282 research outputs found

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    3D Printing Model Optimization

    Get PDF
    The instantiation of 3D models has become much more convenient attributable to the development of 3D printing technology, but processing digital geometry now faces new difficulties. The model optimization inspired by 3D printing is summarized in this paper from the two processes of model creation and printing in order to be able to print out models that have accomplished some defined functionalities

    Energy Consumption Modeling of Stereolithography-Based Additive Manufacturing Toward Environmental Sustainability

    Get PDF
    Additive manufacturing (AM), also referred as three-dimensional printing or rapid prototyping, has been implemented in various areas as one of the most promising new manufacturing technologies in the past three decades. In addition to the growing public interest in developing AM into a potential mainstream manufacturing approach, increasing concerns on environmental sustainability, especially on energy consumption, have been presented. To date, research efforts have been dedicated to quantitatively measuring and analyzing the energy consumption of AM processes. Such efforts only covered partial types of AM processes and explored inadequate factors that might influence the energy consumption. In addition, energy consumption modeling for AM processes has not been comprehensively studied. To fill the research gap, this article presents a mathematical model for the energy consumption of stereolithography (SLA)-based processes. To validate the mathematical model, experiments are conducted to measure the real energy consumption from an SLA-based AM machine. The design of experiments method is adopted to examine the impacts of different parameters and their potential interactions on the overall energy consumption. For the purpose of minimization of the total energy consumption, a response optimization method is used to identify the optimal combination of parameters. The surface quality of the product built using a set of optimal parameters is obtained and compared with parts built with different parameter combinations. The comparison results show that the overall energy consumption from SLA-based AM processes can be significantly reduced through optimal parameter setting, without observable product quality decay

    Surfel convolutional neural network for support detection in additive manufacturing

    Get PDF
    Support generation is one of the crucial steps in 3D printing to make sure the overhang structures can be fabricated. The first step of support generation is to detect which regions need support structures. Normal-based methods can determine the support regions fast but find many unnecessary locations which could be potentially self-supported. Image-based methods conduct a layer-by-layer comparison to find support regions, which could make use of material self-support capability; however, it sacrifices the computational cost and may still fail in some applications due to the loss of topology information when conducting offset and boolean operations based on the image. In order to overcome the difficulties of image-based methods, this paper proposes a surfel convolutional neural network (SCNN)-based approach for support detection. In this method, the sampling point on the surface with normal information, named surfel (surface element), is defined through layered depth-normal image (LDNI) sampling method. A local surfel image which represents the local topology information of the sampling point in the solid model is then constructed. A set of models with ground-truth support regions is used to train the deep neural network. Experimental results show that the proposed method outperforms the normal-based method and image-based method in terms of accuracy, reliability, and computational cost

    Towards Zero-Waste Furniture Design

    Get PDF
    In traditional design, shapes are first conceived, and then fabricated. While this decoupling simplifies the design process, it can result in inefficient material usage, especially where off-cut pieces are hard to reuse. The designer, in absence of explicit feedback on material usage remains helpless to effectively adapt the design -- even though design variabilities exist. In this paper, we investigate {\em waste minimizing furniture design} wherein based on the current design, the user is presented with design variations that result in more effective usage of materials. Technically, we dynamically analyze material space layout to determine {\em which} parts to change and {\em how}, while maintaining original design intent specified in the form of design constraints. We evaluate the approach on simple and complex furniture design scenarios, and demonstrate effective material usage that is difficult, if not impossible, to achieve without computational support

    A new overhang constraint for topology optimization of self-supporting structures in additive manufacturing

    Get PDF
    This work falls within the scope of computer-aided optimal design, and aims to integrate the topology optimization procedures and recent additive manufacturing technologies (AM). The elimination of scaffold supports at the topology optimization stage has been recognized and pursued by many authors recently. The present paper focuses on implementing a novel and specific overhang constraint that is introduced inside the topology optimization problem formulation along with the regular volume constraint. The proposed procedure joins the design and manufacturing processes into a integrated workflow where any component can directly be manufactured with no requirement of any sacrificial support material right after the topology optimization process. The overhang constraint presented in this work is defined by the maximum allowable inclination angle, where the inclination of any member is computed by the Smallest Univalue Segment Assimilating Nucleus (SUSAN), an edge detection algorithm developed in the field of image analysis and processing. Numerical results on some benchmark examples, along with the numerical performances of the proposed method, are introduced to demonstrate the capacities of the presented approach.This work was supported by The European Regional Development Fund (ERDF-FEDER) and the Ministry of Education and Science in Spain through the DPI2015-64863-R project (MINECO/FEDER-UE). The authors also wish to thank the Basque Government for financial assistance through IT919-16
    • …
    corecore