3 research outputs found

    Geotechnical Characterisation of Coal Spoil Piles Using High-Resolution Optical and Multispectral Data: A Machine Learning Approach

    Get PDF
    Geotechnical characterisation of spoil piles has traditionally relied on the expertise of field specialists, which can be both hazardous and time-consuming. Although unmanned aerial vehicles (UAV) show promise as a remote sensing tool in various applications; accurately segmenting and classifying very high-resolution remote sensing images of heterogeneous terrains, such as mining spoil piles with irregular morphologies, presents significant challenges. The proposed method adopts a robust approach that combines morphology-based segmentation, as well as spectral, textural, structural, and statistical feature extraction techniques to overcome the difficulties associated with spoil pile characterisation. Additionally, it incorporates minimum redundancy maximum relevance (mRMR) based feature selection and machine learning-based classification. This automated characterisation will serve as a proactive tool for dump stability assessment, providing crucial data for improved stability models and contributing to a greener and more responsible mining industry

    Sample supervised search centric approaches in geographic object-based image analysis

    Get PDF
    Sample supervised search centric image segmentation denotes a general method where quality segments are generated based on the provision of a selection of reference segments. The main purpose of such a method is to correctly segment a multitude of identical elements in an image based on these reference segments. An efficient search algorithm traverses the parameter space of a given segmentation algorithm. A supervised quality measure guides the search for the best segmentation results, or rather the best performing parameter set. This method, which is academically pursued in the context of remote sensing and elsewhere, shows promise in assisting the generation of earth observation information products. The method may find applications specifically within the context of user driven geographic object-based image analysis approaches, mainly in respect of very high resolution optical data. Rapid mapping activities as well as general land-cover mapping or targeted element identification may benefit from such a method. In this work it is suggested that sample supervised search centric geographic segment generation forms the basis of a set of methods, or rather a methodological avenue. The original formulation of the method, although promising, is limited in the quality of the segments it can produce – it is still limited by the inherent capability of the given segmentation algorithm. From an optimisation viewpoint, various structures may be encoded forming the fitness or search landscape traversed by a given search algorithm. These structures may interact or have an interplay with the given segmentation algorithm. Various method variants considering expanded fitness landscapes are possible. Additional processes, or constituents, such as data mapping, classification and post-segmentation heuristics may be embedded into such a method. Three distinct and novel method variants are proposed and evaluated based on this concept of expanded fitness landscapes

    Object Detection with Active Sample Harvesting

    Get PDF
    The work presented in this dissertation lies in the domains of image classification, object detection, and machine learning. Whether it is training image classifiers or object detectors, the learning phase consists in finding an optimal boundary between populations of samples. In practice, all the samples are not equally important: some examples are trivially classified and do not bring much to the training, while others close to the boundary or misclassified are the ones that truly matter. Similarly, images where the samples originate from are not all rich in informative samples. However, most training procedures select samples and images uniformly or weight them equally. The common thread of this dissertation is how to efficiently find the informative samples/images for training. Although we never consider all the possible samples "in the world", our purpose is to select the samples in a smarter manner, without looking at all the available ones. The framework adopted in this work consists in organising the data (samples or images) in a tree to reflect the statistical regularities of the training samples, by putting "similar" samples in the same branch. Each leaf carries a sample and a weight related to the "importance" of the corresponding sample, and each internal node carries statistics about the weights below. The tree is used to select the next sample/image for training, by applying a sampling policy, and the "importance" weights are updated accordingly, to bias the sampling towards informative samples/images in future iterations. Our experiments show that, in the various applications, properly focusing on informative images or informative samples improves the learning phase by either reaching better performances faster or by reducing the training loss faster
    corecore