609,157 research outputs found

    Supporting design exploration

    Get PDF
    The aim of this research was to investigate strategies for the support of design exploration, in particular, how computer based technology could contribute to this activity during the early phase of design. The research comprised of the design and development of three software prototypes, the later versions of which enabled discussions with design professionals concerning the underpinning approach of the work. Three case studies of design practice were undertaken. These focused on the interdependencies between freehand drawing, physical modelling and CAD. Based on the research it was concluded that computer based support for exploration during the early phase of design was viable and that the generation of alternative solutions played a key role in the process. Furthermore, the approach offered by shape grammars provided a generative mechanism that was both grounded in the discipline of design and amenable to representation in a computer based system. Finally, it was concluded that the introduction of a 'controlled irregularity' into the resulting design alternatives increased their likelihood of encouraging design exploration

    Shape exploration in design : formalising and supporting a transformational process

    Get PDF
    The process of sketching can support the sort of transformational thinking that is seen as essential for the interpretation and reinterpretation of ideas in innovative design. Such transformational thinking, however, is not yet well supported by computer-aided design systems. In this paper, outcomes of experimental investigations into the mechanics of sketching are described, in particular those employed by practising architects and industrial designers as they responded to a series of conceptual design tasks,. Analyses of the experimental data suggest that the interactions of designers with their sketches can be formalised according to a finite number of generalised shape rules. A set of shape rules, formalising the reinterpretation and transformations of shapes, e.g. through deformation or restructuring, are presented. These rules are suggestive of the manipulations that need to be afforded in computational tools intended to support designers in design exploration. Accordingly, the results of the experimental investigations informed the development of a prototype shape synthesis system, and a discussion is presented in which the future requirements of such systems are explored

    Design reuse research : a computational perspective

    Get PDF
    This paper gives an overview of some computer based systems that focus on supporting engineering design reuse. Design reuse is considered here to reflect the utilisation of any knowledge gained from a design activity and not just past designs of artefacts. A design reuse process model, containing three main processes and six knowledge components, is used as a basis to identify the main areas of contribution from the systems. From this it can be concluded that while reuse libraries and design by reuse has received most attention, design for reuse, domain exploration and five of the other knowledge components lack research effort

    First Lunar Outpost support study

    Get PDF
    The First Lunar Outpost (FLO) is the first manned step in the accomplishment of the Space Exploration Initiative, the Vice President's directive to NASA on the 20th anniversary of the Apollo moon landing. FLO's broad objectives are the establishment of a permanent human presence on the moon, supporting the utilization of extraterrestrial resources in a long-term, sustained program. The primary objective is to emplace and validate the first elements of a man tended outpost on the lunar surface to provide the basis for: (1) establishing, maintaining and expanding human activities and influence across the surface; (2) establishing, maintaining and enhancing human safety and productivity; (3) accommodating space transportation operations to and from the surface; (4) accommodating production of scientific information; (5) exploiting in-situ resources. Secondary objectives are: (1) to conduct local, small scale science (including life science); (2) In-situ resource utilization (ISRU) demonstrations; (3) engineering and operations tests; (4) to characterize the local environment; and (5) to explore locally. The current work is part of ongoing research at the Sasakawa International Center for Space Architecture supporting NASA's First Lunar Outpost initiative. Research at SICSA supporting the First Lunar Outpost initiative has been funded through the Space Exploration Initiatives office at Johnson Space Center. The objectives of the current study are to further develop a module concept from an evaluation of volumetric and programmatic requirements, and pursue a high fidelity design of this concept, with the intention of providing a high fidelity design mockup to research planetary design issues and evaluate future design concepts

    Kurio: A museum guide for families

    Get PDF
    We discuss three design strategies for improving the quality of social interaction and learning with interactive museum guides: 1) embodied interaction; 2) game-learning; 3) a hybrid system. We used these strategies in our prototype Kurio, which is aimed at supporting families visiting museums. The results of our evaluation show positive implications of implementing the design strategies: closing the social gap, naturalizing technology, and supporting exploration and discovery in learning

    Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV)

    Get PDF
    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design

    The walking robot project

    Get PDF
    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight

    Measuring the associations between collaborative working and project performance

    Get PDF
    There is evidence that higher degrees of collaborative working can produce more successful project performance, but there is only limited research to systematically examine the specific associations between collaborative working and project performance. In particular, there is a lack of exploration of appropriate approaches to test these associations. In order to test these associations in an appropriate approach, the concepts of collaborative working and project performance in this research are transformed into a measurable form in terms of the philosophy of AHP (analytic hierarchy process). In the process of measurement design for collaborative working and project performance, a Likert Scale is adopted. After refining the final measures through unidimensionality and reliability testing, as a part of PhD study, this paper presents the results of the association exploration between collaborative working and project performance. The produced conclusion is strongly supporting that there is a strong positive linear relationship between collaborative working and project performance

    Sense and symbolic objects: Strategic sensemaking through design

    Get PDF
    This paper reports on an ongoing investigation into one aspect of the design thinking phenomenon, namely the use of designed artifacts — sketches, renderings, graphics, models and prototypes — as symbolic objects in strategy making and implementation. It examines the conceptual overlap between design and the strategic cognition perspective, which considers cognitive processes and structures involved in strategic decision making, particularly the phenomenon of sensemaking. It is primarily a theoretical exploration, but draws on two short testimonies from designers. The specific conceptual connection between design practice and strategic cognition theory is potentially valuable to business leaders and managers involved with innovation, design management and strategic decisions. Preliminary findings suggest sensemaking activities by designers generate innovative future concepts with far-reaching strategic implications; designed artifacts aid sensemaking and sensegiving by management in exploring new business opportunities and directions. This paper is an early draft of a fuller account to be published in 2013 (AIEDAM Special Issue, Spring 2013, Vol.27, No.2, Studying and Supporting Design Communication, Edited by: Maaike Kleinsmann & Anja Maier)

    Stroke units: The implementation of a complex intervention

    Get PDF
    This article reports on selected findings from an action research study that looked at the lessons learnt from setting up a new in-patient stroke service in a London teaching hospital. Key participants in the design and evaluation of this 2-year study included members of the multi-professional stroke team and support staff within the unit, the hospital management team and representatives of patients and carers. Mixed methods (focus groups, indepth interviews, audits, documentary analysis, participant observation field notes) were used to generate data. Findings demonstrated positive change overtime with four main themes emerging from the process: building a team; developing practice-based knowledge and skills in stroke; valuing the central role of the nurse in stroke care; and creating an organisational climate for supporting change. The interplay of these non-linear, but interrelated factors is supported by complexity theory, which includes exploration of how the sum of a whole can be more than its constituent parts. Findings are likely to be of interest to practitioners, managers and policy makers interested in supporting change in a learning organisation
    • …
    corecore