5 research outputs found

    Specification Patterns for Robotic Missions

    Get PDF
    Mobile and general-purpose robots increasingly support our everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing their complex behaviors known as missions. Recognizing the need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation, or guiding the implementation. For instance, the logical language LTL is commonly used by experts to specify missions, as an input for planners, which synthesize the behavior a robot should have. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems, each of which detailing the usage intent, known uses, relationships to other patterns, and---most importantly---a template mission specification in temporal logic. Our tooling produces specifications expressed in the LTL and CTL temporal logics to be used by planners, simulators, or model checkers. The patterns originate from 245 realistic textual mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios we defined with two well-known industrial partners developing human-size robots. We validated our patterns' correctness with simulators and two real robots

    Integrating Topological Proofs with Model Checking to Instrument Iterative Design

    Get PDF
    System development is not a linear, one-shot process. It proceeds through refinements and revisions. To support assurance that the system satisfies its requirements, it is desirable that continuous verification can be performed after each refinement or revision step. To achieve practical adoption, formal verification must accommodate continuous verification efficiently and effectively. Model checking provides developers with information useful to improve their models only when a property is not satisfied, i.e., when a counterexample is returned. However, it is desirable to have some useful information also when a property is instead satisfied. To address this problem we propose TOrPEDO, an approach that supports verification in two complementary forms: model checking and proofs. While model checking is typically used to pinpoint model behaviors that violate requirements, proofs can instead explain why requirements are satisfied. In our work, we introduce a specific notion of proof, called Topological Proof. A topological proof produces a slice of the original model that justifies the property satisfaction. Because models can be incomplete, TOrPEDO supports reasoning on requirements satisfaction, violation, and possible satisfaction (in the case where satisfaction depends on unknown parts of the model). Evaluation is performed by checking how topological proofs support software development on 12 modeling scenarios and 15 different properties obtained from 3 examples from literature. Results show that: (i) topological proofs are ≈60% smaller than the original models; (ii) after a revision, in ≈78% of cases, the property can be re-verified by relying on a simple syntactic check

    Supporting verification-driven incremental distributed design of components

    Get PDF
    Software systems are usually formed by multiple components which interact with one another. In large systems, components themselves can be complex systems that need to be decomposed into multiple sub-components. Hence, system design must follow a systematic approach, based on a recursive decomposition strategy. This paper proposes a comprehensive verification-driven framework which provides support for designers during development. The framework supports hierarchical decomposition of components into sub-components through formal specification in terms of pre- and post-conditions as well as independent development, reuse and verification of sub-components

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution
    corecore