
Supporting Ontology-based Semantic Matching in RDBMS

Souripriya Das, Eugene Inseok Chong, George Eadon, Jagannathan Srinivasan

Oracle Corporation
One Oracle Drive, Nashua, NH 03062, USA

Abstract
Ontologies are increasingly being used to build
applications that utilize domain-specific
knowledge. This paper addresses the problem of
supporting ontology-based semantic matching in
RDBMS. Specifically, 1) A set of SQL
operators, namely ONT_RELATED,
ONT_EXPAND, ONT_DISTANCE, and
ONT_PATH, are introduced to perform
ontology-based semantic matching, 2) A new
indexing scheme ONT_INDEXTYPE is
introduced to speed up ontology-based semantic
matching operations, and 3) System-defined
tables are provided for storing ontologies
specified in OWL. Our approach enables users
to reference ontology data directly from SQL
using the semantic match operators, thereby
opening up possibilities of combining with other
operations such as joins as well as making the
ontology-driven applications easy to develop
and efficient. In contrast, other approaches use
RDBMS only for storage of ontologies and
querying of ontology data is typically done via
APIs. This paper presents the ontology-related
functionality including inferencing, discusses
how it is implemented on top of Oracle
RDBMS, and illustrates the usage with several
database applications.

1. Introduction

An ontology is a shared conceptualization of knowledge
in a particular domain. It facilitates building applications
by separating knowledge about the target domain from
the rest of the application code. The key benefits of this
approach are: simplification of the application code,

possible sharing of knowledge among multiple
applications, and the flexibility of evolving the
knowledge without requiring changes to the application.

This approach has been used to build applications for
various domains (such as clinical applications [3],
geographic information system [2], integrated knowledge
management [1], and knowledge acquisition system [7]).
The same approach can be adopted to build database
applications. This paper addresses the problem of
supporting ontology-based semantic matching in
RDBMS.

To motivate the need for ontology-based semantic
matching, consider a restaurant guide application, which
recommends restaurants to a user based on her/his
preferences. Consider a tableserved_food that contains
the types of cuisines served at restaurants.

Table 1: served_food

R_id Cuisine

1 American

2 Mexican

2 American

14 Portuguese

In the absence of semantic matching, the application
would most likely resort to syntactic matching via the
‘=’ operator as shown below:

SELECT * FROM served_food
WHERE cuisine = ‘Latin American’;

This query generates no rows since none of Cuisine
values in the table will match‘Latin American’ .

In contrast, the user can get more meaningful results
by performing semantic matching that consults an
ontology (such as the cuisine ontology in Figure 1) for
computing the results. Specifically, a user can issue the
following query:

SELECT * FROM served_food
WHERE ONT_RELATED(cuisine,

‘IS_A’,
‘Latin American’,
‘Cuisine_ontology’)=1;

Here theONT_RELATEDoperator determines if the two
input terms are related by the input relationship type
argument by consulting the specified ontology. If they are
related, then the operator will return 1, otherwise 0.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1054

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208929732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: A Cuisine Ontology
(Each node represents an Individual and each edge

representsa transitive ObjectProperty‘IS_A’ )

The query identifies rows containing cuisines that are
related to ‘Latin American’ based on ‘IS_A’
relationship. The query will generate restaurants 2 and 14
since ‘Mexican’ and ‘Portuguese ’ are related to
‘Latin American’ cuisine. Thus, one can incorporate
semantics of the particular knowledge domain in SQL
queries by introducing ontology-based semantic
matching.

Optionally, a user may want to get a measure for the
rows filtered by ONT_RELATEDoperator. This can be
achieved by usingONT_DISTANCEancillary operator.
The ONT_DISTANCEoperator gives a measure of how
closely the terms are related by measuring the distance
between the two terms. Continuing with the example, one
can get the result sorted on distance measure as follows:

SELECT * FROM served_food
WHERE ONT_RELATED (cuisine,

‘IS_A’,
‘Latin American’,
‘Cuisine_ontology’,

123) = 1
ORDER BY ONT_DISTANCE (1231);

Similarly, another ancillary operatorONT_PATHwould
be useful, which computes path information between the
two terms.

In addition, a user may want to query an ontology
independently (without involving user tables). The
ONT_EXPANDoperator can be used for this purpose (see
Section 2 for details).

Providing ontology-based semantic matching
capability as part of SQL greatly facilitates developing
ontology-driven database applications. Applications that
can benefit include e-commerce (such as supply chain
management, application integration, personalization, and
auction). Also, applications that have to work with
domain-specific knowledge repositories (such as
BioInformatics, Geographical Information Systems, and

1 This argument identifies the filtering operator expression
(ONT_RELATED) that computes this ancillary value [11].

Healthcare Applications) can take advantage of this
capability. These capabilities can be exploited to support
semantic web applications (such as web service discovery
[8]) as well. A key requirement in these applications is to
provide semantic matching between syntactically
different terms or sometimes between syntactically same,
but semantically different terms [10].

Another category of the semantic matching application
is related to knowledge reuse. Neutral Authoring [9] is an
application area, where information is represented in a
single language and then converted into different
languages for multiple target systems. Corporate
knowledge bases on which documentation and software
development can be based is another big application area
of such a capability.

Support for ontology-based semantic matching is
achieved by introducing the following:

• Two new SQL operators,ONT_RELATEDand
ONT_EXPAND(as described above) are defined to model
ontology-based semantic matching operations. For
queries involving ONT_RELATED operator, two
ancillary SQL operators ONT_DISTANCE and
ONT_PATH, are defined that return distance and path
respectively for the filtered rows. Additional operators
may be introduced for querying purposes, e.g., for finding
datatype property values.

• A new indexing schemeONT_INDEXTYPE is
defined to speed up ontology-based semantic matching
operations.

• A schema has been designed to store information
extracted from an ontology. This schema is not directly
visible to the user.

The proposed functionality can be implemented by
exploiting the database extensibility capabilities (namely,
the ability to define user-defined operators, user-defined
indexing schemes, and table functions) typically available
in an RDBMS.

We support ontologies specified in Web Ontology
Language (OWL [19], specifically, OWL Lite and OWL
DL) by extracting information from the OWL document
and then storing this information in the schema.

Oracle’s Extensibility Framework [5] has been used to
implement the operators and the new indexing scheme.
Specifically, ONT_RELATED, ONT_DISTANCE, and
ONT_PATH operators are implemented as user-defined
operators. ONT_EXPAND is implemented as a table
function. The operator implementation typically requires
computing a transitive closure based upon explicit
relationships and inferred relationships. This is performed
via queries with CONNECT BY clause. The
ONT_INDEXTYPE is implemented as a user-defined
indexing scheme (See Section 3.3 for details).

Cuisine

Asian Western
Latin American

South Asian Far Eastern

Indian Pakistani
Chinese

Korean
Japanese

American European

Italian German

Portuguese

Mexican

1055



1.1 Related Work

Ontologies have been around for sometime and in recent
years they have received wider attention in the context of
semantic web [4]. Several ontology building tools have
been developed (for example, OntoEdit [13], OntoBroker
[14], OntologyBuilder and OntologyServer [16], KAON
[15]). Most of these tools use a file system to store
ontologies. Among these, KAON and VerticalNet
products (OntologyBuilder and OntologyServer) as well
as the Jena2 Semantic Web Framework [21] allow storing
of ontology using RDBMS and they provide an API for
access and manipulation of ontologies. However, the key
difference is that our approach makes ontology-based
semantic matching available as part of SQL.

1.2 Organization of the Paper

Section 2 presents a feature overview of supporting
ontology-based semantic matching operations. Section 3
discusses the implementation of the ontology-related
changes on top of Oracle RDBMS and its performance
results. Section 4 illustrates their usage with several
database applications. Section 5 describes our experience
and Section 6 concludes with a summary and outlines
future work.

2. Supporting Ontology-based Semantic
Matching on Oracle RDBMS

Although the feature is described in the context of Oracle
RDBMS, it can be supported in any RDBMS that support
a few basic extensibility capabilities as outlined in
Section 1.

Figure 2: Ontology-related Functionality

2.1 Overview

The ontology-related functionality (see Figure 2) is as
follows:

• An RDBMS schema, consisting of several
system-defined tables (see Section 2.2 for
details), is created for storing information
extracted from the ontologies.

• Two operators are provided for querying
purposes. TheONT_EXPANDoperator can be

used to query the ontology independently,
whereasONT_RELATEDoperator can be used to
perform queries on a user table holding ontology
terms.

• Optionally, a user can use two (ancillary)
operators,ONT_DISTANCEand ONT_PATH, in
queries involving theONT_RELATEDoperator to
get additional measures (distance and path) for
the filtered rows.

These are further elaborated below.

2.2 RDBMS Schema for Storing Ontologies

An RDBMS schema has been created for storing
ontologies specified in OWL. The tables in this schema
include:

Ontologies (
OntologyID, OntologyName, Owner, ...)

Terms (
TermID, OntologyID, Term, Type, ...)

Properties (
OntologyId, PropertyID,
DomainClassID, RangeClassID,
Characteristics, ...)

Restrictions (
OntologyID, NewClassID, PropertyID,
MinCardinality, MaxCardinality,
SomeValuesFrom, AllValuesFrom, ...)

Relationships (
OntologyID, TermID1, PropertyID,
TermID2, ...)

PropertyValues (
OntologyID, TermID, PropertyID,
Value, ...)

• Ontologies: Contains basic information about
various ontologies.

• Terms: Represents classes, individuals, and
properties in the ontologies. A term is a lexical
representation of a concept within an ontology.
TermID value is generated to be unique across all
ontologies. This allows representation of references
to a term in a different ontology than the one that
defines the term. Also, even anOntologyID is
handled as aTermID which facilitates storing values
for various properties (e.g., Annotation Properties)
and other information that applies to an ontology
itself. Note that, as a convention, any column in the
above schema whose name is of the form “…ID..”,
would actually contain TermID values (like a
foreign key).

• Properties: Contains information about the
properties. Domain and range of a property are
represented with TermID values of the
corresponding classes.Characteristics indicate

System Defined Tables
for storing Ontologies

User Tables

ONT_EXPAND
Operator

ONT_RELATED Operator
(with ONT_PATH &
ONT_DISTANCE ancillary
operators)

1056



which of the following properties are true for the
property: symmetry, transitivity, functional, inverse
functional.

• Restrictions: Contains information about property
restrictions. Restrictions on a property results in
definition of a new class. This new class is not
necessarily named (i.e., ‘anonymous’ class) in
OWL. However, internally we create a new (system-
defined) class for ease of representation.

• Relationships: Contains information about the
relationship between two terms.

• PropertyValues: Contains <Property, Value>
information associated with the terms. In order to
handle values of different data types, some
combinations of the following may be used: Define
separate tables (or separate columns in the same
table) for each of the frequently encountered types
and use a generic self-describing type (ANYDATA
in Oracle RDBMS) to handle any remaining types.

System-defined Classes for Anonymous Classes:We
create internal (i.e., not visible to the user) or system-
defined classes to handle OWL anonymous classes that
arise in various situations such as Property Restrictions,
enumerated types (used in DataRange), class definitions
expressed as expression involving IntersectionOf,
UnionOf, and ComplementOf.

Bootstrap Ontology: The first things that are loaded into
the above schema are the basic concepts of OWL itself.
In some sense this is like the bootstrap ontology. For
example:

• Thing and Nothing are stored as Classes.

• subClassOf is stored as a transitive (meta)
property that relates two classes.

• subPropertyOf is stored as a transitive (meta)
property that relates two properties.

• disjointWith is stored as a symmetric (meta)
property that relates two classes.

• SameAs is stored as a transitive and symmetric
property that relates two individuals in Thing
class.

Storing these OWL concepts as a bootstrap ontology
facilitates inferencing. A simple example would be the
following: If C1 is a subclassOf C2 and C2 is a
subclassOf C3, then (by transitivity of subClassOf) C1 is
a subclassOf C3. Note that the reflexive nature of
subClassOf and SubPropertyOf is handled as a special
case.

Loading Ontologies: An ontology is loaded into the
database by using an API that takes as input an OWL
document. Information from the OWL document is

extracted and then stored into the system-defined tables
in the RDBMS schema described above.

TheOntologies table stores some basic information
about all the ontologies that are currently stored in the
database. A portion (view) of this table is visible to the
user.

2.3 Modeling Ontology-based Semantic Matching

To support ontology-based semantic matching in
RDBMS several new operators are defined.

2.3.1 ONT_RELATED Operator. This operator models
the basic semantic matching operation. It determines if
the two input terms are related with respect to the
specified RelType relationship argument within an
ontology. If they are related it returns 1, otherwise it
returns 0.

ONT_RELATED (Term1, RelType, Term2,
OntologyName

) RETURNS INTEGER;

TheRelType can specify a single ObjectProperty (for
example, ‘IS_A’ , ‘EQV’ , etc.) or it can specify a
combination of such properties by usingAND, NOT, and
ORoperators (for example,‘IS_A OR EQV’). Note that
both Term1 and Term2 need to be simple terms. If
Term2 needs to be complex involving AND, OR, and
NOT operators, user can issue query with individual
terms and combine them with INTERSECT, UNION, and
MINUS operators. See Section 2.3.4 for an example.

RelType specified as an expressioninvolving OR and
NOToperators(e.g.,FatherOf OR MotherOf ) is treated
as a virtual relationship (in this case sayAncestorOf )
that is transitive by nature (also see Section 3.2.5).

2.3.2 ONT_EXPAND Operator. This operator is
introduced to query an ontology independently. Similar to
ONT_RELATEDoperator, theRelType can specify either
a simple relationship or combination of them.

CREATE TYPE ONT_TermRelType AS OBJECT (

Term1Name VARCHAR(32),
PropertyName VARCHAR(32),
Term2Name VARCHAR(32),

TermDistance NUMBER,
TermPath VARCHAR(2000)

);

CREATE TYPE ONT_TermRelTableType AS
TABLE OF ONT_TermRelType;

ONT_EXPAND (Term1, RelType, Term2,
OntologyName

) RETURNS ONT_TermRelTableType;

Typically, non-NULL values forRelType and Term2
are specified as input and then the operator computes all
the appropriate <Term1, RelType, Term2> tuples in the
closure taking into account the characteristics (transitivity
and symmetry) of the specifiedRelType . In addition, it

1057



also computes the relationship measures in terms of
distance (TermDistance ) and path (TermPath ). For
cases when a term is related to input term by multiple
paths, one row per path is returned. It is also possible that
ONT_EXPAND invocation may specify input values for
any one or more of the three parameters or even none of
the three parameters. In each of these cases, the
appropriate set of <Term1, RelType, Term2> tuples is
returned.

2.3.3 ONT_DISTANCE and ONT_PATH Ancillary
Operators. These operators compute the distance and
path measures respectively for the rows filtered using
ONT_RELATEDoperator.

ONT_DISTANCE (NUMBER) RETURNS NUMBER;
ONT_PATH (NUMBER) RETURNS VARCHAR;

A single resulting row can be related in more than one
way with the input term. For such cases, the above
operators return the optimal measure, namely smallest
distance or shortest path. For computing all the matches,
the following two operators are provided:

ONT_DISTANCE_ALL (NUMBER)
RETURNS TABLE OF NUMBER;

ONT_PATH_ALL (NUMBER)
RETURNS TABLE OF VARCHAR;

2.3.4 A Restaurant Guide Example. Consider a
restaurant guide application that maintains type of cuisine
served at various restaurants. It has two tables, 1)
restaurants containing restaurant information, and 2)
served_food containing the types of cuisine served at
restaurants.

The restaurant guide application takes as input a type
of cuisine and returns the list of restaurants serving that
cuisine. Obviously, applications would like to take
advantage of an available cuisine ontology to provide
better match for the user queries. The cuisine ontology
describes the relationships between various types of
cuisines as shown earlier in Figure 1.

Thus, if a user is interested in restaurants that serve
cuisine of type ‘Latin American’ , the database
application can generate the following query:

SELECT r.name, r.address
FROM served_food sf, restaurant r
WHERE r.id = sf.r_id AND

ONT_RELATED(sf.cuisine,
‘IS_A OR EQV’,

‘Latin American’,
‘Cuisine_ontology’)=1;

To query on‘Latin American’ AND ‘Western’
the application program can obtain rows for each and use
the SQL INTERSECT operation to compute the result.

Also, the application can exploit the full SQL
expressive power when usingONT_RELATED operator.
For example, it can easily combine the above query
results with those restaurants that have lower price range.

SELECT r.name
FROM served_food sf, restaurant r
WHERE r.id = sf.r_id AND

ONT_RELATED(sf.cuisine,
‘IS_A OR EQV’,

‘Latin American’,
‘Cuisine_ontology’)=1

AND r.price_range = ‘$’;

2.3.5 Discussion.Note that the queries in section 2.3.4
can also be issued using theONT_EXPANDoperator. For
example, the first query in that section can alternatively
be expressed usingONT_EXPANDas follows:

SELECT r.name, r.address
FROM served_food sf, restaurant r
WHERE r.id = sf.r_id AND

sf.cuisine IN
(SELECT Term1Name from TABLE(

ONT_EXPAND(NULL, ‘IS_A OR EQV’,
‘Latin American’,

‘Cuisine_ontology’)));

The ONT_RELATEDoperator is provided in addition to
ONT_EXPANDoperator for the following reasons:

• The ONT_RELATEDoperator provides a more natural
way of expressing semantic matching operations on
column holding ontology terms.

• It allows use of an index created on column holding
ontology terms to speed up the query execution by
taking column data into account.

2.4 Inferencing

Inferencing rules employing the symmetry and transitivity
characteristics of properties are used to infer new
relationships. This kind of inferencing can be achieved
through the use of the operators defined above (see
Section 3.2 for details). Note that our support for
inferencing is restricted to OWL Lite and OWL DL, both
of which are decidable.

To support more complete inferencing using the above
operators, an initial phase of inferencing is done after
ontology is loaded, and the results of this inferencing are
stored persistently and used in subsequent inferencing.
Several examples of the initial inferencing follow.

All subPropertyOf relationships are derived and stored
during this phase. The transitive aspects of sameAs (e.g.,
sameAs(x,y) AND sameAs(y,z) IMPLIES sameAs(x,z))
can be handled by the operators defined above.
However, the more complex rules which imply sameAs
(e.g., p is a functional property AND p(a,x) AND p(b,y)
AND sameAs(a,b) IMPLIES sameAs(x,y)) are best
handled outside of the operator implementation. We
expect these complex sameAs inferences to be done
during the initial inferencing phase. To provide the
semantics of sameAs during closure computation, the
operators will treat an individual ‘I’ as ‘I OR J’ for all J
where sameAs(I, J).

Furthermore, we are introducing an internal
relationship that will be useful for inferencing over
complex subPropertyOf and inverseOf interactions:
SubPropertyOfInverseOf(f,g) iff f(x,y) IMPLIES g(y,x).
Again, we expect that the rules that introduce

1058



SubPropertyOfInverseOf (spiOf, for short) into an
ontology (e.g., inverseOf(f,g) IMPLIES spiOf(f,g) AND
spiOf(g,f)) will be handled during the initial inferencing
phase. However, the transitive aspects of spiOf can be
handled as a special case within our operators, according
to the following rules:

• subPropertyOf(f,g) AND spiOf(g,h)
IMPLIES spiOf(f,h)

(Proof: f(x,y) IMPLIES g(x,y) IMPLIES h(y,x))

• spiOf(f,g) AND subPropertyOf(g,h)
IMPLIES spiOf(f,h)

(Proof: f(x,y) IMPLIES g(y,x) IMPLIES h(y,x))

• spiOf(f,g) AND spiOf(g,h)
IMPLIES SubPropertyOf(f,h)

(Proof: f(x,y) IMPLIES g(y,x) IMPLIES h(x,y))

Given the expansion of subPropertyOf and spiOf, we
can find all relationship tuples for a given property,
including those that are implied through sub-properties
and inverse-properties. Consider the following example
(see adjoining figure), where non-transitive properties are
used for clarity, which expands ParentOf. In this case, if
we have subPropertyOf(MotherOf, ParentOf) and
inverseOf(MotherOf, hasMother), we will get
spiOf(hasMother, ParentOf) based on result of the initial
inferencing phase and the above rules. Then
hasMother(child, mother) will be sufficient to yield
ParentOf(mother, child) in the result set:

SELECT r.termID1, 'ParentOf', r.termID2
FROM relationships r, terms t
WHERE r.propertyID = t.termID

AND t.term IN
(select term1Name FROM

TABLE(ONT_EXPAND(NULL,
'subPropertyOf',
'ParentOf',
'Family_ontology')))

UNION

SELECT r.termID2, 'ParentOf', r.termID1
FROM relationships r, terms t
WHERE r.propertyID = t.termID

AND t.term IN
(select term1Name FROM

TABLE(ONT_EXPAND(NULL,
'spiOf',
'ParentOf',
'Family_ontology')))

3. Implementation of Ontology Related
Functionality on Oracle RDBMS

This section describes how the ontology-related
functionality is implemented on top of Oracle RDBMS.

3.1 Operators

The ONT_RELATED operator is defined as aprimary
user-defined operator, with ONT_DISTANCE and
ONT_PATH as its ancillary operators. The primary
operator computes the ancillary value as part of its
processing [11]. In this case,ONT_RELATEDoperator
computes the relationship. If ancillary values (the
distance and path measure) are required, it computes
them as well.

Note that the user-defined operator mechanism in
Oracle allows for sharing state across multiple
invocations. Thus, the implementation of the
ONT_RELATEDoperator involves building and compiling
an SQL query with CONNECT BY clause (as described
in Section 3.2) during its first invocation. Each
subsequent invocations of the operator simply uses the
previously compiled SQL cursor, binds it with the new
input value, and executes it to obtain the result.

The ONT_EXPANDoperator is defined as a table
function as it returns a table of rows, which by default
includes the path and distance measures.

3.2 Basic Algorithm

Basic processing for both ONT_RELATED and
ONT_EXPAND involves computing transitive closure,
namely, traversal of a tree structure by following
relationship links given a starting node. Also, as part of
transitive closure computation, we need to track the
distance and path information for each pair formed by
starting node and target node reached via the relationship
links.

Oracle supports transitive closure queries with
CONNECT BY clause as follows:

SELECT … FROM … START WITH <condition>
CONNECT BY <condition>;

The starting node is selected based on the condition
given in START WITH clause, and then nodes are
traversed based on the condition given in CONNECT BY
clause. The parent node is referred to by the PRIOR
operator. For computation of distance and path, the
Oracle-provided LEVEL psuedo-column and
SYS_CONNECT_BY_PATH function are respectively
used in the select list of a query with CONNECT BY
clause.

Note that in the system-definedRelationshipstable, a
row represents ‘TermID1 is related to TermID2 via
PropertyID relationship.’ For example, if ‘A IS_A B’,
it is represented as the row <1, A, IS_A , B> assuming
that the ontologyID is 1.

Note that any cycles encountered during the closure
computation will be handled by the CONNECT BY
NOCYCLE query implementation available in Oracle
10g (not explicitly shown in the examples below). Also,
the proposed index-based implementation (described in

MotherOf

ParentOf

hasMother

subPropertyOf

inverseOf

SubPropertyOfInverseOf
(inferred relation)

1059



Section 3.3) can handle this case even in Oracle 9i
Release 2.

For simplicity, we use a slightly different definition for
the relationships table where term names are stored
instead of termIDs as follows:

Relationships (
OntologyName, Term1, Relation, Term2,
...)

To illustrate the processing, we use the restaurant
guide example. The data for the two tables used are as
shown in Table 2 below.

Table 2: Example Restaurant Database

restaurant served_food

3.2.1 Handling Simple Terms.Consider a query that has
simple relation types, i.e., no AND, OR, NOT operators.
The first query given in Section 2.3.4 can be converted as
follows:
Original Query:

SELECT r.name, r.address
FROM served_food sf, restaurant r
WHERE r.id = sf.r_id AND

ONT_RELATED(sf.cuisine, ‘IS_A’,
‘Latin American’,
‘Cuisine_ontology’)=1;

Transformed Query:
SELECT r.name, r.address
FROM served_food sf,restaurant r
WHERE r.id = sf.r_id AND

sf.cuisine IN
(SELECT term1 FROM relationships

START WITH
term2 = 'Latin American' AND

relation = ‘IS_A’
CONNECT BY

PRIOR term1 = term2 AND
relation = 'IS_A');

The text in boldface above is the portion that has been
converted. Basically, the third argument is translated into
START WITH clause and the second argument into
CONNECT BY clause.
The result for this query is as follows:

NAME ADDRESS

Chilis ……

Maharaj ……

Niva ……

3.2.2 Handling OR Operator. Consider a case where
‘Brazilian’ cuisine was not originally included in the
ontology and is now inserted under the‘South
American’ cuisine. Also, to put‘South American’
cuisine in the same category as‘Latin American’
cuisine, the transitive and symmetric‘EQV’ relationship
is used as shown in the Figure 3 below:

Figure 3: Adding EQV Relationship

Now, to get ‘Latin American’ cuisine, disjunctive
conditions should be used to traverse both relationship
links, that is, ‘IS_A’ and ‘EQV’ . Such disjunctive
conditions can be directly specified in the START WITH
and CONNECT BY clauses.

Original Query:
SELECT r.name, r.address

FROM served_food sf, restaurant r
WHERE r.id = sf.r_id AND

ONT_RELATED(sf.cuisine,
‘IS_A OR EQV’ ,
‘Latin American’,
‘Cuisine_ontology’)=1;

Transformed Query:
The only differences from the transformed query of
the previous example is that the relationships table:

FROM relationships

is replaced by a sub-query to introduce the implicit
symmetric edges into the query:

FROM (SELECT term1, relation, term2
FROM relationships
UNION
SELECT term2, relation, term1
FROM relationships
WHERE relation = ‘EQV’)

and the occurrence of the following predicate in
START WITH and CONNECT BY clauses

relation = ‘IS_A’

is replaced with the following predicate:

Id Name price_r
ange

……

1 Mac $

2 Chilis $$

3 Anthonys $$$

4 BK $

5 Uno $$

6 Wendys $

7 Dabin $$

8 Cheers $$

9 KFC $

10 Sizzlers $$

11 Rio $$

12 Maharaj $$

13 Dragon $$

14 Niva $$

R_id cuisine

1 American

2 Mexican

2 American

3 American

4 American

5 American

5 Italian

6 American

7 Korean

7 Japanese

8 American

9 American

10 American

11 Brazilian

12 Mexican

12 Indian

13 Chinese

14 Portuguese

Latin American South American

Brazilian

EQV

1060



(relation = ‘IS_A’ OR relation =
‘EQV’)

3.2.3 Handling AND operator. Conjunctive conditions
between transitive relationship types can be handled by
independently computing the transitive closure for each
relationship type and then applying set INTERSECT on
the resulting sets. For each node in the intersection, a path
exists from the start node to this node for each
relationship type and hence this is sufficient.

Let us consider another relationship between cuisines,
which identifies the spiciest cuisine using the term
MOST_SPICY. The ontology can now contain
information such as ‘South Asian cuisine is
MOST_SPICY Asian cuisine’ and ‘Indian cuisine is
MOST_SPICY South Asian cuisine,’ etc.

To find very spicy cuisine from the ontology, user can
issue a query using conjunctive conditions in the
relationships as follows:
Original Query: Find a restaurant that serves very spicy

Asian cuisine.
SELECT r.name FROM served_food sf,

restaurant r
WHERE r.id = sf.r_id AND
ONT_RELATED(sf.cuisine,

‘IS_A AND MOST_SPICY’
‘Asian’,
‘Cuisine_ontology’) = 1;

Transformed query:
SELECT r.name FROM served_food sf,

restaurant r
WHERE r.id = sf.r_id AND

sf.cuisine IN
(

SELECT term1 FROM relationships
START WITH

term2 = 'Asian' AND
relation = ‘IS_A’

CONNECT BY
PRIOR term1 = term2 AND
relation = 'IS_A'

INTERSECT

SELECT term1 FROM relationships
START WITH

term2 = 'Asian' AND
relation = ‘MOST_SPICY’

CONNECT BY
PRIOR term1 = term2 AND
relation =‘MOST_SPICY’ );

3.2.4 Handling NOT operator. A NOT operator
specifies which relationships to exclude when finding
transitive closure. Therefore, given the start node all
relationships except ones specified in NOT operator will
be traversed. NOT operators can be directly specified in
the START WITH and CONNECT BY clauses.

Original Query: Find all Latin American cuisine,
excluding‘EQV’ relationship types.

SELECT r.name FROM served_food sf,
restaurant r

WHERE r.id = sf.r_id AND
ONT_RELATED(sf.cuisine,

‘NOT EQV’,
‘Latin American’,
‘Cuisine_ontology’)=1;

Transformed Query: Only difference from the
transformed query of the example in Section 3.2.1 is that
the occurrence of the following predicate in START
WITH and CONNECT BY clauses

relation = ‘IS_A’

is replaced with the following predicate:
relation != ‘EQV’

Note that if a user wants to retrieve all cuisines except
Latin American cuisine, then the query can be formulated
using the operatorONT_RELATEDreturning 0 as follows:

……
ONT_RELATED(sf.cuisine,

‘IS_A’,
‘Latin American’,
‘Cuisine_ontology’)= 0;

3.2.5 Handling Combination of OR, AND, and NOT.
OR and NOT operators are directly specified in the
CONNECT BY clause and AND operators are handled
by INTERSECT. All conditions are rewritten as
conjunctive conditions. For example,‘A OR (B AND
C)’ will be converted into‘(A OR B) AND (A OR
C).’ Then, ‘(A OR B)’ and ‘(A OR C)’ are
specified in the CONNECT BY clause in separate queries
that can be combined with INTERSECT operator.

3.3 Speeding up ONT_RELATED and
ONT_EXPAND Operations

Finding transitive closure from an ontology can be a
time-consuming process especially if the ontology has a
large number of terms. In addition, different relationship
types can further increase the computation cost. To
address this problem, atransitive closure tableis pre-
computed. Note that as part of this computation both
distance and path measures are computed as well. For the
example cuisine ontology, the transitive closure table will
be as shown in Table 3.

Table 3: Transitive Closure Table

RootTerm RelType Term Distance Path

…

Latin
American

IS_A Mexican 1 …

Latin
American

IS_A Portuguese 1 …

…

The data is stored in a key compressed index-
organized table [18] (primary B+-tree) with<RootTerm,
RelType, Term> as the key. The commonly occurring
<RootTerm, RelType> prefixes are compressed. The
distance and path are stored as overflow-resident

1061



columns. This allows for basic index-structure to remain
compact thereby providing efficient index-lookup.

For a query involving ONT_EXPAND, say with
arguments‘Latin American’ and ‘IS_A’ this pre-
computed transitive closure table is looked up instead of
traversing the ontology to find the transitive closure, and
the matching rows are returned. The rows returned
include the distance and path measures, which are also
available in the Transitive Closure table.

To speed up queries involvingONT_RELATED, a new
indexing schemeONT_INDEXTYPEis implemented using
Oracle’s Extensible Indexing Framework [5]. Users only
need to create an index on the column holding ontology
terms usingONT_INDEXTYPEas follows:

CREATE INDEX <index_name>
ON <table_name> (<term_column>)
INDEXTYPE is ONT_INDEXTYPE
PARAMETERS(‘Ontology =

<ontology_name>’);
The basic processing of indexing scheme works as

follows. Consider the following index creation statement:
CREATE INDEX idx1
ON served_food (cuisine)
INDEXTYPE is ONT_INDEXTYPE
PARAMETERS(‘Ontology=cuisine_ontology’);

The index creation results in creation of a key-
compressed index-organized table with two columns
<cuisine, row_id> as shown in Table 4. Therow_id
column contains the row identifier for theserved_food
table.

Table 4: Index Table

cuisine row_id

…

Mexican ROWID7

Portuguese ROWID8

…

Now, a query involvingONT_RELATEDoperator say
with arguments (sf.cuisine, ‘IS_A’, ‘Latin
American’, …) , is executed by first searching the
transitive closure table using the key(‘Latin
American’, ‘IS_A’ ) to find the terms, and then for
each term the corresponding row identifier is obtained by
doing a lookup into the Index Table.

If a query with ONT_RELATEDoperator references
ONT_DISTANCE and/or ONT_PATH, then the indexed
implementation of ONT_RELATED operator retrieves
distance and/or path measures from the transitive closure
table. These values are simply returned as part of
ONT_DISTANCEandONT_PATHinvocations.

The index idx1 created on served_food table
behaves likes a regular index, which can be incrementally
maintained. That is, if a new row is added toserved_
food table, the corresponding<cuisine, row_id>
values are added to the index table. Similarly, the delete

and update operations also result in incremental
maintenance of the index.

The transitive closure table is meant for a stable
ontology. If the ontology changes, the table needs to be
updated. For inserts/deletes/updates into ontology, the
transitive closure table can be incrementally maintained.
The algorithm is omitted due to lack of space.

3.4 Performance Study using Cancer Ontology

To characterize the performance of ontology-based
semantic matching, a part of the National Cancer
Institute’s Thesaurus and ontology [17] was stored using
a prototype implementation built on Oracle RDBMS.
Specifically, the following experiments were conducted
using Oracle9i Release 2 (9.2.0.3) on a SunOS 5.6, Ultra-
60 Sparc Workstation with one 450Mhz CPU and 512
MB of main memory.

The stored ontology consisted of 25,762 terms and
54,387 relationships among them. The resulting transitive
closure took 6 minutes to build and contained 186,211
rows.

The following query was executed with the index
(transitive closure table) for several different terms. This
queries the ontology directly.

SELECT count(*) FROM TABLE(
ONT_EXPAND(NULL, ‘IS_A’,

:term,
‘Cancer_Ontology’));

Figure 4 illustrates that query runtime increases
linearly as the number of rows in the ONT_EXPAND
result set increases.

Next a series of database tables, namedpatients ,
were created with a varying number of rows, such that
10% of all rows contained a diagnosis term that was one
of the 961 subclasses of ‘Experimental_Organism_
Diagnoses’ (EOD).

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 2000 4000 6000

Number of Terms in ONT_EXPAND Result

T
im

e
(s

ec
on

ds
)

Figure 4: Performance of ONT_EXPAND

1062



Given thesepatients tables, the following query
was executed, using all three ONT_RELATED
evaluation mechanisms (functional evaluation without an
index, functional evaluation with an index, and index
evaluation), to count the number of patients whose
diagnosis is an EOD:

SELECT count(*) FROM patients
WHERE ONT_RELATED(diagnosis,

‘IS_A’,
‘Experimental_Organism_Diagnoses’,

‘Cancer_Ontology’) = 1;

Figure 5 illustrates how query runtime varies as the
number of rows in thepatients table changes.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0 10000 20000 30000 40000

Number of Rows Queried

T
im

e
(s

ec
on

ds
)

Funct ional (wit hout index) Funct ional (wit h Index) Index

Figure 5: Performance of ONT_RELATED

Functional evaluation without an index computes
transitive closure forONT_RELATEDusing CONNECT BY
clause (without using a pre-computed transitive closure
table). Functional evaluation with an index uses the
transitive closure table to check if two terms are
connected. Index evaluation uses the index table (Table
4) and the transitive closure table to compute the result.
Again the query time increases linearly as the result set
size increases. The results clearly show that finding
transitive closure by traversing the ontology during query
processing time is time-consuming and utilizing the pre-
computed transitive closure table provides significant
performance gains.

4. Ontology-driven Database Applications

This section illustrates the usage of the ontology-related
semantic matching operations by considering several
database applications.

4.1 A Homeland Security Application

An intelligence analyst for homeland security would be
very much interested in an activity that might be related

to terrorism. From the example pattern given in [20],
where a person rents a truck and another person buys
fertilizer, and they reside in the same house, we can
formulate an SQL query using ONT_RELATED operator
for a given activity table:

Person_name Address Activity Object

John Buck Addr1 Rent Ford F-150

Jane Doe Addr1 Buy Ammonium Nitrate

… … … …

SELECT *
FROM ACTIVITY x, ACTIVITY y
WHERE

x.Activity = ‘Rent’ AND
y.Activity = ‘Buy’ AND
ONT_RELATED(x.object,‘IS_A’,‘Truck’,

‘vehicle_ontology’ ) = 1 AND
ONT_RELATED(y.object,‘IS_A’,’Fertilizer’,

‘chemical_ontology’)=1 AND
x.Address = y.Address ;

By referring to more than one ontology we can analyze
suspicious activities involving a combination of different
actions.

4.2 A Supply Chain Application

A supply chain where thousands of products and services
are exchanged has a major issue of standardizations of
purchase order, bill of material, catalogs, etc. There could
be name, language, currency, and unit differences to
resolve to name a few. Standardization efforts such as
RosettaNet [22], UNSPSC [23] for product category and
ebXML [24] to standardize business processes and
products are not enough to meet individual
vendor/customer needs to resolve semantic differences.
Typically, these conflicts have been resolved using some
form of mapping mechanisms [6].

These conflicts can be resolved by issuing an SQL
query with ONT_RELATEDoperator using ontologies.
Even individually developed ontologies may need the
ontology mappings to communicate each other. We can
apply ONT_RELATED and ONT_EXPAND operators to
the mapping ontology to resolve the conflicts as well.

4.3 A Life Science Application

Life Science domain applications have been using
ontologies for representing knowledge as well as the basis
of information integration of several heterogeneous
sources of life science web databases. Let us consider
Gene Ontology (GO)[12], which is primarily used to
represent the current knowledge in this domain. It allows
user to query using SQL. One sample query is ‘Fetching
every term that is a transmembrane receptor’.The GO
Graph is stored using the‘term’ (=node) and
‘term2term’ (=arc) tables. It also maintains a table

1063



called ‘graph_path’ , which stores all paths between a
term and all its ancestors. In GO database the following
SQL query can be issued for this purpose:

SELECT
rchild.*

FROM
term AS rchild, term AS ancestor,
graph_path

WHERE
graph_path.term2_id = rchild.id and
graph_path.term1_id = ancestor.id and
ancestor.name = 'transmembrane

receptor';

The following query can be used if the data is stored
in Oracle RDBMS:

SELECT * FROM TABLE
(ONT_EXPAND (NULL, ‘IS_A’,

‘transmembrane receptor’,
‘gene_ontology’));

The key difference is that the GO database exposes
the underlying schema and requires users to formulate
queries against those tables, whereas the operator
approach attempts to simplify the specification.

4.4 A Web Service Application

Similarly, web service applications can also utilize the
ONT_RELATED operator to match two different terms
semantically. Consider the web-service matching example
described in [8], where user is looking to purchase a
sedan. The user requests a web service using the term
‘Sedan’ . The vehicle ontology contains‘Sedan’ ,
‘SUV’ , and‘Station Wagon’ as subclasses of the term
‘Car’ . The web service can alert the user by using the
query with the ONT_RELATED operator as follows:

……
ONT_RELATED(user_request,

‘ IS_A’ ,
‘Car’,
‘Vehicle_Ontology’) = 1 ;

The degree of match between terms, i.e. how closely
the terms are related, as described in [8], can be handled
using ONT_DISTANCE and ONT_PATH operators.

5. Experiences

This section summarizes our experience with supporting
ontology-related functionality using Oracle RDBMS.

Ontology Access and Manipulation. Instead of
providing an API to access and manipulate ontology, we
opted for using SQL capabilities. For semantic matching,
a set of SQL operators was introduced. The key benefit is
that user can fully exploit the expressive power of SQL
when performing ontology-based semantic matching

Ontology Storage. In contrast to system like Gene
Ontology Database, where a single domain-specific
ontology is handled by a set of tables, we decided to store

ontologies in a domain-independent manner. That is,
multiple ontologies belonging to different domains are
stored in a single set of Oracle tables. The key benefit is
that a set of canonical operators can be used for semantic
match using any ontology. However, the domain-specific
approach can lead to a more efficient implementation.

Transitive Closure Table Computation and Its
Maintenance. We decided to pre-compute transitive
closure table as is done in Gene Ontology Database as
well. Their motivation for this pre-computing was to deal
with the non-availability of recursive querying capability
in the RDBMS used (which is not the case in Oracle).
Our primary motivation for pre-computing the transitive
closure table was to speed up queries involving semantic
matching. The preliminary performance results (as
discussed in Section 3.4) clearly demonstrate the
significant performance gains by the use of the transitive
closure table. The overhead of storing pre-computed
transitive closures can be reduced by storing only those
closures that are frequently used. The performance gains
far outweigh the space overhead drawback.

6. Conclusions and Future work

With the increasing importance of ontologies in business
database application areas, it is important that ontologies
are stored in databases for efficient maintenance, sharing,
and scalability. Equally important is the capability for
ontology-based semantic matching in SQL for
performance and ease of application development.

The paper addresses these issues by allowing OWL
Lite and OWL DL based ontologies to be stored in
Oracle RDBMS and by providing a set of SQL operators
for ontology-based semantic matching. The approach was
further validated by building a prototype implementation
on Oracle RDBMS and conducting performance
experiments with National Cancer Institute’s Thesaurus
and ontology.

In future, we plan to support ontology merging
(including semantic matching across ontologies) and
ontology evolution. Also, we plan to explore extending
the inference engine to support user-defined rules.

Acknowledgments

We thank Jay Banerjee for his comments on an earlier
version of this paper.

References

[1] Y. Kalfoglou, J. Domingue, E. Motta, M. Vargas-Vera,
and S. Buckingham-Shum, “MyPlanet: an ontology-driven
Web-based personalised news service,” InProceedings IJCAI
2001 workshop on Ontologies and Information Sharing,
Seattle, WA, Aug. 2001.

1064



[2] F. T. Fonseca, M. J. Egenhofer, “Ontology-Driven
Geographic Information Systems,” InProceedings of the 7th
ACM Symposium on Advances in Geographic Information
Systems, pp. 14-19, Nov. 1999.

[3] M. Musen, S. Tu, A. Das, and Y. Shahar, “EON: A
component-based architecture for automation of protocol-
directed therapy,” InProceedings of 5th Artificial Intelligence
in Medicine in Europe,pp. 3 -13, Jun. 1995.

[4] T. Berners-Lee, J, Handler, O Lassila. “The Semantic Web,”
Scientific American, May 2001.

[5] J. Srinivasan, R. Murthy, S. Sundara, N. Agarwal, S.
DeFazio, “Extensible Indexing: A Framework for Integrating
Domain-Specific Indexing into Oracle8i,” In Proceedings of the
16th International Conference on Data Engineering,pp. 91-
100, Feb. 2000.

[6] C. A. Knoblock and S. Minton, “Building Agents for
Internet-based Supply Chain Integration,”Proceedings of the
Workshop on Agents for Electronic Commerce and Managing
the Internet-Enabled Supply Chain, 1999.

[7] G. van Heijst, A. Th. Schreiber and B. J. Wielinga, “Using
Explicit Ontologies for KBS Development,”Int. Journal of
Human-Computer Studies,46(2-3), pp. 183-292, 1997.

[8] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara,
“Semantic Matching of Web Services Capabilities,”
Proceedings of Int. Semantic Web Conference, pp. 333-347,
2002.

[9] M. Uschold and R. Jasper, “A Framework for
Understanding and Classifying Ontology Applications,”
Proceedings of IJCAI Workshop on Ontologies and Problem-
Solving Methods, Aug. 1999.

[10] L. D. Stein, “Integrating Biological Databases,”Nature
Reviews (Genetics), Vol. 4, pp. 337-345, May 2003.

[11] R. Murthy, S. Sundara, N. Agarwal, Y. Hu, T. Chorma, J.
Srinivasan, “Supporting Ancillary Values from User Defined
Functions in Oracle”, InProceedings of the 19th International
Conference on Data Engineering,pp. 151-162, 2003.

[12] Gene Ontology Consortium,http://www.geneontology.org.

[13] OntoEdit,
http://www.ontoknowledge.org/tools/ontoedit.shtml.

[14] OntoBroker,
http://ontobroker.semanticweb.org

[15] B. Motik, A. Maedche, and R. Volz, “A Conceptual
Modeling Approach for Semantics-Driven Enterprise
Applications,” In Proceedings of the2002 Confederated Int.
Conferences DOA/CoopIS/ODBASE, 2002.

[16] A. Das, W. Wu, and D. McGuinness, “Industrial Strength
Ontology Management,”The Emerging Semantic Web, IOS
Press, 2002.

[17] National Cancer Institute Thesaurus,
http://www.mindswap.org/2003/CancerOntology.

[18] J. Srinivasan, S. Das, C. Freiwald, E. I. Chong, M.
Jagannath, A. Yalamanchi, R. Krishnan, A. Tran, S. DeFazio, J.
Banerjee, “Oracle8i Index-Organized Table and its
Applications to New Domains,” InProceedings of the 26th Int.
Conf. on Very Large Data Bases, pp. 285-296, Sept. 2000.

[19] OWL Web Ontology Language Reference,

http://www.w3.org/TR/owl-ref

[20] T. Coffman, S. Greenblatt, and S. Marcus, “Graph-
based Technologies for Intelligence Analysis,”
Communications of the ACM,Vol. 47, No.3, pp. 45-47,
Mar. 2004.

[21] Jena2 – A Semantic Web Framework,
http://www.hpl.hp.com/semweb/jena.htm

[22] RosettaNet,http://www.rosettanet.org/RosettaNet

[23] UNSPSC,http://www.unspsc.org

[24] ebXML – Enabling A Global Electronic Market,
http://www.ebxml.org/

1065


