in terms of their number
of tiles. For example, taking the node marked with an asterisk in Figure 2(b) as a
reference, this node contains a set of 8 × 9 tiles and it is split into four children, each
one containing a unique subset of tiles: two subsets of 4 × 5 tiles and another two
subsets of 4 × 4. Occasionally, this could lead to split a parent node into only two
children. At the tree level 4 of Figure 2(b), the nodes containing a set of 1 × 2 tiles
would only be split into 2 children with one tile each.

4.3. Multi-Resolution Out-Of-Core Rendering Techniques

The HLT, along with the TGPT, are the core elements of the multi-resolution, out-
of-core technique used by ViLMA and it has two main steps. The first is the creation
of an LOD-distribution-list. Traditionally, multi-resolution approaches use some kind
of point limit or point budget (PB) to avoid consuming all available memory or sur-
passing computational capabilities. Following the same approach, the second step, is
the calculation of an LOD for each node of the list, trying to use as many points
as possible without surpassing a defined PB. Higher budgets produce better image
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quality, to the detriment of performance and vice versa; hence, the choice of a value
for the PB is a subjective task focused on finding a balance between performance and
quality. This type of balance is discussed broadly in the literature (Debattista et al.
2017).

In the first step, view frustum culling (the process of removing objects that lie
completely outside the camera of the scene) is used in order to determine visible or
partially visible nodes. If the node is a leaf node, it is put in the LOD-distribution-list
for the subsequent computation of its LOD. If it is not a leaf, its bounding box is used
to compute the number of pixels projected on screen. If the projected area is larger
than a system-defined percentage of the screen size, the node is considered to be too
close to the camera’s perspective, and the process continues through its child nodes.
The TGPT is constructed as needed, so if the current node has children but they are
not currently existent in the tree, they are created immediately. If the node is not too
close, it is put in the LOD-distribution-list. As a result, at the end of the process the
LOD-distribution-list contains all visible tiles, grouped in nodes.

In the second step, computing each LOD individually for each tile is not a viable
option in terms of performance and scalability, due to the large number of tiles into
which some datasets may have been divided. Instead of using individual tiles, LOD is
computed over groups of tiles; thus, the nodes collected in the LOD-distribution-list
are used for that task. When an LOD l is assigned to a node, this means that all
tiles contained therein must be displayed with the given level l. All the point layers
required to build the LOD are retrieved from the server, unless they are already in
the memory or in the browser cache. The data retrieval process is further detailed in
Appendix A.

The LOD of each node in the LOD-distribution-list is determined by the projection
on screen of its bounding box and the number of points contained in the different layers
of its tiles. The objective is to assign to each node the highest possible LOD, as long as
the number of points displayed in the node is equal or inferior to the number of pixels
projected on screen by its bounding box. This method attempts to avoid situations
where too many points are drawn in the same area of the screen, thus causing the loss
of image quality due to an excessive overlapping effect. An LOD is assigned to each
node with a view to providing more detail in nearby nodes and less detail in those
further away, while not exceeding the PB.

Figure 2(a) shows an arbitrary ROI (inner shaded rectangle, 16 × 18 tiles) over-
lapping a dataset grid (outer rectangle, 32 × 39 tiles). Figure 2(b) shows a TGPT
structure built during the multi-resolution process fitting the specific ROI where each
tree node represents a subset of tiles contained in the ROI. The final 3D representa-
tion of the multi-resolution process can be observed in Figure 2(c). For explanation
purposes, white bounding boxes are displayed over the point cloud rendered. These
boxes are the nodes selected for the LOD-distribution-list. Additionally, colours were
used as reference to represent each LOD in the 3D scene and in the TGPT, to make
it easier to identify the nodes in the TGPT and their corresponding bounding boxes
in the scene.

5. Performance considerations

While traversing a point cloud very quickly or when the camera makes very abrupt
movements, the detail of areas not loaded in memory could pop up with a slight delay,
showing gaps or no points for a short period of time. Thanks to the use of fixed-size
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GPU buffers, VRAM consumption can be kept very low and constant; however, this
implies that the buffers must be updated regularly to adapt to the camera movements.
The update process can be particularly demanding, especially for a high PB and a
low GPU memory bandwidth, so the buffers are not updated in every single frame
but once every 0.25 seconds, which can lead to the aforementioned gaps. We should
remember here that only a WebGL-compatible web browser is required for running the
application. All GPU-related techniques are carried out through this graphics API.

A number of important decisions must be made regarding how the datasets are
preprocessed, as they directly impact on the performance, namely: the size of the tiles
and the number of layers per tile (Sections 5.1 and 5.2). These are subjective decisions
that must aim to strike a balance between performance and quality (Debattista et al.
2017). In this section, we also address an additional non-subjective performance issue
regarding the compression of the data (Section 5.3).

5.1. Tile size

The size of the tiles affects the accuracy of the view frustum culling techniques (Tomas
Akenine-Möller 2008), the efficiency of data queries based on spatial restrictions, and
the proper use of the browser cache.

• View Frustum Culling. In a 3D scene, view frustum culling techniques are imple-
mented to detect partially or fully visible objects from camera’s perspective in
order to send all detected objects to the rendering process, thus increasing the
GPU performance by discarding the non-visible ones. Tiles with a small size form
fine-grained grids; hence, these types of techniques can discard larger non-visible
areas by detecting more tiles in a fine-grained grid than in a coarse-grained one.

• Data queries based on spatial restrictions. As commented in previous sections,
the use of an ROI allows the computing resources to be focused in a limited
area. All tiles located outside the ROI can be completely discarded. In a similar
way to what happens with the view frustum culling, tiles with a small size form
fine-grained grids so that tiles can be discarded more accurately.

• Browser cache. Web browsers have a special memory space reserved in the client
disk called the Browser cache. This is used to store downloaded files so they can
be reused later instead of being retrieved again from server, thus speeding up
the web page loading. Each web browser has a maximum file size allowed when
storing files in cache. Depending on the version of the browser, the maximum size
may vary from 5 MB, on some mobile browsers, to 25 MB, on desktop versions.
Files not stored in cache must be retrieved from the server each time they are
requested. The use of small tiles reduces the size of files generated during the
preprocessing stages, so the requirements of the cache are more likely to be met.

Although the choice of a small tile size has great performance benefits, it has a
counterpart in memory consumption. During the rendering process, each tile must be
handled and managed separately, which implies to create one object in memory for each
tile. These objects have a very small footprint in memory but if the number of tiles is
too large, the memory consumption may not be suitable for the requirements of certain
users. Thus, the choice of tile size must be balanced between memory consumption
and the benefits described above.

We have measured the increase in RAM consumption when loading an arbitrary
dataset using different tile sizes. As a base measurement, we obtain a global RAM
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Figure 4. Memory consumption variation with respect to the increase in the number of tiles.

consumption of 250 MB with 714 tiles. Figure 4 shows how the RAM consumption
increases along with the number of tiles created (T ).

The number of tiles generated for a given dataset is not only determined by the
size of the tiles, but also by the extent of the dataset itself; therefore, there is no ideal
tile size, since the final number of tiles depends on the extent of the dataset and the
balance of quality and performance desired by the users.

5.2. Number of layers per tile

One key point for all multi-resolution applications is the suitable creation of the differ-
ent resolution models that are going to be used during the execution of the software.
Resolution transitions between consecutive levels (either to increase or to decrease
detail) should be carried out smoothly, avoiding abrupt changes and popping effects.

In the example shown in Figure 3, a df = 0.5 was selected solely for simplification
purposes, but in a production environment, this value may be too high. The change
from a given LOD l to the next one l+ 1 entails doubling the number of points, which
may be visually too abrupt. df values around 0.25 produce better results, obtaining
softer transitions between consecutive levels of detail. On the other hand, lower df
values produce more layers per tile. For instance, given a tile with 1000 points, if we
need to generate a layer 1 with around 25% of the points (250 points) and a df = 0.5,
using Equation 1, the result is that at least 3 LOD must be used: 1000 ∗ (1−0.5)3−1 =
250. And using df = 0.25, then 6 LOD would be required: 1000 ∗ (1 − 0.25)6−1 ≈ 237.
The increase in the number of layers also increases the number of data retrievals, so
two equal tiles divided into a different number of layers would take different times to
render, even when displayed with the same detail.

Using the same dataset as in Figure 4, we have measured the wait time when
zooming in close to the ground using 8 layers per tile and 18 layers per tile. We define
wait time as the sum of retrieval time and load time. The retrieval time is defined as
the time required to download all necessary data from the server, while the load time
is defined as the time spent reading and decoding downloaded data and creating any
other elements required to handle them. In the second case (18 layers per tile), the wait
time was 1.6 times the time spent in the first case (8 layers per tile). This difference
becomes almost negligible when retrieving the data from cache, as the retrieval times
are zero in both cases, and load times are almost equal. Once again, as described for
choosing the tile size, the choice of df must aim to strike a balance between LOD
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Table 1. Hardware specifications.
Platform O.S. CPU GPU RAM* VRAM* Display Bandwidth**

Client
PC

Windows 7
Intel Core

i7 4790
GeForce
Titan X

32 12
2560×1440

@144Hz
90 (Wired)

Client
Mobile

Android 7.0
Tegra

K1
Tegra

K1
2

(Unified)
-

1920×1200
@60Hz

65 (Wi-Fi)

Server CentOS 6.7
Intel Xeon
E5-2603 v3

- 64 - - -

Values measured in: *GB, **Mbps.

quality and retrieval times.

5.3. Compressing the point layers

LiDAR datasets may reach huge file sizes, demanding large storage capacity and high
bandwidth in a web application environment when needing to send parts of or the
entire point cloud through the network, or when they must be stored in local disk
storage.

LiDAR data are usually stored in LAS5 format, a standard in the field of LiDAR so-
lutions, although there are other formats, such as PNT, CSV or XYZ. The LAS format
provides properties such as (X,Y, Z) coordinates, intensity, pulse return information,
scan direction flag and point classification, among others. Nevertheless, some of these
properties are often not useful from the point of view of visualization or geospatial
measurements.

We have developed our own LiDAR compression format (called LZ for LiDAR-
Zipped) focused on providing suitable support for the HLT structure. LiDAR data are
lossless compressed minimizing both client and server disk usage and reducing data
retrieval times.

Currently, the best lossless compression methods for LiDAR data are LASzip (Isen-
burg 2015) and LAS Compression software, which implements the method presented

in Mongus and Z̆alik (2011). LASzip (LAZ file format) is considered as the standard in
LAS compression and it outperforms all other general-purpose techniques. With our
lossless compression format, the objective is not to propose an alternative to LAZ but
to efficiently support HLT structure. To achieve this, three main tasks are carried out
in order to generate each LZ file. First, data cleaning, where LiDAR properties not
used by our framework are discarded. Second, delta encoding, where LiDAR properties
are stored in the form of differences (deltas). And third, GZIP6 compression, where
all generated data are compressed using this software. As a result of these three steps,
LAS files are reduced by around 88%. The three tasks are further detailed in Ap-
pendix B and a comparison between LASzip and our compression method is included
in Section 6.

6. Experimental Results

In this section, we evaluate the performance of the data structures and techniques
presented in previous sections using our own web-based visualization software ViLMA.
Performance is presented and analysed in terms of memory consumption, wait times,

5LAS file format standard definition: https://www.asprs.org/
6GZIP website : https://www.gnu.org/software/gzip/
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Table 2. Software specifications.
Type Name Version

BackEnd Apache HTTP Server 2.4.28
PC Browser Google Chrome (64 bits) 58.0.3029.110

Mobile Browser Google Chrome 58.0.3029.83

Table 3. LiDAR datasets used and their information regarding the Pre-

Processing Stage. N : Number of points. FS: Total file size of the dataset
(original LAS files). FSLZ : Total file size of the dataset (preprocessed

files). Ratio: Compression ratio of the preprocessed files. TS: Tile size.

LPT : Number of layer per tile.
Dataset N* FS** FSLZ** Ratio TS*** LPT

PNOA 28 802 118 14.71% 500×500 16
San Simeon 17.7 561 132 23.52% 400×400 36

Volcano 0.55 14.6 2.78 19.04% 200 ×200 24

Values measured in: *Billion, **GB, ***Meters.

frames per second and multi-resolution image quality. Additionally, we have included
a brief analysis of our compression method, LZ, and finally a performance comparison
with Potree7, which is the most similar tool to ViLMA found in the literature. The main
specifications of the platforms and the software used during the tests are described in
Table 1 and Table 2.

ViLMA was tested in several browsers; nevertheless, for the sake of clarity and
simplicity, only the results obtained with Google Chrome are shown, as this was the
browser with the best overall performance. Note that the objective of this evaluation
is not to compare web browsers but to present the performance of ViLMA.

Table 3 lists the three datasets used to evaluate ViLMA along with the number
of points of each dataset (N), their original and compressed file size using our pro-
posal (FS and FSLZ , respectively), the compression ratios obtained (Ratio) defined
as (Sizecompressed / Sizeuncompressed) and expressed as a percentage, the tile size (TS)
and the layers per tile (LPT ) used to preprocess each one of them. The PNOA (Na-
tional Plan of Aerial Orthophotography, Spain) dataset is available in the Spanish
GIS database (IDEE) (Infraestructura de Datos Espaciales de España IDEE). Specif-
ically, we have selected the region of Galicia, which contains around 28 billion points.
The airborne LiDAR survey of the selected area was taken with a point density of
0.5 point/m2. The San Simeon dataset was taken from the region of San Simeon,
California - Central Coast, and it contains 17.7 billion points, with a point density of
22.06 points/m2 and it is available at OpenTopography8. Finally, the Volcano dataset
contains 0.55 billion points, with a point density of 13.71 points/m2 being available
at OpenTopography8.

During the tests, the point budget (PB) was varied taking values of 1, 2 and 4
million points. These quantities were chosen as they can be easily handled by most
systems, regardless of whether they are low-end or high-end, allowing good results to
be achieved in terms of performance, while obtaining fairly good representations of
the original point clouds.

We should stress here that, in Section 6.1 and Section 6.2, the full datasets are used,
with the extreme case of PNOA reaching up to 28 billion points.

7Potree website: http://potree.org/
8OpenTopography website: http://www.opentopography.org/
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Figure 5. RAM, VRAM and Unified memory (RAM + VRAM) consumption during the performance tests

for different point budgets.

6.1. Memory consumption

Figure 5 shows the memory consumption observed for rendering each dataset using
three different PBs. Both, the RAM and VRAM values where taken from the Task
Manager provided by the desktop version of Google Chrome. Unified memory values
represent the memory consumption on the tablet and they are further explained in
Section 6.1.3.

6.1.1. RAM

The RAM consumption rises along with the PB; this behaviour is expected, as the
application must store more points and manage more point layers. During the tests,
consumption ranges between 98 MB and 498 MB. Taking into account that most
current desktop PC configurations are equipped with 8 or more GB of RAM, we can
consider the RAM consumption of ViLMA in desktop devices as notably low.

6.1.2. VRAM

Each point property, such as RGB colour or intensity, has its own buffer in the client
GPU but, as long as a property is not necessary for rendering purposes, it will not be
sent to the GPU, which helps to leverage the VRAM consumption. By default, point
clouds are rendered by ViLMA as height maps based on the Z coordinate of their
points, so properties such RGB or intensity are kept in RAM but not in VRAM.

Throughout the entire execution of ViLMA, GPU buffers have a fixed size that
always matches the current PB; therefore, while the PB does not change, the use
of GPU memory remains constant. The use of fixed-size buffers also implies an equal
consumption of VRAM across different datasets as long as the same PB is used. This
can be clearly seen in the results of the three datasets in Figure 5, where the VRAM
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Figure 6. Wait times (retrieval time + load time) obtained among three different datasets with and without

browser cache.

consumption of each PB is equal across all of them.
We should stress here that the VRAM usage is always constant throughout the entire

use of the application. VRAM may vary only if measurement tools are used, since new
elements derived from those measurements, such as the triangulation of a surface,
are stored in VRAM once they are created. This is a critical optimization element,
given that other multi-resolution approaches increase the VRAM consumption as new
resolution levels are loaded in the GPU.

As even current low-end GPUs are equipped with 2 or more GB of VRAM, the
VRAM consumption of ViLMA in desktop devices can be considered moderately low
as during the tests it ranges between 291 MB and 350 MB.

6.1.3. Unified memory

Mobile devices have a unified memory architecture, meaning that there is only a single
main memory storage unit shared between the CPU and GPU. Any device running
ViLMA will use the same JavaScript code with the same data structures and data for-
mats. This implies that loading the same point cloud with the same PB will consume
the same amount of memory (RAM and VRAM), irrespective of the device used, with
the only exception of a small percentage of VRAM that depends on the device’s screen
resolution. In WebGL, graphic elements, such as textures and framebuffers (for fur-
ther information, see Tomas Akenine-Möller (2008)), are used as part of the rendering
process. These elements have a footprint in VRAM which is directly proportional to
the screen size of the device used. In our case, our tablet uses 10 MB of VRAM less
than the desktop PC, as its screen resolution is lower. The unified columns of Figure
5 represent the tablet’s memory consumption, and they are simply the addition of the
RAM and VRAM values minus the aforementioned 10 MB difference.

Despite the tablet being equipped with 2 GB of unified memory, this is not com-
pletely available for user applications. We observed that, on average, only 1 GB of
memory is available. The free memory may vary depending on the previous usage of
the device, the background tasks of the operating system or other applications cur-
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rently running. In Figure 5 the memory limit is marked with a horizontal line. Point
clouds and PBs with consumption values close to the limit may be feasible but they
depend on the current state of the memory. As can be observed, we were able to load
the three datasets without any problems, even when using a PB of 4 million points.

6.2. Wait times

Figure 6 shows the wait times (data retrieval time + data load time) observed from
the moment when a full dataset is selected until it is displayed on screen using just
a top-view camera. For testing purposes, no type of ROI has been used in order to
analyse the most resource demanding scenario for each dataset. Times were taken
using a PB of 1, 2 and 4 million points, with and without data caching.

The bandwidth values shown in Table 1 are not theoretical speeds, but the maximum
values obtained after performing several network speed tests on both client platforms.
We observed that the Wi-Fi performance is 28% lower than the wired connection and;
therefore, this difference should be taken into account in the results of this section.

6.2.1. Data not in cache

Considering the wait times for first-time retrievals (the data are not in the browser
cache) we obtained between 5 and 10 seconds for the Volcano dataset on PC platform
and between 8 and 21 in the tablet. Between 5 and 12 seconds for the San Simeon
dataset on the PC and between 9 and 35 on the tablet. For PNOA datasets, times
between 6 and 12 seconds were obtained on PC and between 16 and 48 on the tablet.

All times obtained for the desktop PC were considerably lower, being above 10
seconds in just a couple of cases. Despite the differences in computing power and
network speeds between the two systems, times obtained on the tablet are higher than
on PC but also acceptably low, with the only exception of PNOA and San Simeon with
a PB of 4 million points. As the memory consumption starts to reach the memory limit,
the general performance of the tablet highly decreases which rises the time needed to
read and prepare the retrieved data. We should stress here that in the extreme case
of use (28 billion points), and despite of the increment in times, we were able to load
said dataset on the tablet.

6.2.2. Data in cache

The size of all the data retrieved from the server by ViLMA is, whenever possible,
small enough to be cached by all browsers, both desktop and mobile. When the data
are cached, they are retrieved from local storage, so the retrieval times are zero, sig-
nificantly reducing the wait times in all cases. The positive effect of data caching can
be clearly observed in the results obtained for the two devices. The three datasets are
loaded, between 4 and 8 seconds with any PB on the PC platform and between 6 and
33 on the tablet.

6.3. Interactive visualization

Figure 7 shows the satellite image of a small area of the San Simeon dataset and three
renderings of its point cloud using different PBs. The images are zoomed close to
the ground to better appreciate the quality of the multi-resolution techniques and the
difference between the three selected PBs.
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(a) (b)

(c) (d)

Figure 7. Small part (∼1.5 km2) of the San Simeon dataset (803 km2) rendered by ViLMA using different

point budgets: (a) Satellite image of the zoomed area. (b)-(d) Rendered images using 1, 2 and 4 million points

respectively.
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Figure 8. Performance comparison between loading the full dataset of PNOA and loading only an ROI from

it.

On the desktop PC, FPS benchmark results were constant at 144 FPS for all
datasets and PBs. The refresh rate of the screen used in the tests was 144 Hz, which
explains why the FPS were locked at 144. On the tablet, for all datasets, we attained
a stable rate of 60 FPS using 1 million points, up to 55 FPS with 2 million points,
and up to 38 FPS for 4 million points.

6.4. Performance improvements when using an ROI

In ViLMA, the use of an ROI can be considered a before-load spatial restriction
which decreases the memory consumption and the number of data retrievals. Other
approaches achieve similar results by allowing users to manually crop the point cloud
after-load or by cropping the point cloud beforehand in a pre-processing stage. In the
first case, if the cropping is done after having loaded the point cloud, many unnecessary
data could be retrieved or loaded, which could be a problem in contexts with small
amounts of memory. In the second case, users are limited to the use of previously
cropped point clouds, which could not fully meet their requirements.

We have analysed the differences when using an ROI on a massive dataset like
PNOA. The chosen ROI was the city centre of Santiago de Compostela (Spain), with
a total amount of 19 million points. Figure 8 shows the improvements when using PBs
of 1 and 4 million points on the tablet. Given the adaptation of the TGPT to the size
of the ROI, there is a notable reduction in the RAM consumption, which is 52% with
PB = 1 and 48% with PB = 4. The VRAM consumption is the same in both cases, so
the unified memory is also reduced, but not at the same degree as the RAM. Unified
memory is reduced by around 28%. With regard to wait times, when using PB = 1
million, these were reduced by 19% without cache and by 47% with cache. For PB = 4
million, times were reduced by 42% without cache and by 52% with cache.

These improvements benefit both platforms, PC and tablet, but they have a special
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Figure 9. Compression formats comparison.

relevance in the latter due to its hardware limitations. The point cloud inside the ROI
can be displayed on the tablet with shorter wait times, using significantly less memory
and showing much more detail, as the points are distributed in a smaller and highly
delimited area.

6.5. Compression ratio

Results from a comparison between our LZ + GZIP compression method and LASzip
can be observed in Figure 9. The efficiency of both compression methods varies de-
pending on the topology and characteristics of the processed point clouds, so four
sample files (city, mountain, village and forest) were taken for the comparison with a
view to selecting different point distribution patterns. The samples were taken from
the PNOA dataset.

As can be observed, compression ratios (Sizecompressed / Sizeuncompressed) obtained
with LZ + GZIP are slightly better than LASzip. The objective of LZ + GZIP is not
to serve as an alternative for LASzip but to support our multi-resolution, out-of-core
techniques. Considering the rest of the performance results shown in this Section, the
support of LZ + GZIP is entirely suitable for ViLMA.

6.6. Comparison with Potree

In Section 2, several web-based visualization applications were cited. The technology
presented by Dielmo3D is a proprietary technology and was tested through LiDAR
Online9. This web application allows data to be obtained on demand through data
queries based on spatial restrictions; nevertheless, all rendered point clouds are always
displayed with around 1 million points, irrespective of the size of the area defined by the
data queries, and the points rendered do not change as the camera moves around the
scene. The design of GVLiDAR was focused on providing high-performance rendering
of full-detailed point clouds so a multi-resolution, out-of-core approach was discarded.
The designs of Potree and Megatree, follow a very similar client-server structure and

9LiDAR Online website: http://lidar-online.com/tools/maps
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Figure 10. Comparison between ViLMA and Potree.

their performance relies on the use of multi-resolution out-of-core techniques supported
by an octree structure. Given the aforementioned factors, in this section, a comparison
between ViLMA and Potree has been carried out, as among the current freely available,
web-based visualization applications, this is the most similar to ours and it is one of
the best known.

The comparison is focused on memory consumption and wait times, two measures
strongly related to the different data structures used by the applications: HLT and
TGPT in ViLMA, and octree in Potree. The dataset used was San Simeon (17.7
billion points). Although on the Potree website it is indicated that the last stable
version is 1.3, the release candidate 1.5 has been tested, as better results in memory
consumption were reported. For a fair comparison, both ViLMA and Potree use the
RGB values of the points for rendering the scene, which implies a slight increase in
VRAM for ViLMA compared to what was shown in Figure 5, as already explained in
Section 6.1.2. Figure 10 shows the percentage of improvement of ViLMA over Potree,
analysing RAM and unified memory (RAM + VRAM) consumptions, and wait times.

In all cases regarding memory consumption, results are better using ViLMA. Be-
tween 71% and 86% lower on RAM consumption and between 54% and 62% on unified
memory consumption. The multi-resolution approach of Potree consists in progres-
sively loading several subsections of the point cloud with different resolution levels.
This increases the amount of both RAM and VRAM used, as the user moves the cam-
era across the point cloud. In ViLMA, the GPU buffers are immutable and constantly
reused; hence, over time, Potree ends up consuming more VRAM than ViLMA, where
consumption remains constant. In addition, ViLMA uses a non-redundant, multi-
resolution approach which leaves a smaller footprint on RAM. These differences lead
Potree to ultimately reach memory limits, such as the 1 GB of unified memory on
the tablet or 4 GB of RAM security limit of Google Chrome. During the tests on the
tablet, even though Potree was able to load the San Simeon dataset using a PB of 1
million points with a very high frame rate (a stable rate of 60 FPS), the memory limit
was reached quickly as soon as the point cloud was zoomed and the camera moved.
ViLMA is not exempt from progressively increasing its use of RAM; nevertheless, with
the non-redundant data nature of its approach, the increment in RAM consumption
is much slower. The difference over the unified memory consumption is especially rel-
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evant when considering the real values obtained for Potree: 1064, 1258 and 1499 MB
using a PB of 1, 2 and 4 million points, respectively. This means that Potree could not
be used on the tablet with 2 and 4 million points, as it exceeds the 1 GB limit. Even
for 1 million points, the correct performance of Potree would depend on the memory
available at the moment of use (in fact, only after rebooting the tablet, without any
other use than the web browser, was it possible to load the dataset using 1 million
points).

Finally, regarding results about wait times without data caching, ViLMA obtains
much better results (between 47% and 54% lower), which greatly helps the improve-
ment of user’s experience.

7. Conclusions and future work

In this paper we have demonstrated how multi-resolution, out-of-core techniques can
be implemented though non-redundant data structures, for web-based, point cloud
rendering. With a rearrangement and a specific storage of the points, we are able to
avoid the creation of additional and unnecessary static, precomputed elements, that
are normally required in a multi-resolution context. This approach is powered by two
novel elements: a non-redundant, point data structure, HLT, and a dynamic runtime-
created tree-like structure, TGPT, for managing full point clouds or specific sub-
regions thereof. Due to this avoidance of static-precomputed structures and the non-
redundant data approach, depending on the characteristics of the point clouds and how
their multi-resolution models were created, the reduction in the storage requirements
on the server-side can be notable, which is especially meaningful in contexts where
large amounts of LiDAR data are constantly generated and entail a significant cost
of economic and technical resources. As it has been demonstrated, on the client-side,
memory consumption is remarkably low, allowing massive point clouds up to 28 billion
points to be loaded, even in mobile devices where memory capacity is very limited or
in browsers with hard memory restrictions, such as Google Chrome. Network traffic
and the use of clients’ local cache also benefit from the adoption of our approach.
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Discher, S., Richter, R., and Döllner, J., 2017. Interactive and view-dependent see-through
lenses for massive 3d point clouds. Springer International Publishing, 49–62.

Gao, Z., et al., 2014. Visualizing aerial lidar cities with hierarchical hybrid point-polygon struc-
tures. In: Proceedings of Graphics Interface 2014, GI ’14. Canadian Information Processing
Society, 137–144.

Gobbetti, E. and Marton, F., 2004. Layered point clouds: a simple and efficient multiresolu-
tion structure for distributing and rendering gigantic point-sampled models. Computers &
Graphics, 28 (6), 815 – 826.
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Appendix A. Back-end retrievals

During Preprocessing Stage, layers in the same level are pre-packed together into a
single file, allowing ViLMA to retrieve several layers at once in a single request to the
server. Retrieving packs instead of individual layers helps to improve retrieval times if
a very large number of layers had to be requested.

Packs of layers with small amounts of points contain many more layers than packs of
layers with a large amount of points. In some occasions, especially when using an ROI,
more layers than needed may be acquired when retrieving certain packs. This situation
also arises when using conventional static, precomputed models; nonetheless, in our
approach, as there is no data redundancy, the storage requirements are notably lower
than for other multi-resolution models with high redundancy. In both cases (traditional
approaches and HLT), information discarded outside the ROI can be considered as
pre-cached data if requested in future uses.
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Appendix B. Compressing the point layers

All LiDAR data handled by ViLMA is compressed in a format we called LZ. Three
main tasks are carried out in order to generate LZ files: data cleaning, delta encoding
and GZIP compression:

B.1. Data cleaning

Data cleaning consists in simplifying and rearranging the information stored for each
point. Unused properties, such as Scan Direction Flag or Scan Angle Rank, among
others, may not be included in the LZ files. Other properties, such as Intensity, Clas-
sification or the Return information, are adapted or modified in order to optimize
their size, taking into account their function inside the application. Detailed informa-
tion about this process can be found in Deibe et al. (2017).

B.2. Delta encoding

Delta encoding, also called delta compression, is a method for storing data in the form
of differences or deltas (∆) between sequential data. The properties of a given point
are derived from the properties of its predecessor plus a series of differences.

Byte masks are used per point in order to specify whether properties have changed
or not in comparison to the previously computed point; if they have changed, it also
specifies the byte length of the delta that has to be used. By default, compressed data
are generated using masks of 1 byte per point storing the geographic coordinates, the
grey scale value of the intensity, the return tag and the classification of the point.
If RGB values are found in the dataset or users require the inclusion of additional
properties, a second byte is used for the mask. In the former case, between 1 and 9
bytes per point would be required, while in the latter, between 2 and 16 bytes would
be required.

B.3. GZIP compression

Although general-purpose compression methods are not the best option for LiDAR
data, when applied in conjunction with techniques such as delta encoding, the results
obtained are highly lossless compressed files. GZIP compression13, a general-purpose
compression method based on the DEFLATE algorithm is currently used extensively
in web applications and other web environments. Not only does it achieve great com-
pression ratios, it is also supported, by default, by all the main web browsers. This
means that all decompression tasks involving gzipped files are carried out automati-
cally and efficiently by the browser. ViLMA only has to perform the delta decoding
in order to obtain the raw point data. GZIP compression is commonly applied on-
the-fly by the server (Apache HTTP Server) over files each time they are requested.
The computational overhead of the compression process is greatly compensated by
the improvement in the data retrieval times achieved thanks to the use of compressed
files. Nevertheless, our files are pre-compressed with GZIP, so there is no additional
overhead on the server.

13GZIP website : https://www.gnu.org/software/gzip/
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