2,867 research outputs found

    The Research Object Suite of Ontologies: Sharing and Exchanging Research Data and Methods on the Open Web

    Get PDF
    Research in life sciences is increasingly being conducted in a digital and online environment. In particular, life scientists have been pioneers in embracing new computational tools to conduct their investigations. To support the sharing of digital objects produced during such research investigations, we have witnessed in the last few years the emergence of specialized repositories, e.g., DataVerse and FigShare. Such repositories provide users with the means to share and publish datasets that were used or generated in research investigations. While these repositories have proven their usefulness, interpreting and reusing evidence for most research results is a challenging task. Additional contextual descriptions are needed to understand how those results were generated and/or the circumstances under which they were concluded. Because of this, scientists are calling for models that go beyond the publication of datasets to systematically capture the life cycle of scientific investigations and provide a single entry point to access the information about the hypothesis investigated, the datasets used, the experiments carried out, the results of the experiments, the people involved in the research, etc. In this paper we present the Research Object (RO) suite of ontologies, which provide a structured container to encapsulate research data and methods along with essential metadata descriptions. Research Objects are portable units that enable the sharing, preservation, interpretation and reuse of research investigation results. The ontologies we present have been designed in the light of requirements that we gathered from life scientists. They have been built upon existing popular vocabularies to facilitate interoperability. Furthermore, we have developed tools to support the creation and sharing of Research Objects, thereby promoting and facilitating their adoption.Comment: 20 page

    Designing Traceability into Big Data Systems

    Full text link
    Providing an appropriate level of accessibility and traceability to data or process elements (so-called Items) in large volumes of data, often Cloud-resident, is an essential requirement in the Big Data era. Enterprise-wide data systems need to be designed from the outset to support usage of such Items across the spectrum of business use rather than from any specific application view. The design philosophy advocated in this paper is to drive the design process using a so-called description-driven approach which enriches models with meta-data and description and focuses the design process on Item re-use, thereby promoting traceability. Details are given of the description-driven design of big data systems at CERN, in health informatics and in business process management. Evidence is presented that the approach leads to design simplicity and consequent ease of management thanks to loose typing and the adoption of a unified approach to Item management and usage.Comment: 10 pages; 6 figures in Proceedings of the 5th Annual International Conference on ICT: Big Data, Cloud and Security (ICT-BDCS 2015), Singapore July 2015. arXiv admin note: text overlap with arXiv:1402.5764, arXiv:1402.575

    DataHub: Collaborative Data Science & Dataset Version Management at Scale

    Get PDF
    Relational databases have limited support for data collaboration, where teams collaboratively curate and analyze large datasets. Inspired by software version control systems like git, we propose (a) a dataset version control system, giving users the ability to create, branch, merge, difference and search large, divergent collections of datasets, and (b) a platform, DataHub, that gives users the ability to perform collaborative data analysis building on this version control system. We outline the challenges in providing dataset version control at scale.Comment: 7 page

    Building Information Modelling (BIM)—versioning for collaborative design

    Get PDF
    The engineering design process is a complicated activity. It is often characterized by multi-disciplinary teams in multiple places working together on a single project, using different models and software tools. In addition, such activities generate a large amount of data that require exchange among designers and stages of the work. In industry, the current collaboration approaches often focus on integrating and managing multiple models from multi-designers. Building Information Modelling (BIM) is playing a major role in facilitating collaboration. BIM provides an opportunity to electronically model and manage the vast amount of information embedded in a building project, from conception to completion. In the building design process, changes and modifications are inevitable even in the contemporary BIM approach. Such changes need to be well managed to keep track of changes to ensure that designers have an up-to-date version of the BIM model. The main goal of this research is to develop a collaborative BIM platform that tackles the challenges of integrating object versioning, as a change management approach, and an IFC model, as data representation of BIM. This has been done through suggesting new IFC extensions to add further concepts representing the history of changing to any object of the model. It also explores possibilities of adding or merging object-based change information to existing BIM models to enable the representation of design intentions, identification of affected changes numerically and visually. A prototype system is implemented in C#, using .NET framework and Revit API platform. This paper concludes that the proposed system can contribute to improving collaboration - in terms of tracking and management of affected changes during multi-disciplinary design process

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Research Objects: Towards Exchange and Reuse of Digital Knowledge

    Get PDF
    What will researchers be publishing in the future? Whilst there is little question that the Web will be the publication platform, as scholars move away from paper towards digital content, there is a need for mechanisms that support the production of self-contained units of knowledge and facilitate the publication, sharing and reuse of such entities.

 In this paper we discuss the notion of _research objects_, semantically rich aggregations of resources, that can possess some scientific intent or support some research objective. We present a number of principles that we expect such objects and their associated services to follow

    ArCo: the Italian Cultural Heritage Knowledge Graph

    Full text link
    ArCo is the Italian Cultural Heritage knowledge graph, consisting of a network of seven vocabularies and 169 million triples about 820 thousand cultural entities. It is distributed jointly with a SPARQL endpoint, a software for converting catalogue records to RDF, and a rich suite of documentation material (testing, evaluation, how-to, examples, etc.). ArCo is based on the official General Catalogue of the Italian Ministry of Cultural Heritage and Activities (MiBAC) - and its associated encoding regulations - which collects and validates the catalogue records of (ideally) all Italian Cultural Heritage properties (excluding libraries and archives), contributed by CH administrators from all over Italy. We present its structure, design methods and tools, its growing community, and delineate its importance, quality, and impact

    Sustainability of systems interoperability in dynamic business networks

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de ComputadoresCollaborative networked environments emerged with the spread of the internet, contributing to overcome past communication barriers, and identifying interoperability as an essential property to support businesses development. When achieved seamlessly, efficiency is increased in the entire product life cycle support. However, due to the different sources of knowledge, models and semantics, enterprise organisations are experiencing difficulties exchanging critical information, even when they operate in the same business environments. To solve this issue, most of them try to attain interoperability by establishing peer-to-peer mappings with different business partners, or use neutral data and product standards as the core for information sharing, in optimized networks. In current industrial practice, the model mappings that regulate enterprise communications are only defined once, and most of them are hardcoded in the information systems. This solution has been effective and sufficient for static environments, where enterprise and product models are valid for decades. However, more and more enterprise systems are becoming dynamic, adapting and looking forward to meet further requirements; a trend that is causing new interoperability disturbances and efficiency reduction on existing partnerships. Enterprise Interoperability (EI) is a well established area of applied research, studying these problems, and proposing novel approaches and solutions. This PhD work contributes to that research considering enterprises as complex and adaptive systems, swayed to factors that are making interoperability difficult to sustain over time. The analysis of complexity as a neighbouring scientific domain, in which features of interoperability can be identified and evaluated as a benchmark for developing a new foundation of EI, is here proposed. This approach envisages at drawing concepts from complexity science to analyse dynamic enterprise networks and proposes a framework for sustaining systems interoperability, enabling different organisations to evolve at their own pace, answering the upcoming requirements but minimizing the negative impact these changes can have on their business environment
    • …
    corecore