2,011 research outputs found

    Supporting Ontology-based Semantic Matching in RDBMS

    Get PDF

    Book reviews online

    Get PDF
    As the number of new academic books published each year continues to rise, such that it becomes evermore difficult to keep abreast of them in one's discipline, the book‐review procedure takes on an increasing importance. This paper outlines the design and development of an automated system for handling book reviews. Descriptions are given of some prototypes that have been developed for use on an intranet server and/or the Internet. These systems, based on SGML and HTML, are briefly discussed and compared

    Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    Get PDF
    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking

    Evaluating the informatics for integrating biology and the bedside system for clinical research

    Get PDF
    pre-printBackground: Selecting patient cohorts is a critical, iterative, and often time-consuming aspect of studies involving human subjects; informatics tools for helping streamline the process have been identified as important infrastructure components for enabling clinical and translational research. We describe the evaluation of a free and open source cohort selection tool from the Informatics for Integrating Biology and the Bedside (i2b2) group: the i2b2 hive. Methods: Our evaluation included the usability and functionality of the i2b2 hive using several real world examples of research data requests received electronically at the University of Utah Health Sciences Center between 2006 - 2008. The hive server component and the visual query tool application were evaluated for their suitability as a cohort selection tool on the basis of the types of data elements requested, as well as the effort required to fulfill each research data request using the i2b2 hive alone. Results: We found the i2b2 hive to be suitable for obtaining estimates of cohort sizes and generating research cohorts based on simple inclusion/exclusion criteria, which consisted of about 44% of the clinical research data requests sampled at our institution. Data requests that relied on post-coordinated clinical concepts, aggregate values of clinical findings, or temporal conditions in their inclusion/exclusion criteria could not be fulfilled using the i2b2 hive alone, and required one or more intermediate data steps in the form of pre-or post-processing, modifications to the hive metadata, etc. Conclusion: The i2b2 hive was found to be a useful cohort-selection tool for fulfilling common types of requests for research data, and especially in the estimation of initial cohort sizes. For another institution that might want to use the i2b2 hive for clinical research, we recommend that the institution would need to have structured, coded clinical data and metadata available that can be transformed to fit the logical data models of the i2b2 hive, strategies for extracting relevant clinical data from source systems, and the ability to perform substantial pre- and post-processing of these data

    Evaluating the informatics for integrating biology and the bedside system for clinical research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selecting patient cohorts is a critical, iterative, and often time-consuming aspect of studies involving human subjects; informatics tools for helping streamline the process have been identified as important infrastructure components for enabling clinical and translational research. We describe the evaluation of a free and open source cohort selection tool from the Informatics for Integrating Biology and the Bedside (i2b2) group: the i2b2 hive.</p> <p>Methods</p> <p>Our evaluation included the usability and functionality of the i2b2 hive using several real world examples of research data requests received electronically at the University of Utah Health Sciences Center between 2006 - 2008. The hive server component and the visual query tool application were evaluated for their suitability as a cohort selection tool on the basis of the types of data elements requested, as well as the effort required to fulfill each research data request using the i2b2 hive alone.</p> <p>Results</p> <p>We found the i2b2 hive to be suitable for obtaining estimates of cohort sizes and generating research cohorts based on simple inclusion/exclusion criteria, which consisted of about 44% of the clinical research data requests sampled at our institution. Data requests that relied on post-coordinated clinical concepts, aggregate values of clinical findings, or temporal conditions in their inclusion/exclusion criteria could not be fulfilled using the i2b2 hive alone, and required one or more intermediate data steps in the form of pre- or post-processing, modifications to the hive metadata, etc.</p> <p>Conclusion</p> <p>The i2b2 hive was found to be a useful cohort-selection tool for fulfilling common types of requests for research data, and especially in the estimation of initial cohort sizes. For another institution that might want to use the i2b2 hive for clinical research, we recommend that the institution would need to have structured, coded clinical data and metadata available that can be transformed to fit the logical data models of the i2b2 hive, strategies for extracting relevant clinical data from source systems, and the ability to perform substantial pre- and post-processing of these data.</p

    The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroimaging researchers have developed rigorous community data and metadata standards that encourage meta-analysis as a method for establishing robust and meaningful convergence of knowledge of human brain structure and function. Capitalizing on these standards, the BrainMap project offers databases, software applications, and other associated tools for supporting and promoting quantitative coordinate-based meta-analysis of the structural and functional neuroimaging literature.</p> <p>Findings</p> <p>In this report, we describe recent technical updates to the project and provide an educational description for performing meta-analyses in the BrainMap environment.</p> <p>Conclusions</p> <p>The BrainMap project will continue to evolve in response to the meta-analytic needs of biomedical researchers in the structural and functional neuroimaging communities. Future work on the BrainMap project regarding software and hardware advances are also discussed.</p

    Analyzing an orthophoto mapping system using system analysis, SWOT and client satisfaction survey : a case study of the Chief Directorate of Surveys and Mapping, Republic of South Africa

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.An orthophoto map is made from a combination of different geospatial datasets such as relief, imagery, powerlines and annotation. These data sets are usually generated by different divisions within national mapping agencies. Often, when an orthophoto mapping project is to be undertaken, other functions within and outside the system, are actuated. Examples of such functions include; photogrammetric scanning, digital elevation capturing, aerial triangulation, ancillary data and imagery acquisition and map compilation. This research is underpinned by the hypothesis that different components that supply data required for generating orthophoto maps do not work as a coherent whole. This behaviour impacts negatively on the production of orthophoto maps as well as the quality of the end product and can have spill over effects on service delivery. In this research, systems analysis, client satisfaction survey and SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis are used as a collective set of tools to analyze an orthophoto mapping system (OMS) in order to mitigate this unwanted behaviour. The case of orthophoto map production at the Chief Directorate of Surveys and Mapping (CDSM) in South Africa is used. First, systems analysis, which uses the Data Flow Diagram (DFD) technique, is employed to depict the system‘s data stores, processes and data flows. This approach helps to show how the current system works thereby assisting to pin point areas that require improvement. After presenting the system ‘s processes, data stores and data flows, a client satisfaction survey, built on the criteria of; accuracy, completeness, correctness and accessibility of geospatial datasets, is conducted on one of the data stores – the Topographical Information System (TIS) database. Finally, a SWOT analysis is then done on the whole OMS to evaluate the internal and external environment under which the current system operates in. Gaps are identified and recommendations suggested. Although in this case, the recommendations are built based on the CDSM case study, it is believed they can benefit other OMS’s in similar operating conditions elsewhere

    Clinical protocols enabling evidence based medicine practice in healthcare software solutions

    Get PDF
    Estágio realizado na ALERT Life Sciences Computing, S. A.Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200
    corecore