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Abstract

The work presented in this dissertation lies in the domains of image classification, object

detection, and machine learning. Whether it is training image classifiers or object detectors,

the learning phase consists in finding an optimal boundary between populations of samples.

In practice, all the samples are not equally important: some examples are trivially classified

and do not bring much to the training, while others close to the boundary or misclassified

are the ones that truly matter. Similarly, images where the samples originate from are not all

rich in informative samples. However, most training procedures select samples and images

uniformly or weigh them equally.

The common thread of this dissertation is how to efficiently find the informative samples/im-

ages for training. Although we never consider all the possible samples “in the world”, our

purpose is to select the samples in a smarter manner, without looking at all the available ones.

The framework adopted in this work consists in organising the data (samples or images) in a

tree to reflect the statistical regularities of the training samples, by putting “similar” samples

in the same branch. Each leaf carries a sample and a weight related to the “importance” of the

corresponding sample, and each internal node carries statistics about the weights below. The

tree is used to select the next sample/image for training, by applying a sampling policy, and

the “importance” weights are updated accordingly, to bias the sampling towards informative

samples/images in future iterations.

Our experiments show that, in the various applications, properly focusing on informative

images or informative samples improves the learning phase by either reaching better perfor-

mances faster or by reducing the training loss faster.

Keywords: Computer Vision, Machine Learning, Image Classification, Object Detection, Boot-

strapping, Monte Carlo Tree Search, Importance Sampling
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Résumé

Les travaux présentés dans cette thèse concernent la classification d’images, la détection

d’objets et l’apprentissage automatique. Que ce soit pour entraîner un classifieur d’images ou

un détecteur d’objets, la phase d’apprentissage se résume à trouver une frontière de décision

optimale entre les classes. En pratique, les exemples d’apprentissage n’ont pas tous la même

importance. Certains sont aisément classifiés, tandis que d’autres, proches de la frontière ou

mal classés, sont ceux qui ont de l’importance. De même, les images d’où proviennent les

exemples d’apprentissage ne sont pas toutes aussi riches en exemples informatifs. Cependant,

la plupart des méthodes d’apprentissage sélectionnent les exemples et les images de manière

uniforme, et leur accordent la même importance.

La ligne directrice de nos travaux a été de mettre au point des méthodes pour trouver efficace-

ment les exemples d’apprentissage les plus informatifs, sans jamais accéder à la totalité de

l’ensemble d’apprentissage.

Les méthodes que nous proposons se basent sur une organisation des données (images ou

exemples d’apprentissage) avec une structure d’arbre qui en reflète les régularités statis-

tiques, en regroupant les exemples “similaires” dans les mêmes branches. Chaque feuille de

l’arbre contient un exemple d’apprentissage et un poids correspondant à “l’importance” de

l’exemple, et les nœuds intérieurs contiennent des statistiques sur les poids de leurs descen-

dants. Cet arbre est utilisé pour choisir les images ou les exemples, en appliquant une méthode

d’échantillonnage, et les poids “d’importance” de l’arbre sont ensuite mis à jour, pour biaiser

l’échantillonnage vers les images/exemples informatifs lors des itérations futures.

Les expériences menées montrent qu’en choisissant soigneusement les images ou les exemples

informatifs, on améliore l’apprentissage, soit en atteignant plus rapidement de meilleures

performances, soit en réduisant la fonction de coût plus rapidement.

Mots clefs : Vision par ordinateur, apprentissage automatique, classification d’images, détec-

tion d’objets, bootstrap, recherche arborescente Monte Carlo, échantillonnage d’importance
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Introduction

This chapter is an introduction to the main motivations of this work. The detailed description

of the methods presented in this dissertation and accurate definitions are postponed until the

next chapters.

1.1 Computer Vision

Computer vision aims at teaching machines how to see. The main workflow of any vision

system is essentially to acquire an input signal, which is one or more images, to forward it to

the machine designed to a specific task, and finally to get an information from the machine

about the input signal.

Surprising as it may seem, it is difficult to design a vision system able to describe or analyse

the content of an image or a video, whereas this can be considered an easy task for a human,

including a child. We, as human beings, are very good at recognising objects in images even

when the image is of poor quality or when the objects lie in a cluttered background. It may

occur that the machine hallucinates objects in some places, while a human would have never

made such a mistake.

Computer vision faces many challenges, in particular the one of designing methods that

generalise well on unseen data and that are robust to small perturbations of the input signal.

Another challenge is the efficient implementation of the methods. One can quickly come up

with solutions to a problem that in practice happens to be intractable and unusable. And with

the recent growth of data collections, another major challenge of computer vision is to handle

large-scale databases to train the machines.

There are many real-world applications of computer vision that have driven researchers and

engineers to develop sound mathematical approaches and design practical systems. And

despite the fact that computer vision is a difficult task as previously stated, these systems have

now reached a good level of performance to be deployed in industrial systems and everyday

life objects.
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One successful and widely used application is optical character recognition (OCR) which aims

at recognising text from an image, be it typed or handwritten. OCR is used to automatically

read ZIP codes and addresses on envelops to sort mail by postal destinations, to automatically

read plate numbers at the entrance of car parks or to digitise the text of scanned documents to

make them searchable.

Vision systems are also designed to assist people with disabilities, such as tetraplegia, brain

injuries or sclerosis, to allow them to use computers and to communicate with others. Such

systems can consist, for example, of an eye tracker which estimates where the user is looking

at on the screen (i.e. the pointer of the mouse) and detects eye blinking (i.e. a mouse click) so

that (s)he can navigate or enter text on a visual keyboard.

Recently, it has been announced that Cisco is currently measuring the street traffic of several

squares in Paris. The project is part of a program of renovation of seven major squares and

aims at better understanding the frequentation of the public space, namely counting the

number of pedestrians, bike riders, cars and trucks, and building a map of the circulation.

Several cameras and noise sensors are constantly recording the traffic and the data are sent to

data centres for processing.

The work we are going to present in this dissertation lies in the subdomain of computer vision

known as object recognition, which in particular consists of image classification and object

detection. The former aims at assigning a label to an image (i.e. “Is this object in the scene or

not?”) while the latter focuses on localising all the instances of a given object in an image (i.e.

“Is the object present? If so, how many times, where and at what scale?”).

At some point, all techniques of image classification and object detection make use of a

machine learning technique. The following section gives a brief overview of these methods.

1.2 Machine Learning

Machine learning is a field of artificial intelligence that aims at building predictors to infer

the regularities of the data. In practice, the predictors are built with a training set, that is a

set of examples which the learning procedure has access to. Training a predictor is done by

minimising a loss function which reflects how well the predictor does on the training examples.

The procedure keeps looking at the samples and adjusting its parameters until a convergence

criterion is reached. Then, the predictor is evaluated on the test set, that is examples unseen

during the training phase.

In practice, it is extremely important that the test samples be not seen during the training

phase for fear of over-fitting and poor generalisation of the trained predictors. Sometimes, a

validation set is used, which can be seen as an intermediate test set. The validation set can be

built by splitting the original training set into two parts, one actually used for training, and the

other one as the validation one.
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In this work, we will also use a technique called Monte Carlo tree search, which is a type of

reinforcement learning. In this setup, an agent explores an environment and gets feedback

from it in the form of a reward. And its purpose is to maximise the long term reward by making

the best moves or selecting the best actions, that is the ones that are more likely to yield a

higher cumulative reward on the long term. Reinforcement learning therefore involves finding

a trade-off between exploration of the environment and exploitation of the best identified

areas of the environment.

1.3 Motivations

The first idea motivating our work is that in computer vision, we never train with “all the

images in the world”. The largest computer vision image data sets contain several million

images, out of the several trillion of the Internet. At some point, there always is a selection

process, even if it is implicit. In practice, a human crawls the web, and eventually uses criteria

to find “better” or more “useful” images. So training computer vision predictors is always

based on a selection process, and we would like to do so in a “more” principled manner.

Moreover, the training process of machine learning methods in computer vision requires

the use of training samples that in practice, are not all equally informative. Some samples

could be qualified as “easy” because they are trivially classified and do not bring much to the

learning phase, while other samples could be qualified as “hard” because they truly influence

the learning phase and the decision process. These difficult samples are the ones needed for

an efficient learning phase. Furthermore, the population of samples is usually structured.

Some samples are similar and share common attributes, and the classifiers behave the same

way on them. Therefore, the whole population of samples can be viewed as an ensemble of

groups of “easy” samples, and groups of “hard” samples.

The main objective of our work is to leverage the consistency of the data during the training

phase, to avoid looking at all the samples, and to accelerate or improve the learning.

While traditional methods tend to consider all samples equally and to visit all of them, be they

“easy” or “hard”, our work investigates several strategies to get information on a few samples,

to be able to discard others without looking at them, and thus to concentrate on the most

important ones.

The following sections describe in more detail the context and motivations of the strategies

presented in this dissertation.

1.3.1 Dense scanning of a sliding-window detector

As we will describe more thoroughly in section 2.2, a sliding-window detector densely scans

an image, to predict at all possible locations whether the object of interest is present or not.

An object detector is usually trained by constructing a sequence of predictors of increasing
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performance, each one trained with a fixed collection of positive samples (the object of

interest) and a collection of so called hard negative samples that fool the previous predictors.

This process is called bootstrapping.

A hard negative sample is a false positive sample, that is a negative sample incorrectly classified

as a positive one, or in some cases, a negative sample that lies in the margin of the predictor.

Hard samples are collected from a set of background images which do not contain the object

of interest. So when the current predictor detects the object at a given location, the training

set is augmented with this additional sample. Such an approach enriches the training set

with negative samples that get closer and closer to the boundary between the positive and the

negative populations, which are the ones that matter for a discriminative criterion.

One observes that within an image, the predictor’s responses are correlated with other re-

sponses at nearby locations, suggesting that the decision at a given coordinate could be

inferred from the neighbour decision(s). This can be accounted for by the smoothness of

real-world images. Therefore, during the collection of false positives, some positions could be

discarded without further computation given an observation in their vicinity. This problem is

addressed in chapter 3.

1.3.2 Uniform selection of background scenes for bootstrapping

The other observation that we can make regarding bootstrapping is that in practice, hard

samples tend to appear in a structured manner. Certain types of images contain patterns that

generate false positives more or less frequently. Large uniform patches such as skies or empty

walls can be ignored, while high frequency parts such as trees or bookshelves should be looked

at carefully.

Moreover, image data sets usually have a structure by the way images were collected. Yet, all

the current detectors are trained by uniformly selecting the next background image in which

to search for hard samples.

To address this issue, we propose in chapter 4 to organise the image collection to reflect the

statistical regularities of the images in order to better select them to train object detectors. In

the end, many images are identified as non-informative and are not even looked at during

training.

1.3.3 Careful selection of samples

With the growing need of data to improve classification and detection performance, data sets

have become very large. The COCO data set (Lin et al., 2014) contains more than 100,000

annotated images, ImageNet (Russakovsky et al., 2015) several million, and these cannot fit in

memory for learning applications.
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The workaround to handle these data sets is to train predictors in an online fashion. While

batch algorithms require all the data to be in memory for training, online algorithms process

the training samples one at a time or by mini batches, which then becomes trackable. Most of

the learning methods uniformly select the samples in the training set to update the predictor,

while in practice only a fraction of them truly matter during learning. Indeed, it is because

most of the samples are far from the decision boundary and thus are already well classified.

And there are several clues indicating that all samples are not all equally important.

In the case of support vector machines trained in the dual space, this translates into a solution

which is a linear combination of the kernel values between the sample to classify and a few

training samples (the support vectors). The other training samples simply do not influence

the final prediction, and would not be needed for training.

In the case of boosting, the difference of importance between samples translates into higher

boosting weights for a few misclassified training samples. After a few iterations, many samples

have a very small weight and no longer contribute to the selection of the next weak learners.

Despite this well known state of affairs, only few works have investigated how to prioritise

the selection of the training samples. However, they do not use structures given a priori over

the said samples, combining it with statistical observations over those already observed, to

reject groups without looking at them. To address this problem, chapters 5 and 6 of this thesis

propose to leverage the structure of the training set to efficiently concentrate on informative

samples.

1.4 Contribution of this work

Following the room for improvement described in the previous section, we present our main

contributions and how the dissertation is organised.

We first start, in chapter 2, by presenting the main tools that we are using in this work, such as

the image classifiers, the object detectors, and the image data sets. We also describe in detail

the training process of classifiers and detectors and how they are evaluated.

Chapter 3 deals with the observation that the detector’s responses are correlated in the neigh-

bourhood of a position, and presents an efficient strategy to collect false positive samples

within images. We derive a simple affine model that is able to discard a neighbourhood

around a visited location, without further computation, and without missing any false positive

samples.

At the image collection level, chapter 4 presents a strategy to organise the images in such a

way that it enables to make a decision on an entire group of images, either to choose them or

to discard them, without further computation. The selection strategy is based on Monte Carlo

tree search.
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The following two chapters are concerned with image classification, and more precisely with

the careful selection of samples and how to modulate their contribution during learning.

Chapter 5 introduces an Importance Sampling Tree which allows to select more important

samples, while compensating for the induced bias. And finally, chapter 6 introduces an Active

Sampling Tree designed for support vector machines, to select the best samples for training,

as well as dynamically update the tree for future selection.

We recall that each contribution follows the underlying theme of training a model without

looking at all the samples: this is implemented by acquiring information on a subpopulation of

samples, to precisely identify which samples are the most informative ones, and which ones can

be discarded without being considered.
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This chapter presents some background on object detection and image classification. We review

the various object detectors and image classifiers that we use in this thesis and describe the

underlying ideas that make them work in practice. We also presents the various image data sets

used in our experiments.
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Whether it is image classification or object detection, the learning process consists, at some

point, in training an image classifier. In the former case, the classifier is learnt to discriminate

the classes against the others, while in the later case, it is trained to discriminate the object

from the background. We therefore start by presenting image classification in more detail,

then object detection, and finally some image data sets.

2.1 Image Classification

2.1.1 Objective

The objective of image classification is to automatically predict a discrete value which depends

on the semantic content of an image. Two possible applications can be object classification,

in which classes may be “horse”, “car” or “plane”, and scene categorisation, where classes may

be “kitchen”, “outdoor” or “landscape”.

Figure 2.1 shows an overview of image classification in its most basic form. Usually, the

input image I is mapped to an other space, called the feature space. The purpose is to get a

common representation between all the images to be classified, but also to get a more abstract

representation of the image that is suitable to learning algorithms. The image feature, which

we call x, can then be passed to a classifier to make a prediction.

I
Feature

Extractor φ
Classifier f ŷ = f (x)

x =φ(I )

Figure 2.1 – Simplified overview of an image classification pipeline

Two major trends can be found in image classification. The first one is when the feature

extraction is handcrafted by the human. Features are designed to a particular purpose in order

to be discriminative (SIFT, SURF, HOG, etc.). A classifier is then trained with these features

as input. The second trend of classification is when both the features and the classifier are

learnt together, which in particular are (convolutional) neural networks. The latter tends to be

more general because it learns everything in a sound framework, but has long remained very

costly to train, until modern CPU and GPU reached TFLOPS (tera floating points operations

per second).

2.1.2 Bag-of-words for Image Classification

This method has been adapted in computer vision for image classification (Csurka et al., 2004;

Fei-Fei and Perona, 2005) or visual categorisation. Images are represented by a set of visual

words (i.e. local features) coming from a dictionary (or codebook). The codebook can be any

local feature, such as scale-invariant feature transform (Lowe, 1999) or local patches (sub-

images). The feature vector describing the image is then passed to a common classifier. Yet

again, classification is performed on this orderless collection of visual words. The importance

8
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of a code or its absence in the image will contribute differently depending on the class.

Although very good results are achieved, spatial information is inherently lost by the his-

tograms. To overcome this drawback, several works proposed to take into account the spatial

layout of the visual words (spatial pyramid matching, Grauman and Darrell 2005; Lazebnik

et al. 2006), a process called pooling. Basically, the main idea is to aggregate the contributions

of local features over predefined sub-regions of the image. An image is thus divided in several

sub-regions, and the histograms of codes are computed on all these regions. This tends to add

some localisation in the description of the image.

The pooling operation can refer to the mammalian primary visual cortex V1 (studied on cats

by Hubel and Wiesel 1959). This stage in visual recognition of mammals is known to detect

edges and pools them in local receptive fields, which are sensitive to the same kind of edges.

Other stages follow and detect more complex patterns.

2.1.3 A single-layer network

This section presents the image classification pipeline proposed by Coates and Ng (2011) that

we use in our work.

The pipeline of the feature extractor is depicted in figure 2.3. The input image is split in a set

of 6×6 patches which constitute the local features. The patches are normalised by applying a

whitening transformation that aims at decorrelating the pixels with one another. Then, given

a codebook D of K elements (i.e. visual words, depicted on figure 2.2), each image patch is

softly assigned to each visual words in the following way:

∀ 16 k 6K , fk (p) = max
{
0,d T

k p −α}
, (2.1)

where p is the patch to encode, dk a visual word andα a fixed threshold. Each patch p activates

the closest codes of the dictionary.

Figure 2.2 – Examples of visual words learnt in an unsupervised manner

The activations are then pooled on a regular 2×2 grid. All the contributions of a given code

in a sub-region are aggregated in one new single score. This operation is known to create

invariance over transformations such as translation. Another practical reason is that it reduces

drastically the dimension of the feature vector. Basically, pooling is performed by averaging

the activations of codes in the neighbourhood.

The codebook is learnt in an unsupervised manner by uniformly extracting patches from the

training images and running a clustering algorithm. Here, spherical k-means is used and
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Normalisation Quantisation

27

· · · · · ·
27

K

Pooling Concatenation

Figure 2.3 – Single-layer pipeline of Coates and Ng (2011)

computes a dictionary D by solving the following optimisation problem:

min
D,s

N∑
i=1

||DT si −pi ||22

subject to ∀ 16 i 6 N , ||si ||0 6 1

and ∀ 16 k 6K , ||dk ||2 = 1,

(2.2)

where si is a code associated with the input patch pi and D = [d1, . . . ,dK ]T is the learnt

dictionary of codes dk . The first constraint means that each input patch pi is associated to at

most one non-zero entry. The second constraint means that all learnt codes are normalised to

unit length. Finally, a linear classifier is learnt on top of this feature extractor.

Figure 2.4a shows the training and test accuracies obtained on the CIFAR10 data set (de-

scribed in section 2.3) as a function of the codebook size. Larger dictionaries result in better

performance as the classifier is able to better discriminate the samples.

Another interesting parameter is the number of iterations during the unsupervised phase

(k-means). The spherical k-means algorithm is ran with simple white noise patches as initial

solution. As the algorithm runs, it learns better codes: over the iterations, the dictionary drifts

from noised patches (iteration 0) to meaningful sharp edges as depicted in figure 2.2.

Figure 2.4b shows the test accuracy as the number of iterations of k-means increases (run

to learn K = 800 codes). Surprisingly, although the codebook consists of noisy patches at

iteration 0, the resulting accuracy is already 70%, and after only 3 iterations reaches 76%. This

result is very surprising because it means that the pipeline is able to learn with a meaningless

dictionary. This experiment supports the results presented by Saxe et al. (2011) and Jarrett

et al. (2009) where the authors noticed that some pipeline architectures could perform very

well with no training (choosing random weights for instance). One explanation given is that
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Figure 2.4 – Analysis of the single-layer classifier

some architectures are inherently frequency selective and translation invariant.

To summarise, the basic principle of image classification is to map an input image to a feature

space and make a prediction on the class of the image. This component is the base concept in

object detection that we now present.

2.2 Object Detection

Object detection aims at localising the position and the scale of all the instances of a given

object of interest in an input image. Figure 2.5 shows an example of the output of a face

detector. The goal is to locate all the faces present in the image (green detections) while

avoiding false alarms (red boxes). Sometimes, the detector misses some targets (blue boxes),

usually because of occlusion (the object is not entirely visible), part occlusion (glasses, hat,

etc.) but also because the object appears in an unusual pose (rotation).

2.2.1 Sliding-window object detectors

Paradigm

A sliding-window object detector consists of a binary classifier that is trained to discriminate

the object of interest from the background. The classifier takes as input a fixed size image

(e.g. 80×80) and outputs a score related to the presence or absence of the object of interest.

The classifier is then densely applied at all positions and all scales of the image to find all the

instances of the object. When multiple detections occur in the same vicinity, they are removed

by non-maxima suppression to keep only one of them.
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Figure 2.5 – Result of a face detector. Green boxes are correct detections, blue are miss
detections, and red are false alarms.

Training

The core component is thus the binary classifier. It is trained through a bootstrapping pro-

cedure that aims at building a series of classifiers of increasing performance. Initially, the

classifier is trained with a population of positive samples (see figure 2.6a in the particular case

of face detection) and negative samples (see 2.6b). At this point, it already discriminates well

between objects and background, but still raises too many false alarms to be used.

The bootstrapping approach (or “hard negative mining”) consists in enriching the training set

with these false positive samples, also called hard samples. In practice, the current classifier

is applied on object-free images: if the classifier has a positive response at a given location,

the corresponding sample is a false positive since no object is in the image, and it is added

to the training set. The classifier is eventually retrained with this augmented training set.

Figures 2.6c and 2.6d show examples of hard samples after the first and second bootstrapping

step respectively. As the training goes on, false positives become harder and harder and force

the classifier to differentiate faces from face-like shapes.

2.2.2 Viola and Jones detector

The Viola and Jones face detector (Viola and Jones, 2004) is a sliding-window detector whose

binary classifier is a strong learner H(x) made of the linear combination of several weak

learners:

H(x) =∑
i
αi hi (x), (2.3)
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(a) Positive images

(b) Negative images

(c) Hard images after bootstrapping step 1

(d) Hard images after bootstrapping step 2

Figure 2.6 – Training images for face detection

where x is the input image window to classify as object or background, hi is a weak learner,

and αi ∈R its weight. A weak learner is a classifier that has a poor classification accuracy, but

the combination of several of them yields an accurate classifier.

The weak learners are combined through a boosting algorithm, which aims at building a

strong classifier of increasing performance, by carefully selecting the next weak learner hi and

its weight αi , so as to reduce the classification error on the training set.

In the Viola and Jones detector, the weak learners are simple stumps consisting of two parts:

the first part is a Haar wavelet (see figure 2.7) which computes the difference between the sum

of the pixels in the black areas with the sum of the pixels in the white areas, and the second one

is a threshold function which outputs +1 if the difference is above a constant, and -1 otherwise.

Moreover, to increase the speed of the detector, the strong learner is trained in a cascade

fashion, such that when some partial sums fall below a threshold, the window is rejected. In

this way, some computation is saved.

2.2.3 Aggregated Channel Feature detector

The aggregated channel feature detector (ACF) was introduced and improved by Dollár et al.

(2009, 2010, 2014) and is based on the Viola and Jones detector that we have previously

described. The ACF detector consists of richer features (see figure 2.8). An RGB image is
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Figure 2.7 – Haar wavelet patterns to compute features

decomposed in several grey level channels representing colour (in LUV space, 3 channels),

gradient magnitude (1 channel) and several histograms of oriented gradients (6 channels, for 6

orientations). The channels are pooled by 4×4 blocks, so a 32×64 image results in a ten 8×16

channels, for a total of 1280 features.

In this framework, the weak learners are shallow trees (depth from 2 to 5) over the features.

As a comparison, the stumps of the Viola and Jones detector are one-depth trees. Moreover,

Dollár et al. (2014) demonstrate that the ACF features can efficiently be interpolated at nearby

scales, which further reduces the time of computing the features.

Figure 2.8 – Illustration of the aggregated channel features

2.2.4 Deformable Part-Based Model

Dalal and Triggs introduced the histograms of oriented gradient (HOG) in the context of pedes-

trian detection (Dalal and Triggs, 2005). The HOG descriptors are computed by aggregating

the orientations of the gradient weighted by its magnitude on a regular grid of typically 8×8

pixels. The detector uses support vector machines to classify the windows in either object or

background.

The Dalal and Triggs detector has later been extended by Felzenszwalb et al. (2010b) with

the deformable part-based model (DPM). This detector enriches the previous one by using

additional parts at a finer resolution, and by still using HOG as a descriptor. The model consists

of a root template similar to the original detector and of several parts that are able to move

from the the root, accounting for the deformation of the object. Figure 2.9 shows an example

of a DPM face detector: the first row contains the roots of the components, and the second the

parts.

As the DPM is computationally expensive because of all the convolutions that are made at

several octaves of the pyramid, several works have investigated various strategies to accelerate

the evaluation of the model on an image. Dubout and Fleuret (2012) have proposed to perform

the convolutions in the Fourier domain that leads to an order of magnitude speedup. Dean
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Figure 2.9 – Illustration of a face deformable part-based model

et al. (2013) have used hashing techniques to replace the convolutions, and have shared the

parts between various objects, which allows to test 100,000 detectors on a single machine.

And Yan et al. (2014) have combined various strategies to obtain a real time DPM model: they

proposed to use a cascade and a low rank root filter to perform the convolutions faster.

2.2.5 Evaluation of object detectors

The quantitative evaluation of any system is important especially to compare systems with

one another. To this purpose, a metric should be designed to reflect the performance of the

system.

In the case of object detection, evaluation boils down to measuring the performance of the

binary classifier trained to discriminate the object from the background. When the classifier

does not make any mistakes, it either correctly classifies a positive sample as positive (true

positive) or correctly classifies a negative sample as negative (true negative). When the classi-

fier makes a mistake, it either incorrectly classifies a negative sample as positive (false positive,

type I error) or incorrectly classifies a positive sample as negative (false negative, type II error).

It is difficult to minimise both error types at the same time when designing a system. Therefore,

a trade-off is made depending on the application. In some cases, it is imperative not to have

any false positives, such as when classifying enemy targets (positive class) versus non-enemy

(e.g. hospital, school, etc.). In other cases, false negatives should be avoided at all costs, such

as when classifying disease patient (positive class) versus healthy people. In the latter case,

beside the psychological side effect of being incorrectly classified as sick, further tests can

later be performed to nullify the first diagnostic, but it is of the essence that a disease patient

never be classifier as healthy.

To evaluate the performance of the classifier, we can use a receiver operating characteristic

curve (ROC) which represents the true positive rate as a function of the false positive rate (see

figure 2.10a). To make such a curve, we extract positive windows which contain the object of

interest, and negative windows, and the detector is applied on them.
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Figure 2.10 – Evalution of a binary classifier

An alternative to ROC curves is precision-recall curves (see figure 2.10b). In this case, the

detector is applied on the test images and we compute the precision P and the recall R with:

P = T P

T P +F P
and R = T P

T P +F N
, (2.4)

where T P stands for true positive, F P for false positive and F N for false negative.

As these measures involve two parameters, it is difficult to obtain an ordering of different

methods. To this purpose, we usually use the area under the curve (numbers in the key of

figure 2.10b). However, this score can be confusing because as we can see on figure 2.10b,

although the red curve has a smaller area (89.68%) than the black one (90.29%), the red curve

is above the black one in the range 0.8 < R < 0.85, which would be the use case of the detector

for real applications.

2.3 Image data sets

2.3.1 Image Classification data sets

The MNIST data set (LeCun et al., 1998) is a collection of 28×28 grey scale handwritten digits,

which has been extensively used in the field of computer vision and machine learning to train

image classifiers. It consists of 60,000 training images and 10,000 test images belonging to 10

classes (digits from 0 to 9). Figure 2.11a shows a few examples of the MNIST images.

This data set has been augmented with artificial distortions yielding the InfiMNIST data set

(Loosli et al., 2007). The distortions consist of sub-pixel elastic transformations (Simard et al.,

1992, 1998) alongside with additional translations of one pixel. A distortion is the result of
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(a) Images from the MNIST data set

(b) First training sample from InfiMNIST and its first 9 distortions

Figure 2.11 – MNIST and InfiMNIST images

adding to the original image the componentwise product between a tangent vector in one

direction and a deformation field such that

Idistorted(i , j ) = I (i , j )+α[
fx (i , j ) tx (i , j )+ fy (i , j ) ty (i , j )

]
. (2.5)

tx (resp. ty ) is the tangent vector of image I in the horizontal (resp. vertical) direction, i and j

are the coordinates of the pixels, and fx (resp. fy ) is the deformation field used in the x (resp. y)

direction.

In practice, the distortions can efficiently be computed on the fly by storing the original

samples, the precomputed tangent vectors of each original and some precomputed smoothed

distortion fields. By combining all the distortion fields in both direction with translations, the

InfiMNIST data set can provide several trillion images. Figure 2.11b depicts the first training

image of MNIST alongside with its first nine distortions.

The CIFAR10 data set (Krizhevsky and Hinton, 2009) is a collection of 32×32 RGB images taken

from the “80 million tiny images” collection (Torralba et al., 2008). The training set consists

of 50,000 images and the test set of 10,000 images belonging to 10 classes of objects such as

“airplane”, “cat”, “dog”, “car” or “horse”. Figure 2.12 shows some images of this data set.

Figure 2.12 – Images from the CIFAR10 data set

2.3.2 Face data set

The annotated facial landmarks in the wild (AFLW, Koestinger et al. 2011) is a large collection

of annotated faces in real-world images. It consists of more than 21,000 images for a total of
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(a) Images used to train a frontal component (06 |yaw|6 20)

(b) Images used to train a semi profile component (206 |yaw|6 60)

(c) Images used to train a profile component (606 |yaw|6 100)

Figure 2.13 – Cropped images from the AFLW data set to train a face detector

around 25,000 faces. Each face was manually annotated with several facial landmarks. From

the annotations, the Euler angles of each face can be determined: the roll, the pitch and the

yaw, that is the orientation of the face in 3D.

Face detectors are trained by cropping the objects of interest and training a classifier to dis-

criminate the object from its background. The object is usually cropped with some additional

context to avoid over-fitting. Figure 2.13 shows some examples of faces from the AFLW data

set. As was done by Mathias et al. (2014) and Yang et al. (2014), the faces are split in three

groups based on their yaw to train three separate detectors: a frontal, a semi-profile and a

profile component. To regularise a bit the data set, faces with a pitch and a roll larger than

22.5 are ignored. In the end, there are 6,754 crops for the frontal component, 6,784 for the

semi-profile and 3,182 for the profile component. The artefacts observed in several images

correspond to the padding added when the ground truth goes outside the image.

2.3.3 Pedestrian data sets

The INRIA Person data set (Dalal and Triggs, 2005) is a collection of photos gathered to train

pedestrian detectors. It consists of 2,416 128×64 images of pedestrians and 1,218 pedestrians-

free scenes for training. The testing set consists of 1,132 pedestrians and 453 scenes.

The Caltech pedestrian data set (Dollar et al., 2012) consists of 10 hours of 30 Hz videos (250,000

frames of 640×480 pixels) shot from a moving vehicle in a city. This data set is challenging

because the quality of the frames is not so high compared to static pictures and it contains

a large amount of frames. The data set is split into short sequences of a few minutes, each

being shot in various areas, such as airports, cities or suburbs. The training set which contains

128,000 images is usually sub-sampled down to 4,000 images (Dollár et al., 2014) or to 32,000
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(a) 640×480 scenes from the training set

(b) 64×32 cropped positive samples from the training set

Figure 2.14 – Images from the Caltech pedestrian data set

images (Nam et al., 2014) and the usual test set contains around 4,000 images. Figure 2.14

shows some scenes taken from the sequences, and some cropped pedestrians used as positive

samples to train pedestrian detectors.
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This chapter presents a way to drastically reduce the number of locations at which a detector

should be applied to find hard negative samples. The main idea of the method is to discard the

neighbour positions around a location where the detector has not found any hard samples. It is

based on the following publication:

Olivier Canévet and François Fleuret. Efficient sample mining for object detection.

In Proceedings of the Asian Conference on Machine Learning (ACML), pages 48–63,

2014
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3.1 Introduction

3.1.1 Sliding-window object detectors

Sliding-window object detectors, as presented in section 2.2.1, are trained through a multi-

step procedure called bootstrapping, which consists in using the current step’s detector to

enrich the training set with hard negative samples. Bootstrapping is crucial to achieve good

performance and to be able to use the detector in real-world applications.

In this chapter, f1 denotes the initial classifier trained to discriminate between object and

background, and f2 the one retrained with hard samples (one step of bootstrapping). f1 is

simply trained with a population of positive samples (i.e. the object) and a population of

negative samples (i.e. uniformly taken in the background of the object).

A hard negative sample x can thus be defined as a negative sample on which the binary

classifier f1 has a positive response, or in the case of SVM, that lies inside the margin of the

predictor ( f1(x)>−1, as in Felzenszwalb et al. 2010b, see figure 3.1). Object-free scenes are

thus densely parsed until enough samples have been found and the second classifier f2 is

trained on this augmented set.

Positive class
Negative class
Hard samples

Figure 3.1 – Illustration of where hard samples lie compared to the frontier and margin

3.1.2 Related work

Many works over the past years have focused on proposing new features to improve the

performance of the final detector. Haar wavelets proposed by Viola and Jones (2004) have

shown to be extremely efficient combined with AdaBoost to detect faces in images. Histograms

of oriented gradients by Dalal and Triggs (2005) have long been used by almost all detectors

before being superseded by convolutional neural networks. Walk et al. (2010) proposed

features based on the optical flow in videos and on the self-similarity between colour channels.
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Finally, integral or aggregated channel features (Dollár et al., 2009, 2014) are both very fast and

very efficient for pedestrian detection when combined with two-depth trees.

Other works have concentrated on accelerating detection at test time. Making use of cascades

(Viola and Jones, 2004; Bourdev and Brandt, 2005; Felzenszwalb et al., 2010a; Fleuret and

Geman, 2001, 2002) speeds up detection dramatically by discarding many windows in the

early processing steps. Pedersoli et al. (2011) proposed a coarse-to-fine approach that reduces

the number of locations to visit by discarding areas at smaller scales that will not be tested

at larger scales. Gualdi et al. (2010) introduced a probabilistic framework that exploits the

responses of the cascade to efficiently span the image at test time. Regarding deformable

part based models, Dubout and Fleuret (2012) have proposed to compute efficiently the

convolutions in the Fourier domain. The fastest detectors are now able to process around 30

frames per second which makes them practical for real-time applications.

The work by Henriques et al. (2013) shows that in the particular case of linear classifiers, it is

possible to train with the virtual, fully translated versions of the negative samples, because the

Gram matrix of the translated samples is block circulant and can be factorised in an efficient

way, removing redundancies between samples. They thus show that they can avoid several

steps of bootstrapping and yet achieve similar final performances.

3.1.3 Motivation

Bootstrapping is used in all the cited works (except the last one) independently of the nature of

the classifier (SVM, boosting), of the detection framework (cascade or not), or of the features.

It allows the process to concentrate computation on the most difficult samples and yields a

usable sliding-window detector. Dalal and Triggs (2005) use one step of bootstrapping but add

all the false positives that are found. Dollár et al. (2009) use two steps, while other works use

more (Walk et al., 2010; Dollár et al., 2014) and can go up to 10 (Felzenszwalb et al., 2010b)

but limit themselves to a few thousands samples added each time. When training cascades,

bootstrapping is used at each new level of the cascade (Viola and Jones, 2004).

Despite the popularity of this approach, little work has been done on how to efficiently parse

scenes to find hard samples during the bootstrapping step. The traditional approach sees

bootstrapping as a particular case of detection in which one uses the non-mature classifier f1

to increase the training set with difficult samples for f1. In this chapter, we propose to leverage

local consistency of f1 in the image plan to limit computation to a sparse subset of locations.

Figure 3.2 shows the responses of a pedestrian detector at every other location in the image.

The responses suggest a smoothness across the image and that, given a response at some

position, we can infer the responses of the classifier in its neighbourhood.

In this context, we propose a simple yet efficient strategy that estimates the largest neigh-

bourhood that can be discarded around a position and that does not contain a hard sample

(section 3.2). This is faster than the traditional approach because it discards lots of positions,
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−4 −3 −2 −1 0 1 2

Figure 3.2 – Initial pedestrian detector responses (HOG features with linear SVM). The detector
was applied every two pixels. One point on the image corresponds to the centre of the 128×64
sliding-window. The colour of the points corresponds to the value of the detector response.
Here, the false positives are around the trees, the shape of which is reminiscent of a pedestrian.

but it is also as effective because it finds as many hard samples. We also investigate several

methods to sample sequentially the scenes to process (section 3.2.2). We evaluate the method

in section 3.3 on pedestrian and face detection, and show that it is able to find as many hard

samples as the baseline while being significantly faster.

3.2 Proposed strategy

Our purpose is to efficiently build a subset H of the full set of hard samples H∗. At this point,

we assume that we have an initial binary classifier f1, trained as described before, and a series

of object-free scenes Sn , n = 1, . . . , N . A sample x is considered hard if f1(x)>m, where m ∈R
is fixed.

Given that we have already selected a series of hard samples, to select a new one, we first

choose a scene Sn and then a location u ∈ Sn \Vn , where Vn is the subset of discarded locations

in Sn . We extract the sample x at location u and compute f1(x).
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Scene Image at a given scale in which negative samples are extracted
L Set of all the possible sample locations in the scene
f1 The initial classifier
f2 The classifier trained with the augmented set
x A h ×w sample on which we can apply f1 or f2

m A threshold above which a sample is considered hard
hard sample A sample such that f1(x)>m

Sn An object-free scene used to find negative and hard samples
Vn The set of already visited or discarded positions in Sn

Exhausted A scene is exhausted when all the locations have been visited or dis-
carded

Table 3.1 – Notations and designations

If f1(x) < m (i.e. x is a true negative), Vn is updated with u as well as all locations within a

circle of radius r− centred at u, without actually computing f1 on them. We call this discarding

the neighbourhood (i.e. these positions will not be selected in the future). As explained in the

following sections, depending on the method we consider, the radius r− may be a constant, or

a function of the response f1(x). Figure 3.3 shows examples of discarded regions for various

radii. When all positions in Sn have been either visited or discarded, we say that the scene is

exhausted.

1
p

2

3

Visited position u

Discarded position

Figure 3.3 – Various discarding radii

If f1(x)>m (i.e. x is a false positive), we add x to H, u to Vn , and we discard a small neighbour-

hood of radius r+ around the false positive: we thus discard positions of redundant samples.

In all the methods we present, r+ is constant.

Finally we repeat the procedure by choosing a scene and a position until we have found

enough hard samples or until all the scenes are exhausted.

It is important to note that we do not exhaust a scene before moving to the next scene. Rather,

we pick one scene and a location at a time, so that we gradually visit them all. With small

data sets, this is unimportant, especially if the purpose is to exhaust all the scenes (i.e. visit all

locations). With very large data sets however, it is imperative to enforce the sampling to be

distributed over all the scenes, to avoid generating a set of samples of limited diversity.

25



Chapter 3. Efficient Sample Mining for Object Detection

We now describe the strategy we propose to parse the scenes efficiently: the key idea is to

learn the discarding radius r− as a function of f1(x). We illustrate the rest of the section with

pictures from the INRIA Person data set.

3.2.1 Strategy to discard non-visited locations in a scene

The novel methods we propose in the next sections rely on the relation between the point-wise

response of the classifier at a certain location in the scene, and the presence of hard samples

in its neighbourhood.

Without loss of generality, we assume that all the scenes have the same size and we define

the lattice of extractible positions L = J1, HK× J1,W K1. A scene S is a random variable on

J0,255KL 3
.

For simplicity, given a position u ∈L and a classifier f , we will use the notation f (u) for the

response of f on the sample extracted at location u in the scene.

Let U be a position sampled uniformly on L , and R the distance between U and the closest

false positive, that is

R = min
v∈L

f1(v)>m

‖v −U‖2 (3.1)

Using f1(U ), our purpose is to predict the largest neighbourhood that we can discard without

discarding positions that actually contain hard samples, that is finding a lower bound on the

random variable

R | f1(U ). (3.2)

Figure 3.4 shows the empirical distribution of ( f1(U ),R): this plot was done on the INRIA

Person data set with a HOG pedestrian detector. One dot represents the distance between a

position u in the image and the position v of the closest false positive from u, as a function

of the response f1(u) at position u. We see that for a given negative response f1(x), there

is a non-zero lower bound: the closest false positive from u tends to be farther from a true

negative x as f1(x) increases. By learning this lower bound, we can therefore discard a circular

area around u with an adaptive radius r− = r−( f1(x)).

The standard way to estimate the lower bound of the distribution is to extract the points near

the bound and fit a model on them. Many models can be used as well as many ways to learn it:

linear or quadratic model, step function, etc.

As we observe on the two data sets we used, the lower bound is properly modeled as an affine

function of the classifier’s response. This is the model we use for the adaptive discarding

1The size of the lattice is actually not the size of the scene: if we extract samples of size h×w in a HS ×WS scene,
the extractible region is (HS −h +1)× (WS −w +1)
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Figure 3.4 – Empirical distribution of ( f1(U ),R) as defined in 3.2.1 with m = 0. One green dot
( f1(u),r ) represents the distance r = ||v −u||2 of the closest false positive (at location v) from
sample x (at location u) as a function of the response f1(x) of the initial classifier. For instance,
given a true negative sample x− such that f1(x−) =−2, we are assured that the closest false
positive is farther than ∼8 pixels away, which allows us to discard a disc of radius 8 around
u, that is ∼200 locations that will never be chosen. The horizontal line for f1(x)> 0 indicates
that empirically, any false positive has a false positive neighbour.

radius:

r−( f1(x)) =−a × ( f1(x)−m), a > 0, (3.3)

where m is the threshold above which x is considered hard. Before building H, we draw

the empirical distribution by selecting a few 30×30 sub-lattices out of hundred scenes and

compute the distance to the closest hard sample at every location. We then estimate the

optimal a? by averaging over the 10 lowest values of

r ( f1(x))

f1(x)−m
. (3.4)

3.2.2 Strategy to select a scene

In the works of Dalal and Triggs (2005) and Viola and Jones (2004), scenes are visited at all

locations either until it no longer fits in memory or to keep a reasonable training time.

However, with the recent year large increase of the data sets, it becomes impractical to exhaust

all scenes. We here present different methods to choose the next scene to visit.
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Uniform sampling consists in choosing a scene Sn uniformly with replacement in the subset

of non-exhausted scenes, that is with the distribution:

∀ 16 n 6 N , p(Sn) = 1

N
(3.5)

Size sampling consists in choosing a non-exhausted scene according to its size, that is with

the distribution

∀ 16 n 6 N , p(Sn) = 1

Z
|Sn |, (3.6)

where Z is a normalisation constant and |Sn | the number of extractible positions in the

lattice of Sn .

Unexplored sampling consists in choosing a non-exhausted scene according to its unex-

plored area, that is with the distribution

∀ 16 n 6 N , p(Sn) = 1

Z
(|Sn |− |Vn |), (3.7)

where |Vn | is the number of discarded or visited positions in scene Sn .

Erf sampling consists in choosing a non-exhausted scene according to the classifier re-

sponses on already visited locations in the scene. Let µn and σ2
n be the mean and

variance of the classifier responses in scene Sn at some point in the process. We sample

according to the distribution

∀ 16 n 6 N , p(Sn) = 1

Z
min

(
En ,

1

πr+2

)
(|Sn |− |Vn |), (3.8)

where

∀ 16 n 6 N , En =
∫ +∞

m
N (µn ,σn) = erfc

(
x −µnp

2σn

)
, see figure 3.5 (3.9)

This sampling is designed to select a promising scene, that is one which has already

provided false positives will have a larger score. The min provides an upper-bound on

the score to avoid having too large values of En . The constant 1/πr+2 corresponds to the

number of samples we would collect if all the remaining positions were actually false

positives.

3.2.3 Implementation detail for sampling

We may need to sample several million times, which can be computationally prohibitive if

done in a naive way. We here provide details of the implementation to select the scene in

which to extract the sample.
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Figure 3.5 – Erf score for a scene
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Figure 3.6 – Sampling according to a changing discrete distribution. Given a binary tree built
on top of a discrete distribution [4,3,1,5]/13 (figure 3.6a), we can draw a sample according to
this distribution by recursively sampling according to the partial distribution of the children
at a given node (3.6b). Only the nodes between the leaf to update and the root need to be
updated (3.6c). Both operations have O(log N ) complexity.

All sampling methods except the uniform strategy require to sample according to positive

weights (image size, unexplored area, or erf score) normalised into a discrete distribution that

may evolve in time (for unexplored area and erf score).

Sampling among N items using a (balanced) binary tree costs O(log N ) both in sampling

and updating the distribution. Figure 3.6 shows an example for the following distribution

[4,3,1,5]/13. Given the distribution (in our case, it represents the scores of the scenes), a

binary tree is build such that the leaves contain the scores of the images and each internal

node have the sum of both its children (see 3.6a). To sample according to this distribution, one

starts from the root and recursively draws a number r between 0 and the value of the current

node: if r is smaller than the left child, it restarts the sampling with the left child. Otherwise

it chooses the right child (see 3.6b). The process goes on until reaching a leaf. To update a

particular leaf, one just has to update all the nodes from the leaf up to the root (see 3.6c),

which also costs O(log N ).
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3.3 Experiments

We now apply our strategy to train a pedestrian and a face detector. We compare how many

false positives are actually found with respect to the method that does not discard a neigh-

bourhood, and we compare the strategies to select scenes. A hard sample is defined with

m = 0.

The computational cost of bootstrapping is proportional to the number of visited locations

since the time to choose a scene (implemented with a binary tree), then a position, then to add

the neighbourhood to Vn is negligible in comparison to computing f1(x). Hence, we report

the results as functions of the number of visited locations. The positive discarding radius r+ is

set to 0 for the faces and to 2 for pedestrians.

3.3.1 Data sets

We use the INRIA pedestrian data set (Dalal and Triggs, 2005) to train the pedestrian detector. It

consists of 2,416 128×64 images of pedestrians and 1,218 pedestrians-free scenes for training.

The testing set consists of 1,132 pedestrians and 453 scenes. We train the initial detector by

using 10,000 128×64 negative images randomly extracted from the training scenes. We use

HOG as features and we use the SVM library LIBLINEAR (Fan et al., 2008) with a `2-regularised

`2-loss.

For faces, we use the standard face data set of Viola and Jones for training and test it on the

MIT-CMU data set. As negative scenes, we used the Caltech Background data set (Weber)

which provides 900 face-free images (we removed 3 images containing a skull or a baby). We

use AdaBoost (Freund and Schapire, 1997) as the learning algorithm and Haar-like features

(Viola and Jones, 2004).

3.3.2 Number of hard samples found

Although our strategy is designed to discard the largest expected neighbourhood that does

not contain any false positives, some of them might actually be in this discarded area. To

analyse this, we compare our learnt radius as described in 3.2.1 with a manually chosen radius,

i.e. using a À a? (resp. a ¿ a?), that is with a more aggressive (resp. smoother) slope. We

therefore compare our strategy to exhaust all the scenes with:

• Parsing densely all the scenes without discarding any neighbourhood (i.e. discarding

with a radius r− = 0) (red circle with label 0 on figure 3.7).

• Densely parsing all the scenes, and discarding a constant radius around true negatives,

i.e. disregarding f1(x) (red circles on figure 3.7).

• Densely parsing all the scenes, and discarding a manually selected adaptive radius,

i.e. r− =−a f1(x), a 6= a? (blue dots on figure 3.7)
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Figure 3.7 – Number of false positives found vs. the number of visited samples for the differ-
ent strategies (average over 10 runs). In the experiments, we visite the scenes until all are
exhausted. The red circles correspond to a strategy which discards a disc of constant radius
around a visited sample x, the blue dots to the strategy which uses an adaptive radius −a f1(x).
The learnt radius (green star) is in the area where almost all the available false positives are
found while visiting a minimum of positions.

Figure 3.7 shows the results of the experiment: we plot the number of false positives found as

a function of the number of visited locations across all the scenes (recall that we exhaust all

scenes).

The plateau formed by the blue dots corresponds to the maximum number of false positives

we can actually find in the scenes. With a constant radius (red circles) the parsing discards the

false positives which are neighbours of true negatives, and as a result, finds less hard samples

than an adaptive radius.

An adaptive radius does not discard false positives next to negative samples because we have

r− =−a f1(x) < 1.

For both data sets, our simple method finds a learnt adaptive radius which lies in the area

where one visits the fewer positions, while finding almost all the available hard samples.

We argue that any model or estimation method that leads to such ratio between number

found and number visited is sufficient to have a significant reduction in the number of visited

locations. In this experiment, we visit 30 times (resp. 4) fewer locations on the INRIA data set

(resp. Caltech background).
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Figure 3.8 – Comparison of the performances on the two test data sets for different sampling
and discarding strategies (averaged over 20 runs). The initial detector (black curve) is trained
as described in section 3.3.1. Choosing a scene according to its size and using the learnt
adaptive radius yields better performances than uniform, erf or a more aggressive slope. It
also visits 6 times (resp. 2) less samples than the traditional approach and reaches similar
performances. We note that for faces, the selection strategy does not matter.

3.3.3 Performances

Our ultimate objective is to produce the best detector we can. While the number of samples

used for training is an important parameter, it is not the only one. Diversity, and more generally

the “representativity” of the sample set, is key. An extreme example would be a very large set

composed of the same example replicated with very minor pixel noise variation.

Regarding the collection of samples from scenes, if we were only interested in the sheer

number of hard samples we collect, we could simply mine exhaustively in the neighbourhood

of any hard sample we find, since it is often the case that hard samples come in dense clusters.

To assess the efficiency of our method with this aspect taken into account, we must estimate

not only the computational cost to mine K false positives, but also how good they are for

training. To that purpose, we compare the various strategies after one round of bootstrapping

adding K = 30,000 hard samples (figure 3.8). Figure 3.8a presents the performance of the

pedestrian detector and figure 3.9 shows the visited locations in a particular scene for various

methods.

The red dashed curve is the baseline which does not discard any neighbourhood (r− = 0). It

needs to sample 10 million positions to find 30,000 hard samples. As we see on figure 3.9a,

lots of locations are visited. Our proposed strategy (green line) needs to sample 6 times fewer

positions and yet achieves the same accuracy. We have not noticed much difference between

sampling a scene according to its size or to its unexplored area so we report the results for
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(a) No discarding radius (b) Large discarding radius (a = 10)

(c) Learnt discarding radius (a ' 4) (d) Erf sampling and learnt discarding radius

Figure 3.9 – Comparison of the visited locations for different strategies. One dot represents the
top left corner of the extracted window a = 10 tends to discard too wide regions that causes
some small areas of false positives to be discarded.

size only. We see on figure 3.9c that our method discards larger neighbourhoods around true

negatives with large negative response f1 (dark points) and concentrates its sampling on the

areas where the false positives lie.

Our approach with uniform sampling performs slightly worse than the size or unexplored

because it unbalances the sampling: small scenes have equal probability of being chosen so

H contains more samples from small scenes.

Too aggressive a slope (a = 10 here whereas our learnt slope is ' 4) performs also worse.

Discarding too large areas tends to discard plenty of false positives as we can see on figure 3.9b.

Some “small islands” of false positives were discarded (red circled area). Large “islands” of false

positives then tend to be over-sampled that yields a set of redundant samples, as mentioned

at the beginning of 3.3.3.

Erf sampling performs also worse because it tends to select the same scenes soH is unbalanced
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Figure 3.10 – Number of false positives found as a function of the number of visited locations.
The curves show that in the beginning of the procedure, all three methods find the same
number of false positive samples but that after a certain point, the adaptive radii find more.
The process has discarded lots of areas and only the false positives remain.

(on 3.9d the scene is more visited than if it is sampled according to its size). Without a bound

on the erf score, i.e. without 1/πr+2, the performance dramatically drops because the hard

samples come from very few scenes.

Finding hard samples goes much faster as we visit more locations because more areas have

been discarded in the early steps as depicted on figure 3.10, where the number of false positives

found increases exponentially. On figure 3.10, we targeted 30,000 false positives, and the

speedup of the learnt adaptive radius is 6 fold over the constant radius. On figure 3.7b, the

speedup was 30 fold because we exhausted all the scenes.

The right plot of figure 3.8 presents the performance of the face detector. All strategies give

the same performance but an adaptive radius reduces considerably the number of visited

locations and thus the training time.

3.4 Discussion

The simple strategy presented in this chapter aims at mining scenes to find hard samples for

object detection. It consists in learning an adaptive radius to discard a neighbourhood around

a true negative sample as a function of the initial classifier response to avoid visiting these

discarded locations in further steps of the parsing. Selecting a scene according to its size has

also showed to yield better results.

This strategy allows to find as many hard samples as the naive approach which visits all

possible locations an order of magnitude faster, while achieving similar performances.

The work of Yan et al. (2014) have proposed another approach which is somewhat reminiscent
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of the one described in this chapter. Their “neighbourhood aware cascade” is based on the

same observation as ours, which is the dependency between scores of neighbour positions.

They derived a pruning strategy of neighbour positions by using a threshold depending on the

stage of the cascade. In addition to that, they extended the pruning to positive scores, as they

observe that on average, before non-maximum suppression, a detection comes with 21 other

positive detections. In our case, we would not use that because we are especially interested in

finding all false positives.
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Figure 3.11 – Interpretation of the method with a Lipschitz constant

Another way of interpreting the method presented in this chapter is to consider the response

of the detector in the image plane as a 2D Lipschitz continuous function, whose Lipschitz

constant is actually the slope of lower bound depicted on figure 3.4. When the classifier is

evaluated at a position P and has a negative response, given the Lipschitz constant L which

is the largest rate at which the function varies, we can compute the distance from P around

which the function cannot change sign. Therefore the area discarded corresponds to the

largest area around which the function cannot go above 0. This interpretation is depicted

on figure 3.11 in 1D: the curve represents the response of the classifier as a function of one

coordinate in the image plane, and the red line is the steepest tangent of the curve, which

slope is therefore equal to the Lipschitz constant.
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This chapter describes a new framework to efficiently find informative images in a large col-

lection of images to train object detectors with the hard negative mining approach. The main

idea is to organise the images in a tree structure that reflects the regularities of the collection

and to use a tree search approach to choose the images. This chapter is based on the following

publication:

Olivier Canévet and François Fleuret. Large scale hard sample mining with Monte

Carlo Tree Search. In Proceedings of the IEEE International Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016
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4.1 Introduction

As we have described in section 2.2.1, training a sliding-window object detector requires a vast

amount of negative images for the bootstrapping procedure. These object-free images are

source of hard negative samples, which are added to the training set to improve the boundaries

between the population of positive and negative samples.

4.1.1 Statistics of hard samples within images

In practice, one observes that the frequency of hard samples in images is highly structured:

certain types of images exhibit statistical regularities that generate more or less frequent

hard samples (figure 4.1). Similar structures can be observed in the images themselves: large

uniform patches (sky, empty walls) can be ignored (figure 4.13a), while high-frequency or

highly-structured parts (trees, buildings, bookshelves) should be examined in detail (fig-

ure 4.13b). If one has to collect images from the web to create a “good” set of background

images, (s)he would quickly get a good intuition about which images to select and which to

ignore.

4.1.2 Structure of image data sets

Moreover, one also observes that the image collections have an inherent structure, which

can mostly be accounted for by how the images were originally collected. For instance, the

PASCAL (Everingham et al., 2015) and COCO (Lin et al., 2014) data sets contains many images

of planes in a blue sky, landing planes, vehicles in the same position, and animals. And related

to the observations of the previous section, similar images tend to generate the same amount

of hard samples. Figure 4.2 shows examples of similar images in the content they depict (sky,

desert, animal, flower) and a histogram of the number of false positives that can be found in

such images. Images of sky and desert happen to be poor in hard samples (many images have

less than 5 false detections), while images of animals and flowers are richer: few of them do

not contain false positives, and many have between 5 and 15 false detections.

The quality of images as sources of hard samples is therefore strongly related to the geographi-

cal environment or type of events they depict, or indirectly to the time period, photographer,

or even the web site they originate from. In a video for instance, time-consistency induces a

strong regularity of the proportion of hard samples in contiguous frames.

4.1.3 Motivation

The existence of such structures motivates the use of a hierarchical process able to concen-

trate computation recursively, figuring out automatically at what scale (image sets, image

subsets, image) it should make a decision about investing or not more computation in the

corresponding samples.
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We propose to formalise the problem by first defining a tree-structure whose leaves are in-

dividual images, and whose nodes correspond to small groups of content/temporal related

images in the bottom level (street, flowers, indoor, etc.), and larger groups of data set related

images in the top level (data set, origin, etc., see figure 4.6 for an example). If the structure is

given (temporal structure, keywords, etc.) then no preprocessing is needed. Given such a tree

and an existing predictor, each leaf (i.e. image) is labelled with a score that reflects how many

false positives it contains.

Our objective is to use that tree-structure to efficiently sample among false positives, that is to

maximise the fraction of false positives we find among the samples we actually look at.

Without an additional structure, this problem amounts to an exploration-exploitation dilemma:

(a) Images poor in hard samples

(b) Images rich in hard samples

Figure 4.1 – Frequency of hard samples in background images. An aggregated channel feature
face detector trained with 128 trees is used to collect hard samples in object-free scenes. The
detections (red squares) are false detections.
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(b) Images rich in hard samples

Figure 4.2 – Frequency of hard samples in various type of images. Images of skies and deserts
are poor in hard samples, many of them have less than 5 false positives, while images of
animals and flowers are richer, and many of them have between 5 and 15 false positives.
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we want at the same time to “exploit” the groups of images we have already identified as promis-

ing, that is are rich in false-positives, but we also want to invest a fraction of our computational

effort to “explore” new groups of images.

Framed in such a way, a natural response to the problem is the use of the Monte Carlo tree

search (MCTS). This technique associates a multi-armed bandit to each node of the tree, and

uses these bandits to sample paths down the tree, based on the current estimates of rewards,

or in our case, on the proportion of hard samples in the sub-trees. While MCTS is traditionally

used to estimate the good choice to make at the top node, the by-product we use here is the

list of leaves it has visited during sampling.

4.2 Background on Bandit methods and Tree Search

This section presents some background on the bandit problem and how it has been ported to

tree structures in Monte Carlo tree search. These strategies belong to the field of reinforce-

ment learning, which deals with how a machine can learn the optimal behaviour from its

environment. The machine interacts with its environment by receiving a reward after each

action, and its goal is to maximise its cumulative reward over the long term by choosing the

most profitable action. Reinforcement learning is therefore concerned with the exploitation-

exploration trade-off, because the machine should select the empirically best action observed

so far, but at the same time, needs to invest a fraction of its computational effort on exploring

other actions.

Figure 4.3 – Screenshot of the Atari Breakout game

A practical example of reinforcement learning is training a computer how to play a game

simply by having access to screenshots of the game. The main motivation is that a human

would be able to understand the rules of the game and how to play by simply looking at the

course of a play of another player. We illustrate this scheme with the Atari Breakout game

(figure 4.3) that was used by Mnih et al. (2015). The goal is to let the machine find an optimal

policy to play this game. The machine only knows that it can move the platform left or right,

which constitutes its set of possible actions, and it has only access to the screenshots of the

game (10 images per second) and to the current score. Whether the score increases based on
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the chosen actions is the reward, and the machine will learn how to maximise this score while

playing.

4.2.1 The Multi-Armed Bandit problem

The multi-armed bandit problem introduced by Robbins (1952) is a statistical model of the

decisions an agent should make to properly balance between exploration and exploitation.

The traditional comparison used to present the multi-armed bandit problem is the one of

a gambler in a casino playing with K slot machines (i.e. each of them known as one armed

bandit, see figure 4.4) and the process is the following: the gambler (i.e. the agent) selects one

out of K arms, inserts a token, pulls the arm (i.e. the action) and possibly receives a reward (i.e.

the feedback from the environment).

The main objective of the player is to maximise his/her cumulative reward, or equivalently

to minimise his/her cumulative regret, which is the loss due to not playing the optimal

machine all the time. In its stochastic version, a bandit is described by a fixed probability

distribution of parameter θk , of support in [0,1] and of unknown expectation µk . Playing

arm k generates a reward, which is drawn from the corresponding distribution, and is assumed

to be independent of the previous draws.

◦◦◦

Figure 4.4 – Slot machines

We call µ? the expectation of the best arm,

µ? = max
k

µk , (4.1)

and σ(t ) the selected arm at time t . Then the regret rt at time t is

rt =µ?−µσ(t ) (4.2)

and the cumulative regret Rn up to time n is

Rn =
n∑

t=1
rt =

K∑
k=1

Tk (n)(µ?−µk ), (4.3)
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where Tk (n) =∑n
t=11[σ(t ) = k] represents how many times arm k was pulled up to time n.

Lai and Robbins (1985) proved that the regret grows at least logarithmically with the number

of plays and therefore, solving the multi-armed bandit problem consists in finding a policy to

select the next arm to pull, given past observations and to achieve a logarithmic regret.

The multi-armed bandit problem finds its application in various fields. Originally, it was

developed for medical trials, in which one wants to correctly identify the best treatment

(exploration), and treat patients as effectively as possible during the trial (exploitation). It

is currently used to efficiently select advertisement on the web, for which placing an ad

corresponds to pulling an arm, and the user’s click is the reward.

Upper Confidence Bound algorithm (UCB1)

One popular policy solving the multi-armed bandit problem is the upper confidence bound

algorithm proposed by Auer et al. (2002) and asymptotically achieves a logarithmic regret.

UCB1 is summarised by algorithm 1. The player knows how many times nk (s)he has already

played arm k and the total reward wk (s)he got from that arm. We call Xk = wk
nk

the empirical

expectation of arm k. At time t , the player pulls the arms that maximises:

Xk +
√

2ln t

nk
. (4.4)

After playing arm k, nk is incremented and wk is updated accordingly.

Equation 4.4 consists of two terms. The first one, Xk = wk
nk

, is the expectation of arm k and

corresponds to the exploitation part of the score: an arm yielding more rewards will have a

higher expectation. The second one,
√

2ln t
nk

, is the exploration term: a frequently visited arm

will have a lower exploration part (nk higher) while a less frequently visited arm will have a

larger exploration score. However, as t increases, the logarithmic term will be dominated by

the linear part (the denominator), and asymptotically, only the best arm(s) are pulled.

Algorithm 1 Upper Confidence Bound algorithm (Auer et al., 2002)

∀k, Xk ← 0,nk ← 0
for t = 1 to T do

Select arm kt = argmaxk Xk +
√

2ln t
nk

Observe reward wt from arm kt

Update Xkt and nkt

end for

Thompson Sampling

Thompson sampling was introduced by Thompson (1933) in order to address the exploration-

exploitation trade-off in a purely Bayesian manner. It was recently applied for the multi-armed
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bandit problem by Chapelle and Li (2011), and then proved to achieve a logarithmic regret

(Agrawal and Goyal, 2011). The idea of Thompson sampling is to assume a prior distribution

on the parameter θk of the distribution of each arm, and at each iteration t , to play the arm

according to its posterior probability of being optimal. At time t , the sampling selects the arm

maximising

E[Xk |θk ], (4.5)

where Xk = wk
nk

is the expectation of arm k, and θk is drawn from the posterior at each iteration.

Here, wk depends on θk . The workflow of Thompson sampling is described by algorithm 2.

Algorithm 2 Thompson sampling (Chapelle and Li, 2011)

1: D ←;
2: for t = 1 to T do
3: For each arm, draw θk ∼ P (θ|D) ∝ P (D|θ)P (θ)
4: Select arm kt = argmaxk E[Xk | θk ]
5: Observe reward wt from arm kt

6: D ← D ∪ (kt , wt )
7: end for

The use of Thompson sampling is motivated by the fact that it can explicitly embed a model of

the rewards with a long tail distribution as opposed to UCB1 which are constrained to be in

the full range [0,1].

In this setup, the exploration phase occurs in the beginning of the sequence when the posterior

distributions are not estimated with many observations, and as the number of observations

increases, the estimation of the posterior is better, and as for UCB1, only the best arm is pulled

asymptotically.

4.2.2 Monte Carlo Tree Search

Monte Carlo tree search (MCTS, Browne et al. 2012) is a method to find the optimal solution

in a given and potentially huge search space. MCTS balances between analysing promising

moves in the space (exploitation) and expanding the tree randomly (exploration). It has gained

a lot of interest in the artificial intelligence community in the last decade because of the huge

improvement it brought in the game of Computer Go.

MCTS has successfully been applied to games to make a computer play against a human.

Previous strategies such as αβ (Knuth and Moore, 1976) or A∗ (Klein and Manning, 2003) have

shown to be efficient against humans for the games of chess and checker, because they have a

low branching factor (the number of possible moves to make) and because it is quite easy to

evaluate the outcome of the game given the current state. But for games such as Go, computers

have long been unable to defeat non-professional players until MCTS was introduced. By

doing randomised simulations of the game and biasing simulations towards a successful end
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for the computer, MCTS is able to find the next best move to be made. Many works have been

done to formulate MCTS for games such as the ones by Coulom (2007), Kocsis and Szepesvári

(2006), or Chaslot et al. (2006) and computers (AlphaGo) are now able to defeat professional

players on the traditional board of Go (Silver et al., 2016). Other works have been focusing on

speeding up the exploration to get a better estimate of the best move to make (Bourki et al.,

2011) or incorporating expert knowledge (Chaslot et al., 2010).

MCTS has also been used in video games to simulate an intelligent behaviour against the

human in real-time. If for board games the computer (and also the human) have several

minutes to make a decision, video games are real-time and require making a decision within

a few seconds. MCTS is well suited for this purpose because it balances efficiently between

exploring the space of decisions and in the end avoids bad decisions. It was recently used in

the game Total War: Rome II (Champandard, 2014) whose purpose is to build a civilisation in

the Antiquity period, develop it and conquer other civilisations. When a human player plays

against the computer, the latter uses MCTS to make good decisions, allocate resources and

task efficiently in the civilisation.

Another example of successful use of MCTS is the optimisation of a “black-box” function

(Munos, 2014; Coquelin and Munos, 2007) where the goal is to get a good estimate of the

maximum of the function (deterministic or stochastic) by evaluating it only a limited number

of times. The idea is to design a sequence of input samples on which the function should be

evaluated given the previously observed values. More precisely, starting from the entire input

space, the method recursively partitions it in subspaces, in which the function is evaluated.

The space is split in a hierarchical manner, and MCTS determines in which subspace the

function should be evaluated next. As the process goes on, the procedure converges to the

subspace where the function is maximal.

In all these applications, the input space can be represented with a tree that serves as the

support for MCTS. To give more details on the basic run of MCTS, we use the case of a two-

player game, in which the machine tries to determine the most promising move to be made

against the human player.

For every move, one considers a tree whose root node corresponds to the current configuration

of the game, whose internal nodes correspond to possible future configurations, and whose

leaves are end-of-game configurations. Using this tree, the sampling procedure of MCTS (see

figure 4.5) recursively goes down the tree as follows: in every node, if some of the children

have never been visited, one is selected at random uniformly. If all children have been visited

at least once, the selection is framed as a multi-armed bandit problem (Auer et al. 2002 and

described in section 4.2.1) to optimally tackle the exploitation-exploration dilemma. When

a leaf is reached, that is a wining configuration for one of the two players, the reward is

backpropagated up to the root, and the statistics at each node regarding the number of times

it was visited and the fraction of winning outcomes are updated.

This sampling is repeated until a computational, or time budget is exhausted, at which point
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Tree policy

Expansion and reward

backpropagation

Figure 4.5 – One run of the traditional MCTS (reproduced from Browne et al. 2012)

the next move is made by selecting the best child of the root which is the one with the maximum

proportion of wins.

MCTS and bandit algorithms have nice theoretical properties, in particular, the guarantee that

they only expand the optimal part of the tree. Moreover the tree structure of MCTS allows to

deal with very large spaces leaving unexpanded unpromising parts of the domain.

As explained in detail in section 4.3, we propose to formulate the problem of mining hard

samples in a MCTS way. We associate an image to each leaf, and a positive reward if it contains

false positives. However, instead of using the MCTS to eventually select a good child at the

root node, we keep track of the “good” samples to retrain the classifier.

4.3 MCTS Bootstrapping

4.3.1 Image data set structure

As said in section 4.1.2, image data sets inherently have a hierarchical structure by the way

images were collected, and our procedure builds upon this structure (see figure 4.6).

In the top level, each child of the root corresponds to a specific image data set, such as

PASCAL (Everingham et al., 2015), COCO (Lin et al., 2014), or any image directory available on

one’s hard disk.

Further down the tree, nodes correspond to subsets of data sets, such as the year for PASCAL

(2007, 2008, etc.) or the name of the semantic object contained in the sub-directory for Flickr

(desert, animal, etc.). Finally, at the bottom of the tree, leaves are individual images.
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COCO Pascal flickr

sky animal desert

Figure 4.6 – Example of a structured image database. The structure can be explicit such as in
the Flickr data set (sky, animal, etc.) or implicit like in the PASCAL data set, where images can
be grouped either based on their names or after a pre-clustering of the images. Videos have a
temporal structure.

When an image data set comes with no explicit structure (such as Microsoft COCO or PASCAL),

a clustering can be applied to build subgroups of visually similar images, which corresponds

in practice to coarse semantic categories of similar structural complexity.

4.3.2 Procedure

We now explain in detail how MCTS Bootstrapping works to train an object detector. We

assume we have this very large structured database of object-free images.

After training the initial detector with the collection of positive samples and a collection of

negative samples uniformly taken in the data set, the detector is bootstrapped several times

by adding false detections.

We recall that in the traditional setting, the detector is applied on random images from the

data set until finding enough hard samples.

In MCTS Bootstrapping, the next image on which to apply the detector is chosen by traversing

the tree from the root in an MCTS fashion. A first multi-armed bandit problem selects the

data set from which the image will be chosen. Then a second multi-armed bandit selects from

which subpart of this data set, etc., until eventually reaching an image. The detector is applied

on it, the hard samples (if any) are kept (that is receiving a reward) and the outcome of the

play is eventually backpropagated up to the root by updating the various statistics of all the

nodes that were traversed. The image is marked as “exhausted” not to be selected anymore in

the future steps.

This process is then repeated to select another image, this time based on the new updated

statistics, until enough hard samples are found. As hard samples are found, the MCTS policy

progressively concentrates its sampling on more promising parts of the tree, hence data sets,

that is on subgroups of images which are rich in hard samples.

Statistics are reset to 0 before beginning a new bootstrapping phase because images that
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produced false positives in previous rounds may no longer be informative, and also because

the detector has changed after retraining.

4.3.3 Scores

As described in section 4.3.2, each node contains the number of wins that were obtained after

traversing it, and the number of times it was traversed. We propose to adapt these scores to

our scheme of MCTS Bootstrapping. We also recall that the rewards should be in the full range

[0,1] (Auer et al., 2002).

As the goal is to find false detections, the reward obtained after applying the detector should

be a function of the number of hard samples h in the image which was eventually selected.

The first score that we can define is

win =
1 if h > 0

0 otherwise.
(4.6)

This “win” score corresponds to the vanilla setup of the multi-armed bandit where the reward

is either 0 or 1 (“did the player win or not?”). The backpropagation rule to update the score of

node p with the scores of its children C(p) is

winp = ∑
c∈C(p)

winc . (4.7)

However, the score should reflect the size of an image, to leverage the fact that finding the

same amount of false detections in two images of different sizes does not require the same

(computational) cost. A natural score would be

d = h

S
, (4.8)

where S is the number of times the detector is evaluated in the image, which is proportional to

its size in pixels. d is thus the true density of false positives in the image.

Preliminary experiments show that the true density does not suit UCB1 policy because the

rewards are small. A detector can be evaluated ∼100,000 times on a 640×480 image so finding

10 hard samples leads to a reward of 0.0001. The exploration term of equation 4.4 dominates

the small exploitation score, as a result of which there is no exploitation.

We thus normalise this score so that it ranges in [0,1] and finally, we define the normalised

density

d̃ = min

{
1,

1

2Z

h

S

}
, (4.9)
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where Z is the mean of the density of hard samples that is estimated as the images are visited.

The min ensures that the score lies in [0,1]. Basically, when the density of hard samples is

around the mean, the reward is 0.5, and when an image is rich in false positives (i.e. h/S much

larger than Z ), the score is close to 1. The score is backpropagated the following way:

d̃p = ∑
c∈C(p)

d̃c . (4.10)

So each node i contains the number of times ni it was visited (0 or 1 for an image), the number

of wins wini (0 or 1 for an image), the number of hard samples hi found below that node,

and the number of times Si the detector was evaluated. In addition to that, a Boolean flag

indicates if there are still non-visited images below a node, thus avoiding going to “exhausted”

branches.

Given the various scores, we define three different policies for the multi-armed bandit: two of

them for UCB1 and one for Thompson sampling.

4.3.4 MCTS strategies

MCTS-UCB1-win (win) The first strategy is based on UCB1 (section 4.2.1) with the “win”

score. At a given node p, the next node to select among its children C(p) is the one maximising

winc

nc
+

√
2ln p

nc
. (4.11)

winc /nc is the average number of images in which at least one hard sample was found. This

score reflects the probability of finding at least one hard sample in an image and corresponds

to the simplest bandit scenario in which rewards are either 0 or 1.

MCTS-UCB1-dense (dense) The second one is based on the normalised density of hard

samples and the next child to be selected is the node maximising

d̃c

nc
+

√
2ln p

nc
, (4.12)

where d̃c is the normalised density of false positives as described in 4.3.3.

In both UCB1 policies, the exploration score
√

2ln p/nc simply reflects time, just as in vanilla

MCTS.

MCTS-Thompson-sampling (ts) For Thompson sampling (section 4.2.1) as described by

Chapelle and Li (2011), a model of the distribution of the observations is required as well as a
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prior on its parameter. As previously stated, Thompson sampling does not require the rewards

to lie in [0,1] so we here directly use the true density.

Some simple experiments (see histograms of figure 4.2) show that the distribution of the

density of false positives in images has an exponential shape. We thus model the true density di

of hard samples with an exponential distribution

p(D|λ) =λe−λx (with notations of algorithm 2, θ =λ). (4.13)

If we use the conjugate prior of the exponential distribution, that is the Gamma prior Γ(α,β),

then the posterior is also a Gamma distribution with parameter α′ =α+ni and β′ =β+di ,

with ni being the number of times node i was visited and di = hi /Si the true density of hard

samples.

So at a given node p with children C(p), the MCTS Bootstrapping based on Thompson sam-

pling selects the next child by:

1. Drawing λc from Γ(α+nc ,β+dc ),

2. Selecting argminc λc (the expectation of an exponential distribution of parameter λ is

1/λ, so argmaxc E[Xc |λc ] = argminc λc ).

We now compare these three strategies to the traditional uniform bootstrapping.

4.4 Experiments

We present the results of our experiments to train a face detector and a pedestrian detector

with a large data set of images. We show that our MCTS bootstrapping approach is able to

leverage the inherent hierarchical structure of the data set to efficiently find hard samples.

4.4.1 Detectors

We use the aggregated channel feature detector presented in section 2.2.3 which is one of the

state-of-the-art detectors for pedestrian detection (Nam et al., 2014) and face detection (Math-

ias et al., 2014; Yang et al., 2014). We used in part the implementation1 provided by the original

author.

The deformable part-based model of (Felzenszwalb et al., 2010b) also reaches state-of-the-

art performance for face detection (Mathias et al., 2014; Yan et al., 2014) and we used the

Fourier-based implementation2 of Dubout and Fleuret (2012).

1https://github.com/pdollar/toolbox
2https://www.idiap.ch/scientific-research/resources/exact-acceleration-of-linear-

object-detectors
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4.4.2 Image data sets with a tree structure

Caltech pedestrians

The pedestrian detector is trained on the Caltech pedestrian data set (Dollar et al., 2012) as de-

scribed by Nam et al. (2014) by using 24,498 positive examples and 3 rounds of bootstrapping,

each time adding 25,000 hard samples. The structure of the tree is straightforward because of

the temporal structure of the data set. The sequences (set00-V000, set00-V001, etc.) are at the

top of the tree while the images are arranged chronologically at the bottom of the tree.

Face-free images

The ACF (resp. DPM) face detector is trained with 15,000 (resp. 7,000) images of faces from

AFLW (see figure 2.13 as examples) and we use a collection of 102,230 background (face-free)

images. We have used 7,537 images from PASCAL and 24,685 from Microsoft COCO (Lin et al.,

2014). In addition to that, we have downloaded images from Flickr using keywords which a

priori are useful to train a face detector (animal, trees, etc.) or useless (sky, desert, landscape,

etc.). On average, we collected 3,000 images of these categories.

The structure of the tree is obvious for “keyword” images: images of desert, trees or animals

will each make a node (see figure 4.6). As for COCO and PASCAL, there is no inherited structure.

To make one, we perform a pre-clustering of these data sets: we make a 48×64 thumbnail

of each image, compute its features (gradient or GIST) and recursively perform a k-means

clustering.

Figure 4.7 shows a small scale example of a top-down k-mean based clustering of the COCO

data set. We see that a simple clustering such as this one is able to put similar images together:

planes over blue sky, pictures of courses (pizzas, plates, food), landscapes with a strong

horizontal line (sky on the top of the image, earth in the bottom), etc.

4.4.3 Results

MCTS Bootstrapping is faster than the traditional uniform approach because it is able to

concentrate its search for hard samples on promising parts of the data set.

We present our results by looking at the number of images required to find the targeted number

of hard samples. For the ACF detector, averaged computing times estimated on 40,000 images

give 0.047s for computing the features and 0.011s for evaluating the detector per image. The

Fourier-based DPM on 640×480 images requires 0.041s to compute the HOG features and 0.1s

to do the convolutions. We therefore use the number of images as a comparison criterion,

instead of the number of evaluations of the detector.

51



Chapter 4. Monte Carlo Tree Search Bootstrapping

Figure 4.7 – A subset of Microsoft COCO data set organised as a tree with gradient-based
top-down clustering. Similar images are put in the same branches. A MCTS-based approach
can then identify which branches are promising to find hard samples after having selected a
few images of the branches.
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Figure 4.8 – Number of images visited vs. bootstrapping iterations for a the ACF face detector
and a DPM face detector. Our methods using a Monte-Carlo tree search (blue and green)
focus on difficult images and visit roughly half the number of images the traditional approach
needs (red).

Reduction of the number of visited images

Our MCTS-based methods need roughly half as many images than the traditional uniform

approach, without hurting the performance of the resulting trained detector.

Table 4.1 presents the number of visited images required to train an ACF pedestrian detector

on the Caltech pedestrian data set, as well as the final performance of the trained detector.

Table 4.2 presents the same information in the case of an ACF face detector, and the cumulative

number of visited images is depicted on figure 4.8a.

Regarding the DPM face detector, figure 4.8b show the cumulative number of images needed

to train the root template and the parts of the model. Figure 4.9 presents the performance of

this detector evaluated on the AFW and PASCAL data sets, and figure 4.10 shows the evolution

of the performance as the training goes.

For both detectors (ACF and DPM) and for both types of object (face and pedestrians), MCTS

Bootstrapping reaches the same performance as the uniform baseline, and in all cases, they

require to parse half as many images as the baseline. MCTS is able to select images which are

richer in hard samples, and which are also as informative as the ones found by the uniform

approach.
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Nb images visited Miss rate @ fppi
Strategy Boot1 Boot2 Boot3 0.01 0.1 1
uniform 568 2143 13767 0.46 0.29 0.16
win 563 2132 8885 0.46 0.30 0.16
dense 536 1843 7683 0.49 0.31 0.17
ts 509 1874 8625 0.48 0.31 0.17

Table 4.1 – Number of images visited to train an ACF pedestrian detector with 3 bootstrapping
steps (Boot1, Boot2, and Boot3, averaged over 10 runs) . The (video) data set is Caltech
pedestrian and the temporal structure of the video was kept to build the tree. The performance
on the Caltech pedestrian test set is the miss rate at a given number of false positive per image
(fppi).

Nb images visited AP
Strategy Boot1 Boot2 Boot3 PASCAL AFW
uniform* 130 1609 10377 84.4 95.3
win 126 1213 7811 84.0 95.4
win-grad 135 1164 5083 83.0 95.4
win-gist 128 1015 4828 83.8 95.1
win-shuf 132 1516 10035 84.0 95.4
dense 117 1271 7955 84.0 95.2
dense-grad* 122 1100 6359 84.2 95.5
dense-gist 115 880 5376 84.0 95.2
dense-shuf 137 1528 9931 84.1 95.6
ts 107 1172 6627 84.1 95.3
ts-grad* 106 919 5515 84.0 95.4
ts-gist 97 886 5123 83.8 95.3
ts-shuf 139 1496 9969 84.4 95.6

Table 4.2 – Number of images visited (normalised to 640×480) for each strategy to train an ACF
face detector with 3 bootstrapping steps (Boot1, Boot2, and Boot3, averaged over 10 runs). The
face images come from the AFLW face data set, and we used the collection of 102,230 images
described in 4.4.2. The performance on PASCAL Faces and AFW is the average precision (AP),
that is the area under the curves of figure 4.9. The *s indicate which strategies are also depicted
in figure 4.8.
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Figure 4.9 – Performance of the DPM face detector. Our MCTS strategies (averaged over 4 runs)
lead to the same accuracy as the uniform approach. The black curve is the one of Mathias
et al. (2014) and is here to show that our implementation reaches state-of-the-art accuracy.
As explained in section 2.2.5, the AP score can be misleading because curves can cross one
another. The use case of the detector would be in [0.8,0.85] on figure 4.9b for which our
implementation leads to higher performances, although the overall AP score is lower.
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Figure 4.10 – Evolution of the average precision (AP) score as the relabelling steps are per-
formed. The MCTS strategies reaches top performance earlier than the uniform baseline.
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Figure 4.11 – These plots show how often the data sets are visited by the procedure during
the second bootstrapping step to collect 5,000 hard samples with the ACF face detector. The
uniform method selects a data set proportionally to the number of images in the set (to be
uniform over the entire data set) and requires more than 2,500 images to find enough false
positives. Our MCTS bootstrapping approaches identify the most promising data sets (COCO,
PASCAL, animals) while leaving “out” the less interesting (sky, fingerprints, etc.). Note that
“coco-plane” contains many images of plane/bird on blue sky (i.e. less dense in hard samples),
so within a (structured) data set, MCTS is also able to discard subbranches and visit it less
often.

Behaviour of the sampling

Figure 4.11 shows how often the data sets are visited over time when training an ACF face

detector. The uniform approach selects images uniformly in the whole data set, that is

proportionally to the number of images in each subsets. The PASCAL data set is more visited

because it contains 7,537 images while the other sets have around 3,000. Each data set is
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Figure 4.12 – Number of times a sequence is visited by the various strategies. One cross repre-
sents one video sequence of the Caltech pedestrian data set, and the lines are an extrapolation
for each method. All sequences are equally visited by the uniform approach whereas richer
sequences in hard samples are much more selected by the bandit based strategies.

visited linearly with time. Unsurprisingly the MCTS approaches identify data sets PASCAL,

COCO, animals or stairs are being rich in hard samples and visit them more often. Data sets

of sky, desert of fingerprints are quickly identified as being useless. The speedup is therefore

due to the identification of good branches of the data set. Figure 4.13 shows some examples

of images which are rarely visited or frequently visited. The images of figure 4.13a were in a

branch identified as non promising, as a result of which, they were only selected once. They

contain large uniform areas (skies, oceans, etc.), while the images of figure 4.13b were selected

20 times. These images exhibit patterns which are reminiscent of the object of interest (here

a face): flowers, animals, circular shapes. MCTS has properly identified the corresponding

branches as rich in hard samples.

When MCTS methods are applied on a pre-clustered data set (suffix “grad” and “gist” in

table 4.2) the speedup is even more than on non-clustered data set. This is due to the fact that

in COCO and PASCAL sets, the pre-clustering puts uninformative images in the same clusters,

such as planes over a blue sky or landscapes. MCTS thus identifies uninformative subbranches.

We did not use this pre-clustering step on the Caltech pedestrian data set because the temporal

structure is consistent in itself. As a sanity check, MCTS on a shuffled data-set (suffix “shuf”)

performs as poorly as the uniform approach.

Figure 4.12 shows how many times a sequence of the Caltech pedestrian set was selected as

a function of its average number of hard samples. On the graph, one point is a sequence.

Sequences with few hard samples (left part of x-axis) are less visited, while sequences with

more hard samples are visited more often (right part). MCTS methods have concentrated their

sampling on rich sequences hence the speedup.
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(a) Images rarely selected

(b) Images frequently selected

Figure 4.13 – Mined negative images to find hard samples to train a DPM face detector. The
images of figure 4.13b were revisited 20 times, while images of figure 4.13a were only revisited
once.

58



4.5. Discussion

4.5 Discussion

MCTS bootstrapping presented in this chapter has shown to be an effective strategy to identify

promising subgroups of images that are rich in hard samples required to train object detectors.

The image collection should first be organised in a consistent tree structure that serves as a

support for the Monte Carlo tree search. The images can either be grouped by key words (sky,

animals, landscape, etc.) or clustered directly from their thumbnails for fast computing. Since

similar images are equally rich in hard samples, the MCTS procedure is able to quickly identify

which part of the tree contains informative images, and which ones do not. MCTS therefore

eliminates subbranches of images without looking at all of them.

We can name several limitations of the method here. The first one is that the collection should

not contain the object of interest. However, this is the case for any procedure that requires

to bootstrap object detectors. This can be done either by using annotated images, or with

active learning, where the user would label a few images proposed by the learner. The second

one is that MCTS would not bring much speedup on a small collection of images, because

the learner would visit them all anyway to get the targeted number of hard samples; MCTS

would simply cause them to be visited in a different order. MCTS bootstrapping does not suit

sets whose images are homogeneously informative either. In this case, there would not be any

uninformative images to discard, and MCTS would be as good as the uniform approach.
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This chapter proposes a tree-based procedure inspired by the Monte Carlo tree search that

dynamically modulates an importance-based sampling to prioritise computation, while getting

unbiased estimates of weighted sums. This method is applied to learning on large training sets,

and to the evaluation of large-scale SVM. This chapter is based on the following publication:

Olivier Canévet, Cijo Jose, and François Fleuret. Importance sampling tree for

large-scale empirical expectation. In Proceedings of the International Conference

on Machine Learning (ICML), 2016
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Chapter 5. Importance Sampling Tree

5.1 Introduction

Most of machine learning algorithms require computing empirical expectations from the data,

either to estimate a loss, like in the case of neural networks or boosting, or to compute the

response of a predictor, like for support vector machines. And as usual in machine learning,

more data yields more accurate models, which is done by enriching the training sets with

artificial distortions (as we have presented in section 2.3).

An empirical expectation takes the form of a sum of a quantity evaluated on many data points,

and in practice most of these summed terms are negligible. In training, most of the samples

are far from the boundary between classes, and as a result, the classifier is confident about

their label. For boosting, it translates into a small boosting weight for these points, while for

neural networks, it results in a very small loss. For kernel support vector machines, at test time,

many terms of the sum are negligible because the prediction on a test point is only modulated

by its immediate neighbours in the training set. For instance, a Gaussian kernel for support

vector machine can produce very small kernel values between the test points and the support

vectors.

Figure 5.1 shows the cumulated training loss of a convolutional neural network after one

epoch on the MNIST data set. Half of the loss is carried by 700 samples out of 60,000, which is

1.2%. To make the chart, we computed the loss on the training samples, and sorted them.
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Figure 5.1 – Cumulated training loss of a convolutional neural network after one epoch on the
MNIST data set

Despite this observation, algorithms still rely on an exhaustive loop through the samples.

Some approaches have been developed to prioritise samples after they have already been

seen (Kalal et al., 2008; Fleuret and Geman, 2008), or in subsets sampled uniformly (Loosli

et al., 2007), but they do not use structures given a priori over the said samples, combining

it with statistical observations made over those already observed to reject groups without

looking at them.

Given the fact that some training samples are more important than others, we would like to
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efficiently exploit this observation to either accelerate training, or to improve it. This chapter

presents a new structure, called Importance Sampling Tree, which is a binary tree whose

branches contains training samples consistent with one another, and which samples leaves

(i.e. training points) by biasing towards more important points while providing a correcting

factor compensating for its sampling bias.

5.2 Related work

5.2.1 Careful selection of training samples

This section describes how it can be important to carefully select training samples, or how

their contribution should be modulated in order to improve the training phase.

In the case of boosting, the reservoir boosting introduced by Lefakis and Fleuret (2013) for a

memory constrained environment is an example of method which selects training samples.

The learner cannot use all the samples to choose the next weak learner but can only use a

subset called the reservoir. At each iteration, the reservoir is augmented with new random

samples, then reduced down to its original size which is finally used to choose the weak learner.

The authors proposed an efficient approach based on the projection of the samples in the

classifier space to retain the maximum amount of information of the entire set. In the end, the

predictor is learnt with a more representative set of samples of the full training set.

Regarding support vector machines, Bordes et al. (2005) proposed an online algorithm, LASVM

(described in more detail in section 6.2.2). By combining it with Active Selection, which

consists in training with samples close to the current boundary, they show that the training

time can be reduced, and that this results in more compact models with fewer support vectors,

while reaching equivalent or superior accuracy compared to standard algorithms. In this case,

the selection of training samples close to the boundary is the key element to achieve a better

training.

The following works analyse how the training samples can be modulated and re-weighted in

the learning process.

The works of Fleuret and Geman (2008) and Kalal et al. (2008) are concerned with subsampling

and boosting. Subsampling has usually been used when training predictors on very large data

sets, where batch learning is very difficult or even infeasible. These two works show that a

smart sampling, as opposed to a uniform sampling, has an impact on the performance of

the final classifier. In the boosting procedures proposed by Fleuret and Geman (2008) and

Kalal et al. (2008), training samples are selected to train a weak learner based on their boosting

weights. The classifier is presented with highly misclassified samples, with a high individual

weight, but also with representatives of populations of low weighted individual samples which

have a large cumulative weight. This procedure yields a better convergence of the learner.
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Recently, importance sampling has been studied in the context of stochastic gradient de-

scent (Zhao and Zhang, 2014; Needell et al., 2013). The traditional uniform selection of the

training samples always yields an unbiased estimate of the true gradient, but its variance

might be large. These works use importance sampling, which has been known to specifically

reduce the variance of the estimated quantity. The two works show that, under certain condi-

tions, importance sampling can improve the convergence rate of stochastic gradient descent

algorithms.

Following this line of research, the next section briefly presents what importance sampling is,

and how the variance of the estimators is reduced.

5.2.2 Monte Carlo estimation and Importance Sampling

The core idea of Monte Carlo methods is to reformulate the original problem into the esti-

mation of an expectation. The estimation is then performed by random sampling. Monte

Carlo methods were first used in the field of statistical physics to approximate the value of

intractable integrals. And in the previous chapter, we have used Monte Carlo tree search, in

which the exploration of the tree was done through simulation at each step.

This section introduces the basics of importance sampling and how it can improve the conver-

gence of Monte Carlo methods by reducing the variance of the estimators.

Monte Carlo methods are used when it comes to computing

µ=Ep [ f (X )] =
∫
D

f (x)p(x)d x, (5.1)

where f :D→R is a function, X ∼ p is a random variable on D, whose probability density

function p is zero outside D.

In the basic setting of Monte Carlo, µ is estimated by using the following “Crude Monte Carlo”

estimator,

µ̂MC = 1

N

N∑
n=1

f (Xn), (5.2)

where X1, . . . , XN are independent and identically distributed random variables from p. The

expectation of estimator µ̂MC is

E[µ̂MC ] =Ep [ f (X )] =µ, (5.3)

and its variance is

Vp [µ̂MC ] =Ep [µ̂2
MC ]−E[µ̂MC ]2 =

∫
D

f 2(x)p(x)d x −µ2. (5.4)

The idea of importance sampling is to introduce a new probability density q , with support Q
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such that q(x) 6= 0 when p(x) 6= 0, and rewrite

µ=Ep [ f (X )] =
∫
D

f (x)p(x)d x =
∫
D

f (x)p(x)

q(x)
q(x)d x =Eq

[
f (X )p(X )

q(X )

]
. (5.5)

The problem is reformulated as the estimation of the expectation of a new random variable

when X ∼ q . The estimation is performed using the following estimator:

µ̂I S = 1

N

N∑
n=1

f (Xn)p(Xn)

q(Xn)
. (5.6)

By construction, the expectation of µ̂I S is

E[µ̂I S] =µ, (5.7)

and its variance is

Vq [µ̂I S] =E[µ̂2
I S]−E[µ̂I S]2 =

∫
Q

f 2(x)p2(x)

q2(x)
q(x)d x −µ2

=
∫
D

f 2(x)p2(x)

q(x)
d x −µ2 (same support for simplicity) (5.8)

which can be rewritten as

Vq [µ̂I S] =
∫
D

f 2(x)p2(x)

q2(x)
q(x)d x −

[∫
D

f (x)p(x)d x

]2

(5.9)

By using the Cauchy-Schwarz inequality, we can look for a particular q to minimise the vari-

ance Vq [µ̂I S]. The Cauchy-Schwarz inequality states that for two integrable real functions φ

and ψ,[∫
φ(x)ψ(x)d x

]2

6
∫
φ2(x)d x

∫
ψ2(x)d x. (5.10)

Here, by using

φ(x) = f (x)p(x)√
q(x)

and ψ(x) =√
q(x), (5.11)

we have[∫
f (x)p(x)√

q(x)

√
q(x)d x

]2

6
∫

f 2(x)p2(x)

q(x)
d x

∫
q(x)d x︸ ︷︷ ︸
=1

. (5.12)

We therefore have

Vq [µ̂I S] =
∫

f 2(x)p2(x)

q(x)
d x −

[∫
f (x)p(x)d x

]2

> 0. (5.13)

65



Chapter 5. Importance Sampling Tree

According to the Cauchy-Schwarz inequality, the inequality becomes an equality when the

two functions are proportional. Here the variance can be made minimal (actually zero) if q is

proportional to f p. Using q proportional to f p might not always be possible, but this shows

that by choosing q “similar” to f p, the variance can be reduced, and importance sampling

will focus on the part of the domain where f p is large. In practice, q can be chosen so as to get

a smaller variance than the “Crude Monte Carlo” estimator: using equations 5.4 and 5.8,

Vp [µ̂MC ]−Vq [µ̂I S] =
∫
D

f 2(x)p(x)d x −
∫
D

f 2(x)p2(x)

q(x)
d x

=
∫
D

f 2(x)

(
1− p(x)

g (x)

)
p(x)d x (5.14)

Using q “similar” to f p as a probability distribution for the observations Xn means that we

would like to focus on regions of D where f p has high values. Importance sampling therefore

samples in regions of high values, and at the same time compensates for the induced bias

(equation 5.6).

5.2.3 Discrete sampling

In this section, we present various ways to sample according to a discrete distribution. Fig-

ure 5.2 aims at illustrating the methods, and figure 5.2a is an example of a non normalised

discrete distribution. Given a set of N positive weights w1, w2, . . . , wN , we are interested in

sampling according to the corresponding distribution, the density of which is

f (n) = w̃n = wn∑
m wm

. (5.15)

Inverse Transform Method (discrete version)

The first method that is taught at school to generate a random variable from a discrete distri-

bution is the inverse transform method. It consists of a preprocessing step which builds the

cumulative distribution (figure 5.2b). Then, the sampling method is divided into two stages:

the first one is to generate u ∈ [0,1] uniformly, and the second is to find which interval of the

cumulative it corresponds to, that is finding n such that

n−1∑
i=1

w̃i 6 u 6
n∑

i=1
w̃i . (5.16)

Building the cumulative distribution is O(n) and finding the interval u falls into can be O(n)

in a naive version, or O(logn) if the search is done with a tree.
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Figure 5.2 – Various ways to sample according to a discrete distribution

Alias Method

The alias method was introduced by Walker (1974) and is based on the fact that all discrete

distributions can be expressed as a mixture of two-point distributions. As a preprocessing step

(figure 5.2c), the distribution is rearranged in N buckets of size 1/N (W /N when the weights

are not normalised as on the figure), each bucket being made of two weights. In practice, to

rearrange the distribution, one can use two stacks, one containing weights smaller than 1/N ,

and the other containing weights greater than 1/N . Building one bucket consist in picking

one weight smaller than 1/N and “filling the rest” of the bucket with a part of a weight larger

than 1/N . This preprocessing time can be done in O(N ).

The sampling procedure is now very simple. First, one selects uniformly a bucket (i.e. generate

a number in J1, NK) and second, considering this bucket (made of two weights), one generates

a number in [0,1/N ] to sample one of them. The sampling procedure is therefore made in

O(1).

Roulette Wheel Selection

The third sampling method that we describe is known as the roulette wheel selection. The

underlying structure is a binary tree which carries at its leaves a weight wn , and its internal

nodes carries the sum of the weights below (see figure 5.2d). Sampling now consists in

recursively going down the tree by “choosing left or right” with the corresponding probability:
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wn ∈R+ Positive weights we want to approximate through sampling
N Number of weights
N A random variable on J1, NK

T ,L⊂ T Nodes and leaves of our sample tree
D The depth of the tree

c0(x),c1(x) Children of node x

U
Minimum number of observations we impose before biasing
the θx

L(x) ⊂L Set of leaves of the sub-tree whose root is x
n(x) ∈ J1, . . . , NK Index of the weight at leaf x

Θ= (θx )x∈T \L
Probabilities to chose the right sub-tree at each node during
sampling

µΘ(n; x)
Probability to reach leaf n given that the sampling passes
through node x

w(x) =∑
y∈L(x) wn(y) Sum of the weights of the leaves in the sub-tree whose root is x

ν(x) Number of times the sampling has been through node x
s(x) Sum of the individual estimates of w(x)

ŵx = s(x)/ν(x) Estimate of w(x)
S(x) Statistics accumulated at node x

Table 5.1 – Notations

at an internal node whose left (resp. right) child carries wl (resp. wr ), one selects the left one

with probability wl /(wl +wr ) and the right one with probability wr /(wl +wr ). The tree can

be constructed in O(N ) and the sampling is in O(log N ).

The roulette wheel selection has an advantage over the two previous methods in the case of

changing distributions, that is when one or more wn change. In such a case, if one weight

changes, the tree can be updated by setting the new value at the corresponding leaf and by

updating all the intermediate internal nodes between that leaf and the root, which result in

a O(log N ) complexity. Whereas in the two previous cases, updating the distribution would

require to recompute the cumulative distribution for the inverse transform method, and to

recompute the buckets for the alias method, which in both case is O(N ).

The underlying structure of IST is this binary tree, which will be used to select the training

samples according to their weights (i.e. their importance), but also to get an unbiased estimate

of the total weight below an internal node.

5.3 Importance Sampling Tree

This section presents our Importance Sampling Tree (IST). As we have shown in section 5.2.1,

focusing on important samples (defined as having a high gradient norm for instance), allows

to improve the learning of a predictor. IST is in the same line of research and is designed to

focus on high weight samples. Table 5.1 summarises the notations used in the sequel.
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5.3.1 Weighted sums for prediction

Our motivation comes from the observation that many important data-driven quantities in

machine learning can be expressed by a weighted sum

N∑
n=1

wn f (n), (5.17)

where wn ∈R+, n = 1, . . . , N are positive weights, and f : J1, NK→RD a function. And in many

cases, N is too large to allow an exhaustive visit of all the weights.

As an example of such quantities, we can name:

• The edge of a weak-learner in AdaBoost∑
n

exp(−ynψ(xn))︸ ︷︷ ︸
wn

ynh(xn)︸ ︷︷ ︸
f (n)

(5.18)

• The gradient for training a neural network

∑
n
∇αl (ψ(xn ;α), yn) =∑

n
‖∇αl (ψ(xn ;α), yn)‖︸ ︷︷ ︸

wn

∇αl (ψ(xn ;α), yn)

‖∇αl (ψ(xn ;α), yn)‖︸ ︷︷ ︸
f (n)

(5.19)

• The evaluation of a SVM in its dual form∑
n
αn ynK (xn , x) =∑

n
αnK (xn , x)︸ ︷︷ ︸

wn

yn︸︷︷︸
f (n)

. (5.20)

In these examples, a weight can be interpreted as the “importance” of a sample, and in many

practical situations, the vast majority of them are negligible (see figure 5.1). We aim at devising

an approach – relying on a prior tree structure on the weights – that first, balances computation

proportionally to the weights themselves, and second, does so by looking at a fraction of the

full family of weights, opening the way to extremely large samples sets.

5.3.2 Monte Carlo estimation of a weighted sum

Given an arbitrary distribution µ on J1, NK which puts non-zero probabilities on all the values,

and as we have shown earlier, equation (5.17) can be rewritten as

∑
n
µ(n)

wn

µ(n)
f (n) =EN∼µ

[
wN

µ(N)
f (N)

]
(5.21)
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which we can approximate by generating N1, . . . ,NK independent, identically distributed

following µ, and using the following estimator

m̂ = Ên∼µ
[

wn

µ(n)
f (n)

]
= 1

K

K∑
k=1

wNk

µ(Nk )
f (Nk ). (5.22)

Similarly to what we derived in section 5.2.2, we can show that the expectation of the estimator

is

E[m̂] =
N∑

n=1
wn f (n), (5.23)

its variance is

V[m̂] = 1

K

(
N∑

n=1

w2
n f 2(n)

µ(n)
−

(
N∑

n=1
wn f (n)

)2)
(5.24)

and that it can be made minimal when

µ(n) = wn | f (n)|∑N
k=1 wk | f (k)| (5.25)

In our case, the most natural choice for µ to estimate the quantities (5.18), (5.19), and (5.20),

would be to use

µ(n) = wn∑
k wk

, (| f (n)| = 1 in all cases here) (5.26)

in which case we would have our desired property of investing the computation proportionally

to the weights, and minimize optimally the variance of our estimator.

This choice makes sense if computing
∑

k wk is tractable, or so cheap to compute compared to

the computation of the f (n)s that it still provides a substantial gain. However, we are interested

in situations where not only wn is more expensive to compute than f (n), but we also aim at

scaling N up to values far greater than the number of CPU operations we have at our disposal.

5.3.3 Importance Sampling Tree

We propose a novel structure called Importance Sampling Tree (IST), which is a binary tree

carrying the weights w1, . . . , wN at its leaves, and having at each internal node statistics about

the weights in the leaves below it. Given such a tree, we use a recursive sampling procedure that

results in a sampling of the leaves (in the spirit of the Roulette Wheel Selection of section 5.2.3),

and – in a manner similar to the MCTS – we update the estimates at the nodes every time a

sampling is done, and modulate the sampling policy accordingly.

Let T be the set of tree nodes, x∗ ∈ T the root node, L⊂ T the leaves. Since the leaves carry

70



5.3. Importance Sampling Tree

the weights w1, . . . , wN , for any leaf x ∈ L, let n(x) ∈ J1, NK be the index of the weight there.

Note that we will often make a confusion between x ∈L and n(x), identifying a leaf with its

index.

For any internal node x ∈ T \L, let c0(x),c1(x) ∈ T be its two child nodes. Finally let L(x) be

the leaves of the sub-tree starting at x and w(x) the sum of their weights. Hence, in particular

∀ x ∈L, w(x) = wn(x) and L(x) = {x}.

Figure 5.3 sketches the structure of the tree below node x with the notations introduced above.

x

c0(x) c1(x)

L(x)

Figure 5.3 – Definition of the children and the leaves of node x

Given a family of “bifurcation probabilities”

Θ= (θx )x∈T \L ∈]0,1[‖T \L‖, (5.27)

that is for each node the probability to “go down on the right”, we can derive for each node x

and each leaf n a probability µΘ(n; x) to reach the leaf n if we start from x and follow the θs at

each node we meet. This probability is the product of the probabilities of the bifurcations to

go from x to n. Given a leaf n, the µΘ(n; x) for all the parents x of n can be computed in O(D),

where D is the depth of the tree.

Adaptive sampling

We could use many different policies to modulate the θx and bias the sampling according to

what we have observed. We propose two strategies, both based on accumulating statistics S(x)

at every node about the weights observed during the previous sampling:

Using empirical weights — Here, the statistics we keep are S(x) = (s(x),ν(x)) where s(x) is the

sum of the weight estimates wn/µΘ(n; x), and ν(x) is the number of times the sampling went

through x. We make a small notation abuse, because wn is the weight observed at the time the

tree was traversed, and µΘ(n; x) is the probability at this time. These quantities are constantly

changing, and are also different between all nodes, including the leaves. For ν(x) > 0,

ŵ(x) = s(x)

ν(x)
(5.28)
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is an unbiased estimator of w(x). We set θx to the ratio of the number of leaves in the child

sub-trees if we do not have enough sampling for proper estimations, and to the ratio of the

estimations of the weights otherwise. Formally with U a meta-parameter setting the minimum

number of observations we request for biasing:

θx =


‖L(c1(x))‖

‖L(c0(x))‖+‖L(c1(x))‖
if ν(c0(x)) <U

or ν(c1(x)) <U ,

ŵ(c1(x))

ŵ(c0(x))+ ŵ(c1(x))
otherwise.

(5.29)

Using weight intervals — In this case, S(x) = (l (x),u(x)), corresponding to lower and upper

bounds on w(x), which are updated and getting tighter after every sampling.

We define Φ(x), a function of the upper bound u(x) and lower bound l (x) at node x, to reflect

the importance of a node, and we set θx to be

θx = Φ(c1(x))

Φ(c0(x))+Φ(c1(x))
(5.30)

This second strategy can be interesting when we have some information a priori on the weights.

This is the case in particular for support vector machines, because the kernel values can be

bounded. In the experiments of section 5.4.3, we compare several definitions of Φ.

Hence, if we need T samples, for t = J1,T K:

1. Recursively sample a path down the tree to a leaf nt , according to µΘt ( . ; x∗).

2. For every node x visited on that path compute S t+1(x) and θt+1
x according to equation

(5.29) or (5.30) depending on the application. All other nodes remain unchanged.

Then, following section 5.3.2, we can use

N∑
n=1

wn f (n) ' 1

T

T∑
t=1

wnt

µΘt (nt ; x∗)
f (nt ). (5.31)

Note that the Θt s in that expression – and the resulting µs – are the ones that were in the

tree when each sampling was done. Also, note that the update of S and Θ can be delayed,

suppressed, or done in an arbitrary order if implementation constraints impose it.

The following figures illustrate in a very simple case the various computations and updates of

the statistics accumulated at the nodes. We consider the case when IST uses empirical weights

as importance weights (equation 5.29).
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n0

n123

n12

n1 n2

n3

n456

n4 n56

n5 n6

In this example, the tree has 6 leaves (from 1 to 6). We

name the internal nodes by concatenating the indices

of the leaves below (i.e. the parent of n5 and n6 is n56 ),

and we call n0 the root. As described before, each node x

maintains statistics (s(x),ν(x)), where s(x) is the sum the

weight estimates below, and ν(x) is the number of times

the sampling went through x.

(0,0)

(0,0)

(0,0)

(0,0) (0,0)

θ2

θ12

(0,0)

θ123

(0,0)

(0,0) (0,0)

(0,0) (0,0)

Initially, all statistics are set to zero, and as not enough

observations have been made yet (ν(x) <U for all nodes,

equation 5.29), the sampling is uniform over the number

of leaves. Here θ123 = 3/6 because there are 3 leaves be-

low n123 and 6 leaves below the root. Similarly, θ12 = 2/3,

and θ2 = 1/2.

(6w,1)

(3w,1)

(2w,1)

(0,0) (w,1)

(0,0)

(0,0)

(0,0) (0,0)

(0,0) (0,0)

Leaf n2 was sampled, that is we select training sample n2

to train the classifier. We suppose that the weight of

sample n2 is w (a boosting weight, a gradient norm, etc.).

The training sample is modulated by w/θ123θ12θ2 in the

sum of equation 5.31. And finally, the IST is updated by

recursively backpropagating the observation. We have:

• s12 = w
θ2

= 2w

• s123 = w
θ2

1
θ12

= 3w

• s0 = w
θ2θ12

1
θ123

= 6w

We also increment the number of visits, namely ν2, ν12,

ν123, and ν0. At the root, an unbiased estimate of the

total weight below is 6w/1 = 6w , which is as if all the

leaves carried the same weight. This is the best estima-

tion given the single observation made so far.

We now suppose that the sampling reached a point where all nodes have been visited at least

U times, that is ν(x) >U for all nodes. Note that at a given iteration, the sampling policy can

be biased in the top levels of the tree (where nodes are such that ν(x) >U ), and uniform in the

bottom when there are not enough observations. Here, for the sake of simplicity, we assume

that all nodes have at least U visits, which in particular implies that the tree was sampled at

least 6U times.
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(s0,ν0)

(s123,ν123)

(s12,ν12)

(s1,ν1) (s2,ν2)

θ2

θ12

(s3,ν3)

θ123

(s456,ν456)

(s4,ν4) (s56,ν56)

(s5,ν5) (s6,ν6)

Starting from the root, the IST policy uses the weight

estimates to bias the sampling. Here, we have

• θ123 = s123/ν123
s123/ν123+s456/ν456

• θ12 = s12/ν12
s12/ν12+s3/ν3

• θ2 = s2/ν2
s1/ν1+s2/ν2

We recall that sn/νn is an unbiased estimate of the total

weight below node n. At a node, the probability to “go

right” is the ratio between the right weight estimate and

the sum of the weight estimates of both children.

(s?0 ,ν?0 )

(s?123,ν?123)

(s?12,ν?12)

(s1,ν1) (s?2 ,ν?2 )

(s3,ν3)

(s456,ν456)

(s4,ν4) (s56,ν56)

(s5,ν5) (s6,ν6)

Node n2 was sampled and we call the observed

weight wt . We denote with a ? the statistics that are

changed at this iteration, namely

• s?2 = s2 +wt

• s?12 = s12 + wt
θ2

• s?123 = s123 + wt
θ2

1
θ12

• s?0 = s0 + wt
θ2θ12

1
θ123

And as before, the number of visits are simply incre-

mented (ν?2 = ν2 +1, etc.).

Building the tree

When using the roulette wheel selection (where the weights are known and fixed), the leaves

need not be organised in a particular way. One leaf with a large weight and one with a small

weight can share the same parent in the tree. The accumulated statistics in the tree accounts

for this discrepancy, and will in the end, properly allow to sample from the distribution made

of the weights.

In our case, the weights are zero initially because no observation has been made, and as we

sample the tree and train the classifier, the weights of the leaves are progressively observed.

With a view to reducing the variance of our estimations even more, we organise the leaves in a

particular way. In practice, we observe that similar samples behave the same way in regard of

the classifier, when the latter is not to noisy: the neighbour of a high loss sample will also have

a high loss, the neighbour of a highly negative sample will also be negative.
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Therefore, we want to organise the tree by putting similar samples in the same branches. In the

end, we want the tree to reflect the statistical regularities of the training samples through the

classifier. When such a tree is sampled and updated with weights, the accumulated statistics

at an internal node should have a lower variance, and the sampling should be biased towards

“good” branches (with high weights).

In our experiments, all the data sets are related to the Euclidean metric. IST is therefore simply

built by recursively applying a top-down 2-means clustering, until reaching a cluster of two

samples: we first cluster the whole training set in two clusters, which gives the two children of

the root; then each of these two clusters are themselves clustered in two, etc. The deeper the

clustering, the more similar the samples.

5.4 Experiments

5.4.1 Adaboost on a 2D synthetic problem

To get a first idea of the behavior of the IST in practice, we use AdaBoost on a simple synthetic

problem. This algorithm is a very good candidate since the exponential loss is known to induce

strongly unbalanced sample weights. Our objective is to assess if the IST is able to focus the

sampling efficiently enough to cope with the divergence of the loss that is classically observed

in validation.

The synthetic task is a classification problem where the signal X is uniform in the unit square

[0,1]2 and the class Y is +1 in a disc centered in that square and −1 elsewhere. The total

sample set we consider contains 81922 points located on a regular grid in the unit square. The

binary tree structure we use for the IST (as described in section 5.3.3) recursively splits the x

and the y axes, and has a depth of 27, corresponding to 13 splits in each directions and one

level for the leaves (this can be viewed as a deterministic 2-means clustering that we described

in section 5.3.3).

We consider a standard AdaBoost based on the exponential loss as in equation (5.18), and

linear stumps. Each stump is trained by sampling uniformly 100 directions in the 2D plan, and

optimising exactly its bias, and its weight in the strong predictor.

We test in our experiments three algorithms:

Boost is the baseline. It samples 1,000 samples uniformly initially, and uses them as a standard

training set for all the stumps.

Boost-U re-samples uniformly 1,000 new training samples for each stump.

Boost-IST samples 1,000 training samples with the IST for each stump, and updates the

IST with their AdaBoost weights. The same tree is used for all the stumps, and not

reinitialised for each of them.
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(a) Boost (b) Boost-U

(c) Boost-IST (d) IST sampling intensity

Figure 5.4 – Adaboost on a synthetic 2D problem. Images (a), (b), and (c) depict respectively
the prediction obtained with Boost, Boost-U and Boost-IST. Picture (d) shows the sampling
intensity with Boost-IST, that is the frequency of position sampled by IST. IST has properly
concentrated on the area of interest.
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Figure 5.5 – Training and validation losses of AdaBoost on a synthetic 2D problem. The
exponential loss behaves pathologically on samples at the frontier which have not been seen
during the stump optimization, which impacts both Boost and Boost-U variants, and leads to
a diverging training for the latter.
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For all variants, we also sample 1,000 samples uniformly initially as a validation set. The results

are illustrated in figure 5.4. Here, losses correspond to estimates on the total sample set of 226

samples, hence the initial value of ' 6.7e7.

The Boost baseline converges in training and leads to a very sharp and clean prediction

decision, albeit only roughly approximating the proper domain, which leads to a diverging

validation loss, as the validation samples near the boundary may be misclassified by the

predictor, with an “increasingly wrong” prediction when the learning progresses. The Boost-U

re-sampling strongly suffers from the same problem, as each re-sampled set contains points

strongly misclassified by the current strong learner, which induce very strong sample weights

and correspondingly a choice of stumps that gets more and more inconsistent while the

process goes on. This results in diverging training and validation losses, and a pathological

final strong predictor. The Boost-IST based approach focuses on the boundary population,

and by sampling more and more intensively there, it does not diverge and leads to a more

accurate decision rule. Remarkably, the validation loss is very well reflected by the training

one, even if the former is estimated on a fixed sample set and the latter on one re-sampled at

every iteration.

5.4.2 Neural Networks

We assess experimentally in this section how IST can be used to improve the gradient descent

procedure to train an artificial neural network.

Multi-layer Neural Network on a 2D synthetic problem

As for the boosting example of the previous section, we consider a 2D synthetic problem,

depicted as figure 5.6(a), where the frontier between the two classes is an oscillation of variable

frequency. This problem exhibits the difficulty of many real-world data sets in which the core

issue is to capture fine details of the boundary.

We train a neural network with two units as input standing for the coordinate in the [0,1]2

domain, two fully connected hidden layers with 40 units each, and one output unit. The

transfer function is the hyperbolic tangent, and the weights are initialized layer after layer so

that the response of every unit before non-linearity is centred, of standard deviation 0.5. We

use the quadratic loss for training, and a pure stochastic gradient descent, one sample at a

time. Every 1,000 gradient steps, we compute a validation loss and adapt the step size.

As before, the IST structure recursively splits the [0,1]2 domain in x and y . We compare three

strategies:

ANN is the baseline, using uniform sampling in the plane,

ANN-IST samples with IST using the gradient norm as importance function, following equa-
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(a) Real class (b) ANN

(c) ANN-IST (d) IST sampling intensity

Figure 5.6 – A multi-layer neural network on a synthetic 2D problem. Image (a) is the binary
labelling to learn, (b) is the prediction of the baseline ANN, (c) is the prediction of ANN-IST,
and (d) is the sampling density during training with ANN-IST.

tion (5.19) and the same tree structure we use for boosting in section 5.4.1.

ANN-IST-L is the same but uses the loss per sample instead of the gradient norm as the

importance function.

We benchmark the three methods through ten train/test runs, with 3 millions gradient

steps, and obtain a test error of 2.64%(±0.29%) for ANN, 0.62%(±0.14%) for ANN-IST, and

1.58%(±0.60%) for ANN-IST-L. The losses are consistent with the error rates in all the runs. As

shown on figure 5.6, the greater performance of ANN-IST is explained by its ability to capture

the thin structure on the left. This behavior is extremely consistent through the runs, and

ANN-IST always ranks first, ANN-IST-L second, and ANN third.

Deep Convolution Network

In the second set of experiments, we use a convolutional neural network, which consists of

several spatial convolutional layers alternating with pooling layers, and fully connected layers
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at the end. For the implementation, we use Torch1 (Collobert et al., 2011), which is a scientific

library for luajit containing many implementations of machine learning algorithms, especially

convolutional neural networks (CNN).

CNN are trained in an online fashion: at each iteration, a mini batch of a few samples is made

(usually 32, 64, or 128 samples), and stochastic gradient descent is applied to update the model

parameters. The gradient is computed with equation 5.19.

In Torch, it is not easy to access the gradient of individual samples at each layers, as we

previously did in the synthetic example. Therefore, we use the loss as a proxy for the gradient

norm: the IST leaves carry the losses observed as the training goes, instead of the gradient

norms.

As a sanity check, we first analyse whether selecting the training samples according to their

loss is a more effective strategy than the uniform selection. We perform this experiment on

the original MNIST data set and compare three strategies:

Uniform is the baseline. The mini batch is populated with samples uniformly taken without

replacement from the training set.

True loss is the sanity check using the ideal weight of section 5.3.2. Every 6,000 mini batch,

the individual losses of the training samples are computed, and the tree leaves are

updated. Leaf weights are not updated in between. Samples are thus sampled with the

following probability:

l (ψ(xn ;α), yn)∑
m l (ψ(xm ;α), ym)

. (5.32)

For the IST experiment (last strategy), we have observed that applying the vanilla IST as

described in section 5.3.3 can sometimes be unstable and degenerate. This might be due to

bad early estimations, causing IST to over sample a small non representative population of

samples. To annihilate this side effect, we introduce a probability ε with which a sample is

selected uniformly from the training set. ε= 0 is the vanilla IST (which sometimes degenerates).

The last strategy is therefore:

IST populates the mini batch by selecting a sample uniformly with probability ε, or according

to IST with probability 1−ε. The tree weights of the selected samples are updated after

each gradient step. We use ε= 0.5. So on average, half of the samples of a mini batch are

selected uniformly, and the other half with IST.

The three strategies are benchmarked over 8 runs and we analyse the evolution of the training

loss (figure 5.7a) and the test accuracy (figure 5.7b). For the baseline, the training loss decreases

1https://github.com/torch/
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4 1 8 4 5 3 4 3
Nb sampled 3719 1479 1268 1264 1220 1132 1064 1030

(a) (b) (c) (d) (e) (f) (g) (h)

Table 5.2 – Top eight images that have been sampled many times over 25 epochs by the IST
method. The true label of the digits is indicated at the bottom right of the images, that is the
label used during training. The number of times the digits were sampled by IST. The uniform
without replacement would have selected them 25 times only (1 time per epoch). IST has
focused on problematic samples such as wrongly annotated digits (digit (a) and (f)), rotated
digits (digit (h)), and gribbles (digit (c) and (e)).
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Figure 5.7 – A CNN on the MNIST data set. The training loss is reduced much faster by sampling
the points according to their loss. Computing the true loss every 6,000 batch is costly but
serves as a sanity check to show that the loss is a good proxy for the importance of a point.

as more epochs are performed, and the test accuracy increases and reaches 99.01% after 8

epochs. When the samples are selected according to their loss weight and their gradient

rescaled by their probability of being sampled, the training loss decreases much faster, and

the test accuracy reaches 99.03% after only 3 epochs. This experiment is of course very costly

because it requires to compute the true loss of individual samples every 6,000 mini batches,

but demonstrates that selecting the samples proportionally to their loss is an efficient way of

finding informative samples.

Table 5.2 shows the samples which are more selected by IST. The uniform baseline would have

selected these samples 1 time per epoch (25 epochs in total), but IST has selected them more

than 1,000 times. We see that IST concentrates on problematic samples, such as labelling

errors, rotated samples, and gribbles.

We now evaluate the IST method on a larger data set. We use the InfiMNIST set presented
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Figure 5.8 – Image tree of distortions. The original images are first split by classes at the top,
then recursively clustered using a 2-means algorithm, and finally, the tree of original images is
extended at the bottom, with the corresponding distortions.
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Figure 5.9 – A CNN on the InfiMNIST data set. IST decreases the validation loss faster and yields
a better test accuracy. The curve on the original MNIST has been reproduced for comparison
purposes: the black dashed line is the same as the red one of figure 5.7b.

in section 2.3 with 134 distortions per original digit, yielding 8.1 million samples. To avoid

performing the clustering on 8.1 million samples, we only cluster the original samples, by

first grouping the samples by class and then by applying the recursive 2-means algorithm as

described in section 5.3.3. Once the tree is built on the original samples, it is extended at the

bottom by adding the distortions of the corresponding images (see figure 5.8).

To evaluate the training process, we use a “validation” set consisting of the original MNIST

images as well as their first 4 distortions. We compute the loss of the classifier on these

samples at regular intervals, as well as the test accuracy. Figure 5.9 shows that IST reduces the

validation loss faster than the uniform approach (figure 5.9a) yielding a better test accuracy

faster (figure 5.9b).
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5.4.3 Non-linear SVM Prediction

The prediction cost of non-linear SVM grows linearly with the number of support vectors which

in turn grows linearly with the number of training points (Steinwart and Christmann, 2008).

Thus prediction using non-linear SVM trained on large data set is prohibitively expensive. As

noted earlier, for non-linear SVM such as with a Gaussian kernel, the support vectors which

are far way from the test point contribute very little to the decision function. The goal of this

section is to exploit this fact to do very fast prediction of Gaussian SVM with IST.

Building the tree

The tree structure used in this case is done as described in section 5.3.3: we perform a top-

down 2-means clustering of the support vectors based on the Euclidean distance. The resulting

tree is binary; its leaves are the individual support vectors. In addition to the default clustering,

internal nodes carry the centroid corresponding to the clusters made of all the support vectors

below, and the radius of the cluster (that is the largest distance between the centroid and the

points in that cluster, which is 0 at a leaf).

The simple k-means procedure is relevant in this context because the Euclidean distance

explicitly appears in the contribution of a support vector xn in the decision score of a test

sample x, that is

αn yne−γ||x−xn ||2 , (5.33)

where γ is the kernel bandwidth set during training. Our objective is to estimate the predictor

response on a test sample without computing the full inner products between the test samples

and the support vectors.

The main idea here is to use a weighted sampling based on the bounds we have on the total

weights of the support vectors below each node. Using the triangle inequality, we can derive a

bound on the weights below that node: given a test sample z, the centroid ω of a cluster of

radius ρ, we have

e−γ
(
||z−ω||+ρ

)2︸ ︷︷ ︸
βl

≤ K (zn , z) ≤ e−γ
∣∣||z−ω||−ρ∣∣2

+︸ ︷︷ ︸
βu

, (5.34)

and since we consider the αn positive (the sign is carried by f (n) = yn equation 5.20)

βl

∑
n
αn︸ ︷︷ ︸

Lower bound l (x) due to
cluster of centroid ω

≤∑
n
αnK (zn , z) ≤ βu

∑
n
αn︸ ︷︷ ︸

Upper bound u(x)

(5.35)

The tree is traversed using policy of equation (5.30). At each node, the bounds of both children

are queried and the sampling goes on until reaching a leaf. Querying a bound requires the
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computation of one inner product with the corresponding centroid (i.e. ||z −ω||), but only

once as the computation can be reused later. At a leaf, we have the true value αnK (zn , z) of

the weight. The bounds from the leaf up to the root can now be updated according to the true

weight: the upper (resp. lower) bound u(x) (resp. l (x)) will now be u(c0(x))+u(c1(x)) (resp.

l (c0(x))+ l (c1(x))). The bounds are thus tighter and in future iteration, the sampling will be

based on better bounds. Asymptotically, the sampling is performed on exact bounds, that

is on the sum of the weights below. In the case of Gaussian kernel, some upper bounds are

drastically reduced after a few samplings which cause many parts of the branches not to be

sampled again.

While this policy requires to compute inner products with the centroids as well as with the true

support vectors in the leaves, the products can be cached once computed and re-accessed

when required, without further computation. The true number of inner products for N

support vectors of dimension M is O(N M) whereas for IST, when sampling T times, the

number of inner products is at most O(T M log2 N ). log2 N is the depth of the tree (the number

of centroids visited when performing one sampling). This is an upper bound since many

computation can be reused.

Defining the probability of bifurcation

We investigate three strategies to define θx (i.e. the probability to “go down on the right”, or to

select child c1(x)). To simplify notations, we call u0 (resp. l0) the upper (resp. lower) bound of

child 0 of node x (i.e. u0 = u(c0(x))).

Mean bound (mean) We define the score of a node to be the mean of the upper and lower

bounds.

Φ(x) = u(x)+ l (x)

2
so θx = l1 +u1

l0 +u0 + l1 +u1
(5.36)

Max bound (max) We simply use the upper bound to bias the sampling.

Φ(x) = u(x) so θx = u1

u0 +u1
(5.37)

Close bound (close) We call Ov (x) the indicator function of the overlap between the bound

interval of both children of node x:

Ov (x) =1min[u0(x),u1(x)]>max[l0(cx),l1(x)] (5.38)

At node x, the probability θx to select child 1 is defined by

θx =


0.5 if Ov (x) = 1

l1
u0+l1

if Ov (x) = 0 and u0(x) < l1(x)
u1

l0+u1
if Ov (x) = 0 and u0(x)> l1(x)

(5.39)
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The close bound is illustrated on figure 5.10. This strategy is less aggressive than the

other two because as long as the bounds of both children overlap, the sampling is

uniform. And when they no longer overlap, the bounds used to compute Φ are the

closest to each other.

l0

u0

l1

u1

l0

u0
l1

u1

l0

u0

l1

u1

θx = 0.5 θx = l1
u0+l1

θx = u1
l0+u1

Figure 5.10 – Illustration of the close policy

SVM experiment on a synthetic problem

To get an idea of the behaviour of the IST policy for SVM evaluation with a Gaussian kernel,

we use a synthetic synthetic problem, a 10× 10 checkerboard. The data set, depicted on

figure 5.11, is a 2-class problem made of 2D-Gaussian clouds of points centred at each integer

coordinate (from 0 to 9) and of standard deviation 0.3 alternating classes.

Three parameters are involved in the IST SVM evaluation: C and γ, the usual SVM parameters

and T , the number of samplings with replacement that are performed in the evaluation. These

parameters were chosen by cross-validation to get a good validation accuracy and a small

actual number of kernel computation (see table 5.3).

The results are illustrated on figure 5.12a. The exact method is the usual SVM policy (equa-

tion 5.20). For the sampling methods, we vary the number of samplings T to do the estimation

of the SVM prediction from 10 to 100,000.

SVM experiment on real data

We applied this IST method to the Gaussian kernel SVM trained on the Covertype data

set (Bache and Lichman). It contains 522,910 samples of dimension 54 for training and

58,102 for testing. As in Collobert et al. (2002) we consider the binary classification problem

(class 2 versus 6 others). We carefully selected the parameters through cross-validation to train

the model which in the end contains 105,492 support vectors. The right plot of figure 5.12

shows the test accuracy versus the average number of inner products performed during sam-

pling. The exact computation of the SVM decision (see equation 5.20) yields an error rate of

1.765% and requires 105,492 inner products.

We have also tried the IST method on other data sets such as webspam or a9a but the compu-

tation cost of IST was greater than for the default policy (i.e. evaluating all the dot products),
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Figure 5.11 – Synthetic data set checkerboard
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Figure 5.12 – Test error vs. average number of inner products for the synthetic problem and
for the Covertype data set (bottom). Each point corresponds to a fixed number of samplings
to estimate the prediction value. The greater the number of samplings, the better the estimate.
IST methods reach top accuracy with less inner product computations. For the Covertype
data set (bottom), the exact point performs all the computations and reaches 1.765% error
rate. For the sampling methods, the number of samplings is varied from 1,000 to 300,000. For
this particular data set, the distribution of kernel responses is so skewed that IST requires very
few inner products and reaches low error, while the uniform approach never reaches good
estimates.
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C γ T Kernels #SV Acc. Time (s)
0.1 50 100000 265.24 7981 83.95 130.08078
0.5 50 100000 229.703 6213 83.95 125.11008
0.5 15 100000 357.499 4480 84.15 122.91283
0.5 10 100000 437.615 4185 84.25 122.89537

1 5 100000 620.246 3691 84.45 122.06775
5 5 100000 559.196 3217 83.95 120.50157

0.1 20 20000 369.676 7220 84.55 26.14553
0.1 5 20000 766.475 5758 84.75 25.972519
0.1 10 20000 513.464 6203 84.75 25.817479
0.5 50 20000 214.318 6213 83.95 25.072426
0.5 10 20000 396.372 4185 84.25 24.709539
0.1 50 10000 238.635 7981 83.95 13.116903
0.5 20 10000 279.822 4788 83.95 12.406951
0.1 5 5000 673.641 5758 84.15 6.62012
0.1 20 5000 337.403 7220 84.55 6.594196
0.1 10 5000 459.707 6203 84.75 6.57555

2 20 5000 235.904 3836 83.95 6.076082
0.1 5 2000 610.77 5758 84.15 2.746622
0.1 20 2000 314.86 7220 84.55 2.691372
0.1 15 2000 353.546 6766 84.75 2.674636
0.1 5 1000 562.106 5758 84.75 1.451517
0.1 10 1000 395.427 6203 84.25 1.392765
0.1 20 1000 298.203 7220 84.35 1.377687
0.5 15 1000 264.911 4480 84.05 1.30869
0.1 20 500 280.077 7220 84.15 0.736825
0.1 15 500 310.606 6766 84.45 0.729109
0.1 10 200 326.765 6203 84.65 0.347478
0.1 15 200 281.025 6766 83.95 0.334733
0.1 20 100 234.961 7220 84.75 0.197346
0.1 15 50 227.658 6766 84.15 0.128896

Table 5.3 – Cross validation to choose parameters C and γ for the checkerboard data set. T
can be reduced for speedup or increased for accuracy.
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because not only IST requires to compute many of the inner products with the support vectors

but also almost all of the inner products with the centroids which lead to twice as many

computations.

The Covertype data set has this property that at test time, only very few support vectors matter

in the decision ('100 out of the 100,000 support vectors) which makes the clustering and the

sampling very efficient. As demonstrated by Jose et al. (2013) or Hsieh et al. (2014), this data

set is prone to huge gain in prediction.

5.5 Discussion

The Importance Sampling Tree introduced in this chapter is designed to improve the learning

of a classifier by allowing to sample important points, and at the same time, by providing a

compensation for the induced bias.

The IST is a binary tree built on the training data in such a way that it reflects the statistical

regularities of the samples. We have shown that a simple top-down 2-means partitioning was

sufficient to organise the data. The other important component of the IST structure is the

ability to provide unbiased estimates of the true weights below a node, although the sampling

is not performed in a uniform manner.

In its current formulation, the IST accumulates all statistics that are observed. This can be

a weakness of the method so far, because in this situation, early observations are still taken

into account, although the classifier has changed. Some samples might be difficult in the first

place because of the sampling, and then quickly become easy, and yet, their initial weights

are still aggregated. A first way for improving the IST is to use a moving average, so that late

weights have more influence. We could also imagine to anticipate the future values of the

weights, based on some probe samples.

The second point is the sampling procedure. We have proposed two strategies, one using

empirical weight estimates, the other exact bounds on the said weights. The latter is exact

but can be used only with a strong prior information about these bounds (e.g. geometrical

information consistent with the weight distribution), which is not the case for very large

training sets. What is missing in our approach is a bandit-type use of a confidence interval on

the estimate. For instance based on the Hoeffding’s inequality, to get something similar to the

UCB policy used in MCTS.

87





Active Sampling Tree for
Support Vector Machines

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.2 LASVM and Active Selection . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Active Sampling Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 The Active Sampling Tree weight . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.2 Building the Active Sampling Tree . . . . . . . . . . . . . . . . . . . . . . 97

6.3.3 The Active Sampling Tree policy . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.4 The model for Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Training Image classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.2 Building a tree of distortions . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.3 Experiments on a synthetic data set . . . . . . . . . . . . . . . . . . . . . 100

6.4.4 Experiments on InfiMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.5 Experiments on extended CIFAR10 . . . . . . . . . . . . . . . . . . . . . 103

6.4.6 Experiments on the Census Income data set . . . . . . . . . . . . . . . . 105

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

This chapter presents a simple yet efficient framework, called an “Active Sampling Tree” to train

more efficiently online support vector machine classifiers. The method builds upon the Active

Selection of LASVM introduced by Bordes et al. (2005), and makes use of a sampling tree to

mimic the Active Selection.

89



Chapter 6. Active Sampling Tree

f (x) Response of the SVM classifier on sample x
S Set of support vectors indices in the training set
L The number of leaves/samples in the Active Sampling tree
N A random variable on J1,LK returning an image index in the training set
M Number of candidate samples in the Active Selection strategy
Ψ(α) Model of the distribution PN∼U (| f (xN )|6α)
U Number of additional leaf weight to update in the Active Sampling Tree
w( f (x)) A function of compute a sampling weight from a classifier response

Table 6.1 – Notations

6.1 Introduction

This chapter is in the continuation of the previous one, but is more specific to support vector

machines. We have introduced the previous chapter by showing that, when training a classifier,

the careful selection of training samples can be important, or even the modulation of their

contribution in the training loss: recall that Fleuret and Geman (2008) as well as Kalal et al.

(2008) showed improved performance for boosting when the training samples are selected

proportionally to their boosting weight, while Zhao and Zhang (2014) and Needell et al. (2013)

showed a reduction of the variance of the gradient estimate when using importance sampling

to make the mini batch. Moreover, as demonstrated in the previous chapter, selecting training

samples based on their boosting weights or their gradient norm reduces the training loss faster

and accelerates the convergence.

Here, we are interested in the Active Selection for the LASVM solver introduced by Bordes

et al. (2005) (described in detail in 6.2.2). Bordes et al. showed that training an online SVM

by selecting samples close to the current boundary results in more compact models with

fewer support vectors, while reaching equivalent or superior accuracy compared to standard

algorithms.

The Active Selection first requires to select M samples uniformly in the training set (usually

50), to evaluate the classifier on them, and then to choose the one closest to the boundary to

train. For one sample used by the learner, M are actually looked at, which is the bottleneck of

the method.

In this chapter, we introduce an Active Sampling Tree, which is designed to emulate the Active

Selection by direct sampling, without the rejection phase. It is achieved by first organising the

training samples with a tree similar to the one used in the Importance Sampling Tree presented

in the previous chapter, and second by using a sampling strategy specifically designed to mimic

the probability distribution as the Active Selection.

Before describing more precisely the Active Sampling Tree, the following section describes

the LASVM algorithm and the Active Selection introduced by Bordes et al. (2005). Table 6.1

contains the various notations used in this chapter.
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6.2 Related work

6.2.1 Support Vector Machines

Support vector machines (SVM) were introduced by Vapnik and Lerner (1963) and the current

formulation of the problem was presented by Cortes and Vapnik (1995). SVM have been very

popular in many communities because there are efficient and give good accuracy even with a

small number of training samples. Fernández-Delgado et al. (2014) compared 179 classifiers

on 121 data sets, and showed that SVM (with a Gaussian kernel) along with random forests are

the among the best machine learning algorithms achieving the highest accuracy.

m
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•
•

•

•

•
•

• •

Figure 6.1 – Support vector machines find the optimal margin to separate the two classes

Support vector machines for classification are supervised learning algorithms which aim

at finding the optimal hyperplane to separate two classes. Given a labelled training set

(xn , yn) ∈RD × {−1,+1}, the SVM aims at separating the binary data by maximising the margin

between the two classes (see figure 6.1) and solves the following optimisation problem:

min
w,b,ξ

1

2
||w ||2 +C

N∑
n=1

ξn s.t.

yn(wTφ(xn)+b)> 1−ξn

ξn > 0
(6.1)

where C > 0 is a penalty constant, w the hyperplane separating the two classes, φ a function

that maps x in a higher dimensional feature space and ξ a relaxing variable that allows some

training points to violate the margin when the training set is not separable.

In practice, the problem is usually solved in the dual space by solving

max
α

∑
n
αn yn − 1

2

∑
i , j
αiα j yi y j K (xi , x j ) s. t.



∑
nαn = 0

An 6αn 6Bn

An = min(0,C yn)

Bn = max(0,C yn)

(6.2)
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where K is the kernel function between two samples.

There are various ways to solve this optimisation problem. The LIBSVM package by Chang and

Lin (2011) uses the sequential minimal optimisation algorithm (Platt, 1998), the LIBLINEAR

package by Fan et al. (2008) uses a dual coordinate descent for the linear case, and SVMlight

use a decomposition strategy of the training samples and a selection of the variables to update.

These solvers are batch methods which require the training samples to fit in memory which

becomes impractical with large data sets.

To overcome the issue of training SVM on large data sets, the online approach can be con-

sidered. In this setup, training samples are used one at a time or in mini batches, and such

strategies aim at converging to the same optimal solution. The Pegasos algorithm by Shalev-

Shwartz et al. (2011) derives a stochastic sub-gradient descent policy with a carefully chosen

step size. The other online SVM solver is LASVM by Bordes et al. (2005) that we now present in

more detail. The online setting has the advantage of letting a policy to carefully select the next

samples to feed to the learner, and this is what we are interested in here.

6.2.2 LASVM and Active Selection

LASVM was introduced by Bordes et al. (2005) as an online SVM solver which converges to the

true SVM solution and can already yield competitive accuracy after a single pass through the

whole training set. Algorithms 3, 4 and 5 are the three main components of LASVM.

To present the LASVM algorithm, we use the same notations as the original authors: we call S ,

the set of support vectors indices; LASVM will sequentially fill and update S . At a given time t ,

the response of the current classifier on sample x is

f (x) = ∑
s∈S

αsK (x, xs)+bt , (6.3)

where bt is the bias of the classifier at time t .

For a start, LASVM populates S with random indices (5 of each class in practice). After the

algorithm has been initialised, the algorithm visits a predefined number of samples, possibly

all the training samples, and possibly over multiple epochs, in the following way (algorithm 3):

first, the policy selects a non visited sample i ∉S and evaluates if it can be a potential support

vector (the process step, algorithm 4). If the sample is added to the cache of support vectors,

the Lagrange coefficients αn are updated accordingly. Then, the algorithm removes from the

cache some samples which are no longer support vectors (the reprocess step, algorithm 5).

This latter operation can be repeated multiple times per process operation. Finally, after

the predefined number of iterations, the reprocess step is repeated until convergence of the

solution.

As the samples are visited one at a time, Bordes et al. have investigated several strategies to

select the next sample to use in the online setting and their influence on the convergence and
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Algorithm 3 LASVM (Bordes et al., 2005, section 3.2)

1: Seed S with a few samples of each class . Initialisation
2: α← 0 and compute the initial gradient g
3: repeat . Online Learning
4: Select a sample kt

5: PROCESS(kt )
6: REPROCESS( ) once
7: until a predefined number of iterations
8: Call REPROCESS( ) until δ6 τ . Finishing step

Algorithm 4 LASVM Process(k) (Bordes et al., 2005, section 3.2)

1: Bail out if k ∈S
2: αk ← 0, gk ← yk −

∑
s∈S αsKks , S ←S∪ {k}

3: if yk =+1 then
4: i ← k, j ← argmins∈S gs with αs > As

5: else
6: j ← k, i ← argmaxs∈S gs with αs < Bs

7: end if
8: Bail out if (i , j ) is not a τ-violating pair

9: λ← min
{

gi−g j

Ki i+K j j−2Ki j
,Bi −αi ,α j − A j

}
10: αi ←αi +λ, α j ←α j −λ,
11: ∀s ∈S , gs ← gs −λ(Ki s −K j s)

Algorithm 5 LASVM Reprocess() (Bordes et al., 2005, section 3.2)

1: i ← argmaxs∈S gs with αs < Bs

2: j ← argmins∈S gs with αs > Bs

3: Bail out if (i , j ) is not a τ-violating pair

4: λ← min
{

gi−g j

Ki i+K j j−2Ki j
,Bi −αi ,α j − A j

}
5: αi ←αi +λ, α j ←α j −λ,
6: ∀s ∈S , gs ← gs −λ(Ki s −K j s)
7: i ← argmaxs∈S gs with αs < Bs

8: j ← argmins∈S gs with αs > Bs

9: for all s ∈S s.t. αs = 0 do
10: if ys =−1 and gs > gi then S =S− {s} end if
11: if ys =+1 and gs 6 g j then S =S− {s} end if
12: end for
13: b ← (gi + g j )/2, δ← gi − g j
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the final performance. They have shown that by carefully selecting the next sample to process,

the size of the solution (i.e. the number of support vectors) can be drastically reduced while

achieving better test accuracy. The possible selection strategies are the following:

Uniform selection (or random selection) selects uniformly a sample among the non visited

ones.

Gradient selection selects the worst classified sample among M uniformly selected non

visited samples (i.e. argminn yn f (xn)).

Active selection selects the closest sample to the current boundary among M uniformly

selected non visited samples (i.e. argminn | f (xn)|).

Auto Active selection is a variant of the Active selection in which the size of the selected

samples is adapted on the fly. It selects M non visited samples but stops as soon as 5 of

them fall inside the margin (i.e. | f (xn)|6 1), and then selects the closest to the margin.

Bordes et al. showed that the active selections were better than the uniform selection and the

gradient selection, and Loosli et al. (2007), have confirmed these observations when training

a digit classifier with artificial distortions. The active selections yield a better test accuracy

with a smaller number of support vectors. This result may sound surprising because we would

expect to obtain a better model by selecting highly misclassified samples, or high gradient

samples, which corresponds to selecting difficult samples. In fact, selecting samples close to

the boundary (the active selections) prevents outliers to be added in the final model (when

not all training samples are used), which causes the model to be more compact, faster, and

more accurate.

During our experiments, we have observed a behaviour of the active selections that was

not reported by Bordes et al. and which is depicted on figure 6.8 (curves “Uniform” and

“Active Selection”). The charts were plotted by dumping the model at regular intervals and by

evaluating it on the test set: since the learning is online, it can be interrupted anytime. When

training LASVM with one of the active selections on a finite training set (here on the Income

Census data set), the learning quickly reaches a better model than the uniform approach with

fewer support vectors, but later in the process, when the outliers start being visited (and are

therefore added to the model), the accuracy of the model declines very fast, and when all the

samples are visited, the accuracy is worse than with the uniform selection. This is because the

model starts being “polluted” with difficult samples that are not representative of their class.

In the next epoch (not shown on figure 6.8), the samples that were removed or not inserted in

the previous epoch become support vectors, and the accuracy of the model improves, and

finally reaches the same accuracy as the baseline. We therefore insist on the fact that the active

selections are very good strategies only if not all the samples are visited.

As mentioned above, the Active Selection visits M samples before processing only one. The
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next chapter describes our Active Sampling Tree, which aims at emulating the Active Selection

by direct sampling, with a view to being faster than the original method.

6.3 Active Sampling Tree

The main idea of the Active Sampling Tree (AST) we are introducing here, is to emulate the

Active Selection described in section 6.2.2 by a direct sampling policy. By direct, we mean that

we would like to avoid looking at M samples before choosing the one to process (what we

could call indirect sampling), and we would like to apply a policy that would directly choose

the sample to process.

We have presented in section 5.2.3 several ways to sample according to a discrete distribution,

and we have shown that the tree-based sampling (the roulette wheel selection) was particularly

well suited for both efficient sampling and updating.

In the same spirit as our Importance Sampling Tree, we use a binary tree whose leaves carry

the training samples and their weight used for sampling. The next section shows what should

be the weights at the leaves, so that the roulette wheel selection mimics the Active Selection

process.

6.3.1 The Active Sampling Tree weight

The Active Selection process, which first randomly selects M samples uniformly in the set of

non processed samples, and then selects the one closest to the boundary, is a random process,

which therefore has a probability distribution. In the previous section, we have presented

various ways to sample from a discrete distribution, and we would like to emulate the Active

Selection by sampling. The probability distribution characterising the Active Selection is con-

stantly changing because of the online setting which modifies the classifier at each iteration,

and so the best choice to make is the tree structure to perform a discrete sampling, and to

update it efficiently. The problem now boils down to finding the proper weight of the leaves to

actually emulate the Active Selection.

In the sequel, we derive the mathematical form of the probability density of the Active Selection

and deduce the proper tree weight.

Given a training set of L samples, the Active Selection uniformly first selects M candidate

indices N1, . . . , NM ∈ J1, NK , and among them selects the one that minimises the distance to

the boundary | f (.)|. Let us call N? the selected one. We have:
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P(N? = n) =
M∑

k=1
P(N? = n | Nk = n)P(Nk = n)

+P(N? = n | ∀m, Nm 6= n)︸ ︷︷ ︸
=0

P(∀m, Nm 6= n) (6.4)

=
M∑

k=1
P(∀ l 6= k, | f (xNl )| > | f (xNk )| | Nk = n)P(Nk = n) (6.5)

=
M∑

k=1
P(∀ l 6= k, | f (xNl )| > | f (xn)|)P(Nk = n) (6.6)

=
M∑

k=1

[∏
l 6=k

P(| f (xNl )| > | f (xn)|)
]
P(Nk = n) (6.7)

=
M∑

k=1
P(| f (xNl )| > | f (xn)|)M−1 P(Nk = n) (6.8)

= P(| f (xN )| > | f (xn)|)M−1 [1−P(∀m, Nm 6= n)] (6.9)

P(N? = n) ∝P(| f (xN )| > | f (xn)|)M−1 (6.10)

If we have a model Ψ(α) for PN∼U (| f (xN )|6α), then the weight of leaf n is

wn = [
1−Ψ(| f (xn)|)]M−1 ∝P(N? = n). (6.11)

Therefore, if the L samples are at the leaves of a binary tree with weight

w( f (x)) = [1−Ψ(| f (x)|)]M−1, (6.12)

then sampling this tree with the roulette wheel selection policy described in 5.2.3 will result in

sampling according to the Active Selection. Note that the weights need not be normalised.

As a sanity check, figure 6.2 shows on two simple examples that the AST indeed emulates the

Active Selection. We generate L values (i.e. the f (xn)) and perform the Active Selection and

the AST, and compare the two resulting empirical distributions. For the Active Sampling, we

set the leaves with their true weights obtained from equation 6.11. As depicted on figure 6.2,

the two empirical distributions are the same.

The main problem with sampling to emulate the Active Selection is that it requires to know all

the weights to perform the sampling, which in practice would imply to compute the response

of the current classifier on all the non processed samples. The next section presents how this

can be avoided, and how the samples can be organised once for all so as to get information of

other samples than the one begin processed.

96



6.3. Active Sampling Tree

0

1

2

3

4

5

0 0.5 1 1.5 2

P
ro

b
ab

il
it

y
d

en
si

ty

Values of simulated f(x)

Distribution of f(x)
Active selection
Active sampling

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3 4

P
ro

b
ab

il
it

y
d

en
si

ty

Values of simulated f(x)

Figure 6.2 – Comparison of the Active Selection and Sampling for M = 10 candidates, where
f (x) follows a uniform distribution in [0,2] (left) or a Gaussian distribution N (2,1) (right).
As expected, the distribution resulting from our Active Sampling model follows closely the
empirical distribution observed under the Active Selection policy.
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Figure 6.3 – Histogram of SVM responses on samples belonging to the same cluster. This
experiment was done on the Census Income data set. The samples were first top-down
clustered, and then a SVM classifier was applied on samples belonging to the same cluster (i.e.
here, samples sharing a common ancestor in the tree.)

6.3.2 Building the Active Sampling Tree

As for the Importance Sampling Tree of chapter 5, the AST is only valid if the weights of the

samples/leaves are known, meaning that the classifier has to be evaluated on the samples (to

get | f (x)| in equation 6.11), which is costly.

And as for boosting or neural networks, a SVM classifier has correlated responses on similar

points (i.e. with small Euclidean distance). This is due to the fact that the most commonly

used kernels (linear, polynomial, Gaussian) are based on the Euclidean distance. To illustrate

this, we have clustered a training set with a simple k-means algorithm, then applied a SVM

classifier on the samples, and plotted a histogram of the responses of samples belonging to the

same cluster. Figure 6.3 shows the result of this experiment, which demonstrates that samples

from the same cluster follow a quite peaked Gaussian distribution.
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If we want to use a sampling tree without all its leaf weights to be known, one way would

be to use a tree of samples which reflects the statistical regularities of the training set: we

want similar training samples to be in nearby leaves (i.e. small path between leaves). As we

showed that a simple clustering already gives consistency, we follow the same recipe as in the

previous chapter to build the tree: a vanilla 2-means clustering is recursively applied on the

samples until reaching two samples. Now, if a leaf is sampled, then it is also informative on

the leaves nearby, and updating the leaf with the corresponding weight will add consistency in

the weights above.

6.3.3 The Active Sampling Tree policy

Algorithm 6 presents the main workflow to train LASVM with the Active Sampling Tree.

The tree weights are initialised to 0 at the beginning. The classifier is first initialised with U0

random training points. The corresponding weights of the tree are updated accordingly with

w( ft (xt )), where xt is the sample selected at iteration t and ft is the classifier obtained after t

iterations.

After this initialisation, each step of AST consists of an update step in which we update the

weights of U uniformly selected training points, and of a sampling step in which we sample a

point according to the current weights of the tree. Then we train the classifier with that sample,

and we can also update its own weight. At each iteration, the tree is updated with 1+U fresh

weights.

Note that contrary to the IST (chapter 5), we sample without replacement (our tree forbids to

revisit an already visited leaf) and we do not compensate for the bias that is induced by the

policy. The Active Selection of Bordes et al. (2005) does not compensate for this selection either

so AST does not. With the IST, samples can be revisited many times and so the contribution of

a sample is divided by its probability of being sampled.

6.3.4 The model forΨ

Given equation 6.12, a model is required for

Ψ(α) =PN∼U (| f (xN )|6α). (6.13)

Ψ describes the probability that a sample xn has a response smaller than α> 0, which can

then be converted into a sampling weight to emulate the Active Selection.

In practice, one observes that the responses of the classifier over the training samples follow a

Gaussian distribution with mean 1 and of standard deviation around 1. We can then compute
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Algorithm 6 Training LASVM with the Active Sampling Tree

1: T , a tree reflecting the regularity of the data set with the training points at the leaves
2: Ψ, a model of the responses of the classifier
3: T , number of training iterations
4: Train f with U0 random training points
5: for t =U0 to T do
6: for u = 1 to U do
7: Sample uniformly a leaf/sample s of T ,
8: Compute the responses of the current classifier ft−1(s),
9: Update T and Ψ accordingly.

10: end for
11: Sample a leaf/sample s with AST
12: Train ft−1 with s to get ft

13: end for

the exact weight under a Gaussian model. We call G(x,µ,σ) the Gaussian distribution.

Ψ(α) =PN∼U (| f (xN )|6α)

=P(−α6 f (xN )6α)

=
∫ α

−α
G(x,µ,σ)d x

= 1p
2πσ2

∫ α

−α
exp

(
−

(
x −µp

2σ

)2)
d x

=
∫ α−µp

2σ

−α−µp
2σ

1p
2σ

1

π
e−u2p

2σdu, with u = x −µp
2σ

and du = d xp
2σ

= 1

π

∫ B

A
e−u2

du with A = −α−µp
2σ

and B = α−µp
2σ

Ψ(α) = 1

2

[
erf(B)−erf(A)

]
(6.14)

The weight of a leaf can be computed with equations (6.12) and (6.14), and by keeping an

estimate of the the mean µ and the standard deviation σ of the Gaussian model.

6.4 Experiments

This section presents the behaviour of the AST tree when training a LASVM classifier compared

to the uniform selection and the Active Selection of training samples. We apply the AST on a

synthetic 2D example to visualise the samplings, on a popular SVM data set and on two large

scale image data sets. The parameters used are summarised in table 6.2.

We will mainly focus on the accuracy as a performance criterion and we will look in detail at

how fast the accuracy is increasing. In particular, we will monitor the number of samples pro-
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Data set Dimension C γ

Banana 2 1 1
InfiMNIST 784 64 0.03
CIFAR10 800 10 0.0009
Census Income 123 300 0.0003

Table 6.2 – Parameters of the Gaussian kernel for the data sets

cessed by LASVM disregarding how many other samples were actually looked at, and possibly

discarded (axis “Samples processed” in the following charts), as well as the computational cost

of the various selections. Indeed, while the uniform selection processes all selected samples,

the Active Selection first selects M of them requiring computing possibly M ×S kernel values,

where S is the number of support vectors currently in the cache.

6.4.1 Training Image classifiers

We recall here that an image classifier is trained with a collection of labelled images and the

more the training data, the better the final performance. However, labelled data is usually

expensive to get resource-wise, and data sets are usually augmented with artificial distortions

of the original images, such as translations, rotations, scaling or elastic distortions. The

assumption is that a distorted image still belongs to the same original class. An original data

set of a few thousand images can therefore yield a data set of several million images.

6.4.2 Building a tree of distortions

As described in section 6.3.2, we build a tree that reflects the regularities of the image data

set. To avoid performing the recursive top-down 2-means clustering on millions of images,

we only perform the clustering on the original images, by first splitting the classes and then

extending the tree at the bottom by adding the corresponding distortions of each original.

This clustering has been shown to be consistent with the sampling framework as in chapter 5.

6.4.3 Experiments on a synthetic data set

To get a visual understanding of the behaviour of the AST compared to the uniform selection

and the Active Selection, we use the synthetic banana data set. It is a binary problem of 4,000

2D training points with a banana shape for which the Gaussian kernel is well suited. On

figure 6.4, we visualise the first 1,000 training points that are selected by the three policies.

The uniform policy gives an overview of the full training set (figure 6.4a). The Active Selection

only considers points that lie at the boundary (figure 6.4b) after evaluating the current classifier

M = 50 times on points sampled uniformly.

The AST is less aggressive than the Active Selection but properly concentrates at the boundary
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Figure 6.4 – These plots show which samples were selection by the uniform method, by the
Active Selection, and by the Active Sampling Tree.

of the classifier. For this experiment, the classifier was initialized with 20 random points, and

then the AST policy was used after updating U = 10 random leaves at each iteration. This

experiment shows that the AST is doing what it is supposed to do, and concentrates at the

boundary of the classifier.

6.4.4 Experiments on InfiMNIST

Following the work of Loosli et al. (2007), we apply the Active Sampling Tree to train a digit

classifier on the InfiMNIST data set. We presented this data set in chapter 2, but briefly recall

it here. MNIST is a collection of 60,000 28 × 28 gray scale images of digit (from 0 to 9) and was

extended by Loosli et al. (2007) by using sub-pixel transformations as described by Simard

et al. (1992) and translations of 1 pixel. Although the resulting data set may contain several

trillion images, we only use the first 8.1 million as in Loosli et al. (2007).

We train ten binary classifiers in a 1-vs-all fashion and for testing, we simply merge the

classifiers and take the maximum response out of the ten. The features used are directly the

image pixels which yields a dimension of 784. As a preprocessing step, the pixels are scaled

to [0,1] by simply dividing by 255. The parameters of the Gaussian kernel are C = 64 and

γ= 0.03 and were determined by cross-validation with LIBSVM. Since this procedure is quite

time-consuming, we have carried it out on the original MNIST data set because it would have

been impossible to perform it on the 8.1M images. We also performed a cross-validation on

300,000 images (the original as well as four distortions per digit) and obtain roughly the same

C and γ.

As for the Importance Sampling Tree of chapter 5, the data set is organised at the beginning

of the training once for all. The original samples are top-down clustered, by first separating

classes, and then recursively applying a 2-means algorithm. After this clustering, a leaf node

corresponding to one image is replaced by a sub-tree containing several distortions as well as

the original. The tree thus contains 8.1M leaves. Figure 6.5 shows a small scale example of tree

with original MNIST images.
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Figure 6.5 – Example of top-down 2-means clustering of MNIST original images. On this
particular example, we can see in class 1 or class 4 how similar samples are properly grouped
together (rotated 1 for instance). No additional distortion has been added in this example.
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Figure 6.6 – Comparison of the uniform selection, Active Selection and the Active Sampling
on the InfiMNIST data set. The Active Sampling was initialised with 30,000 original training
samples before using AST and no extra leaf is updated (U = 0).

The training goes as follows. The first U0 = 30,000 samples are uniformly selected in the

original training set (no distortion). The weights of the selected leaves are updated accordingly.

After this initialisation, the AST policy is used. As the InfiMNIST data set is quite smooth and

not noisy, there is no need to update additional leaf weights (U = 0). The AST policy simply

boils down to sampling a leaf and updating its weight.

Figure 6.6 shows the test accuracy as a function of the number of iterations and of the compu-

tations. The uniform selection reaches an accuracy of 98.7% after visiting 60,000 samples and

constantly increases until reaching an accuracy of 99.2% after 400,000 samples. The Active Se-

lection (with M = 50) reaches an accuracy of 99.28% after processing 20,000 samples (i.e. after

visiting 1,000,000 samples, fifty times more) which results in fairly the same computational

cost with respect to the accuracy. Regarding the accuracy as a function of the iterations (left

plot), the Active Selection is clearly a good way to select informative samples. The AST does

a good job in finding good samples (left plot): it reaches an accuracy of 99.14% after 60,000

points and 99.25% after 200,000 points.

6.4.5 Experiments on extended CIFAR10

We briefly recall that CIFAR10 is a collection of 50,000 32×32 colour images of 10 classes such

as “bird”, “car”, or “truck”. We have extended this data set with mirrored version of the original

images as well as translations of one pixel, yielding a new collection of 900,000 images.

The data set is organised by first splitting the data set by classes, and then by performing a

top-down clustering the original images and by then extending the tree with the distortions of

each sample.
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Figure 6.7 – Comparison of the uniform selection and the Active Sampling Tree on the extended
CIFAR10 data set. AST was first initialised with 50,000 original training samples and each step
of AST update U = 2 samples.

We use the features of Coates and Ng (2011) which we described in section 2.1.3. Each

6×6 image patch is projected on a dictionary of visual words containing 200 elements and

the activations are pooled on a 2×2 grid, yielding a feature vector of dimension 800. The

parameters of Gaussian kernel are C = 10 and γ = 0.0009 and were determined by cross-

validation on the original CIFAR10 samples. We recall here that in the work of Coates and Ng

(2011) and in the experiments we carried out in chapter 2, the classifier was linear and the

dimension of the features was 12,800 (dictionary of size 3200 codes).

As the CIFAR10 data set is more noisy than the MNIST data set, it was necessary to update

more leaves than just the one visited. We chose U = 2 in this experiment.

Figure 6.7 shows the results for this data set. The Active Selection could not be used here

because it was too time consuming and required too much memory: in the previous exper-

iment on InfiMNIST, the image features were the pixels themselves and the kernels could

directly be computed from the pixel values. In this case, the single-layer features are expensive

to compute (extraction of all patches, whitening, pooling, etc. see 2.1.3). The Active Selec-

tion therefore requires to compute M single-layer features to process one samples which is

prohibitive.

On the extended CIFAR10 data set, the Active Sampling Tree reaches higher accuracy (left

plot) for the almost the same computational cost (right plot). The extra computational cost

U = 2 may hurt the cost of the AST while still appears to be necessary to prevent the tree from

degenerating.

104



6.5. Discussion

15

15.2

15.4

15.6

15.8

16

0 5000 10000 15000 20000 25000
15

15.2

15.4

15.6

15.8

16

0 20 40 60 80 100 120 140 160
15

15.2

15.4

15.6

15.8

16

0 2000 4000 6000 8000 10000

Te
st

er
ro

r

Samples processed by LASVM Time (sec) Nb Support Vectors

Uniform
Active Sampling
Active Selection

Figure 6.8 – Comparison of the selection strategies on the Census Income data set. The three
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6.4.6 Experiments on the Census Income data set

We now compare the methods on the Census Income data set (also known as the Adult data

set). The purpose is to predict whether the income of a person exceed $50,000 a year. It

contains 26,008 unique training points of dimension 123. Figure 6.8 presents the results for

the data set.

The left plot shows the test error as examples are processed by LASVM. The active policies select

“better” samples than the uniform baseline because as the number of iterations increases, the

test error decreases faster.

The uniform method reaches an error of 15.2% after 24,000 iterations (40 seconds). The Active

Selection reaches 15.05% after 10,000 iterations (90 seconds) because it is able to select which

examples to process and therefore discard outliers. The AST is in between: It selects more

informative samples than the uniform but also invest a lot of computation to update the tree

(U = 10).

After 10,000 iterations, the test error for active methods drastically increases (not reported

by Bordes et al. 2005). This is because the Active Selection has discarded support vectors in

the early steps that it would not have discarded if the last samples were processed earlier. In

fact, if we run another epoch (not shown here), the test error will decrease again and reach the

accuracy of the uniform baseline.

6.5 Discussion

The Active Sampling Tree structure proposed in this chapter is designed to emulate the Active

Selection for LASVM, that is to select samples close to the boundary. Samples close to the

boundary are indeed more informative than farther samples, including the outliers that are

misclassified.
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The sampling strategy with the proper weight correctly selects informative samples, and to

account for the changing distribution and to avoid needing all the weights, the samples can

be organised beforehand to reflect the regularity of the data.

On the Census Income data set, the result of the AST are limited: although AST selects better

samples than the uniform approach (left plot of figure 6.8), this does not translate into a

smaller number of support vectors relatively to the accuracy (right plot of figure 6.8).

However, as we have shown on a large image data set augmented with artificial distortions,

AST proves to be competitive with the Active selection, and always reaches a better accuracy

faster than the uniform approach.
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Conclusion

Throughout this dissertation, we have investigated how to concentrate the computation of

learning algorithms on the most informative samples, whether it is hard negative samples to

train object detectors through a bootstrapping approach, or samples with a high loss or small

classifier responses for classification.

In practice, a learning algorithm has never access to all the possible samples that could exist,

but rather to a subset of them which constitute the training set. Our contributions have

focused on how to efficiently choose a subset of the training samples without actually looking

at all of them. In particular, when the training set is organised in a consistent manner, it is

easier to make a decision on subgroups of images/samples, either to invest more computation,

or on the contrary to discard them.

As we have shown in chapter 4, the adaptation of the Monte Carlo tree search is able to identify

promising subgroups of images rich in hard negatives samples by properly handling the

exploration-exploitation trade-off, but could easily be ported to design a web crawler to gather

images. A potential criterion to take into account could be hardware constraints, related to

the speed of memory, disks, and network accesses, with a view to automatically adjusting the

sampling to web sites with a good throughput of informative images, for a fixed amount of

time or other meaningful budget.

The tree-based structure and the sampling policies that we proposed in chapters 5 and 6 con-

centrate the selection of the online process on informative samples during training. However,

while high gradient samples or high loss samples are informative for boosting and neural

networks, low response samples are the ones informative for support vector machines. A

possible future step would be to harmonise both approaches.

Our line of research has been original in the sense that most of the research carried out

nowadays tend to rely on powerful hardware and massive parallelisation, and surprisingly,

little research is done to design methods to concentrate more cleverly the computation and the

search on the most important samples. Although it is simpler to handle data in a uniform or

linear manner, we argue that investing a part of the research in this direction can be significant

to improve existing techniques.
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This chapter presents a way, called “distillation” to recursively select informative samples to

reduce the size of an initial training set, using a criterion that ensures the maximisation of the

information content of the selected subset. This chapter is based on the following publication:

Olivier Canévet, Leonidas Lefakis, and François Fleuret. Sample distillation for

object detection and image classification. In Proceedings of the Asian Conference

on Machine Learning (ACML), pages 64–79, 2014
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A.1 Introduction

Image classification and object detection have reached an acceptable level of performance

thanks to the use of machine learning techniques with large-scale training sets. In both cases,

large amounts of data points can be produced, either through artificial distortions of positive

samples, or through the bootstrapping of negative samples, the objective being to enrich the

available population, either in the neighbourhood of positive examples, or at the interface

between the positive and the negative population, as characterised by a predictor trained on a

limited data set.

In such cases, the crux of the problem is the training itself, based on these large amounts of

data. Most of the learning algorithms have a computation cost at least linear with the number

of samples, and are difficult to parallelise.

Interestingly, while most training sets are redundant, very few methods explicitly try to leverage

that redundancy to reduce the computational cost. Some well known techniques such as the

stochastic gradient descent are explicitly justified through the redundancy of samples, but

no method exists that processes the data in the same spirit as a feature-selection procedure

does with a feature space: by explicitly reducing the cardinality of the space, while keeping the

informative content as high as possible.

We propose in this chapter to exploit a machine learning technique called “reservoir learning”

by Lefakis and Fleuret (2013), which has been developed precisely to select jointly informative

subsets of samples. We adapt it to a large-scale context by applying it in a recursive manner,

allowing to reduce the overall computation cost by several orders of magnitude, to control its

memory footprint, and to parallelise it on a multi-core architecture.

We apply this “distillation” procedure to boosting in two different contexts: pedestrian detec-

tion in natural images, where it allows to improve the set of bootstrapped negative samples,

and character recognition, where distillation is used to get a better set of synthetic distortions.

A.2 Related work

Though bootstrapping is widely used in computer vision (Shotton et al., 2005), there has

been very little prior work on how to efficiently mine hard negative examples. Typically once

a classifier has been built, it is used to process the set of negative samples and a margin

based approach is used to select which of these samples are to be added to the training set

(Felzenszwalb et al., 2010c; Li et al., 2013). Other approaches are possible, as for example using

non-maxima suppression (Neubeck and Van Gool, 2006; Comaniciu et al., 2002); non-maxima

suppression is also widely used to handle overlapping detections but despite its prevalence

there seems to be no prior experimentation with this method for hard negative sample mining.

We present such results in our experiments as a baseline for our proposed method.
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A different approach to representing the richness of the background class is to attempt to

model it using a (normal) distribution (Osadchy et al., 2012; Hariharan et al., 2012). Negative

samples can then be generated using a fitted model. Such approaches however tend to be

quite slow and ignore the fact that natural images tend to have long-tailed distributions as

shown by Ruderman and Bialek (1993).

A notable exception to this scarcity is the recent work by Henriques et al. (2013), that specifi-

cally addresses hard negative mining, or to be exact how to avoid it. The authors present a

formulation for a specific family of classifiers that allows them to address the translations of

samples in the negative sample space by modeling these translations as circular shifts. Though

attaining very good results, their method is specific to translations while the method presented

here handles the entire negative sample space. Furthermore, their approach cannot be used

in connection with the boosting family of predictors.

The other method commonly employed in vision applications, is that of augmenting the

positive sample space by random distortions of its population, sometimes referred to as

jittering. This technique is used to artificially augment the number of positive samples which

is oftentimes limited due to the cost of labelling. Distortions techniques used can be mirror

versions of the originals, affine transformations (translations, scaling) like in the work of LeCun

et al. (1998) and even elastic distortions in the work of Ciresan et al. (2012). Distortions are

usually generated at random and no care is taken to choose informative ones.

In the context of boosting (Freund and Schapire, 1997), there have been many approaches

proposed for data set sub-sampling (Bradley and Schapire, 2007; Domingo and Watanabe,

2000). (Lefakis and Fleuret, 2013) have proposed a novel algorithm for addressing this issue,

which aims at selecting the most informative samples, in a joint manner, amongst a large

number of samples. Their work focuses on trade-offs between online and offline learning,

here however we aim at extending this work so as to tackle the sample set selection problems

mentioned above.

A.3 Sample Distillation

We first present a brief overview of boosting and the Greedy Edge Expectation Maximisation

(GEEM) algorithm proposed by Lefakis and Fleuret (2013) and subsequently present and

analyse the proposed distillation method. We leave the specifics of its application to the

experimental part of the paper.

A.3.1 Boosting and GEEM

Boosting algorithms greedily build an ensemble classifier H

H(x) =
T∑

t=1
at ht (x) (A.1)
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by adding what is referred to as a weak learner ht (x) ∈ {−1,1} at each iteration t among a pool

of weak learners H so as to minimise an empirical loss

ht = argmin
h∈H

LT (Ht−1 +ht ) (A.2)

with T being the training data.

As mentioned, a problem that often arises when handling large data sets is that the size of T

is such that it does not all fit in memory making the optimisation problem A.2 unwieldy or

even intractable.

Typically in such cases the training set T is sub-sampled at each iteration t to yield a subset

T t ⊂T which is then used to acquire an estimate of the empirical loss.

The GEEM algorithm of Lefakis and Fleuret (2013) addresses the issue of optimally sampling

T t under certain assumptions. Specifically the authors assume that the weak learner re-

sponses on the samples follow a multivariate Gaussian distribution, they then use a greedy

backward selection procedure to decide which samples to keep in T t , so that the expected

empirical loss on T , when using T t to solve (A.2), is minimal.

In other words, given a signed (boosting) weight for each sample, the GEEM procedure selects

a subset of samples such that, if a predictor has a large weighted response over the selected

samples, it has a large expected weighted response over the selected samples and the discarded

ones. The GEEM selection process accounts for correlation between predictor responses,

hence allowing to discard samples whose response vectors are redundant.

A.3.2 Distillation

While GEEM has many desirable properties, and despite the efficient implementation pro-

posed in Lefakis and Fleuret (2013), it remains extremely costly, with the cost being prohibitive

for large amounts of data, exactly in the regime that is of interest to modern applications, due

to its cubic dependency on the number of samples N . We propose to drastically reduce this

cost, while maintaining the statistical accuracy, by processing the data recursively using a tree

structure.

Given the full set of N samples T ∗, we first partition it into K disjoint subsets1 T 0
1 , . . . ,T 0

K such

that

∀16 k 6K , |Tk | =
N

K
. (A.3)

We then apply the GEEM procedure recursively, each time merging two subsets T d
2r−1 and T d

2r

1Here the superscript denotes the tree level of a node in the tree (and by extension the subset it contains) and
the subscript denotes the numbering of the node at its level.
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Figure A.1 – The distillation process consists in starting from a partition T 0
1 , . . . ,T 0

K (with K = 4
here for simplicity) of the full set of samples T , then recursively concatenating subsets by pairs,
and extracting one subset of fixed size N

K from each resulting set using the GEEM procedure.

and extracting one T d+1
r of half the cardinality:

T d+1
r ⊂ T d

2r−1 ∪T d
2r , s.t. |T d+1

r | = N

K
, (A.4)

until only one subset of samples T D
1 remains.

A.3.3 Complexity and trade-offs

Lefakis and Fleuret (2013) analyse the complexity of GEEM and point out the limitations on the

applicability of the algorithm due to its cubic complexity. By using the tree structure presented

in the previous subsection, this cubic complexity becomes less of a restraining factor.

Whereas in reservoir boosting the complexity of the method is O(N 3), N being the number

of samples, in distillation the cost is O(N 3/K 2) where K is the number of tree leaves. For a

balanced binary tree with K leaves there are O(K ) nodes in the tree, each containing O(N /K )

samples. Thus sampling between two nodes incurs a cost of O(N 3/K 3) and this process

must be repeated O(K ) times, leading to the O(N 3/K 2) complexity which translates to a K 2

complexity improvement.

Moreover the tree structure allows a significant degree of parallelisation. The sampling in a

specific node of the tree can obviously be performed independently with the remaining nodes

at the same level of the tree. Thus, depending on the number of CPU cores available, one can

choose a trade-off between computation time and memory load. In contrast, in the case of

reservoir boosting, the GEEM process cannot be similarly parallelised.
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(b) Distillation on multiple computation cores

Figure A.2 – Comparison of the computation cost and memory footprint of the single-core
distillation (top) and the multi-core one (bottom). Black dots picture batches of samples
actually stored in memory, and bold edges the individual GEEM operations. If K is the total
number of sample batches we have initially, that is the number of leaves in the distillation
tree–and we have a single computation core, the memory footprint is at most O(log2 K ) (see
section A.3.3) and the computation cost O(K ). If we have K computation cores, the memory
footprint is at most O(K ) and the computation O(log2 K ).

Figure A.2 shows the two extreme cases of computation-memory trade-off in the distillation

process. In the first case, there is only one CPU core available, and the main concern is the

memory load. A naive implementation would first load all samples in the leaves and proceed

up the tree level by level. Depending on the size of N this procedure might be prohibitive from

a memory perspective.

The tree however can be traversed in a much more memory-efficient manner, as depicted in

figure A.2(a) by always fully processing any sub-tree before starting to process a leaf belonging

to another one.

Let M(K ) be the memory footprint of the distillation of K leaves. Obviously M(1) = 1, since

there is nothing to do and we must have the samples of that leaf in memory. If we have to distil

2L leaves, we can first distil the first L, with a memory usage of at most M(L), store the result

for a memory usage of 1, and process the second half, for a memory usage of M(L). Hence

M(2L) = 1+M(L), which leads to M(K ) ∼O(log2 K )

Computation-wise, since we have to run sequentially through all the nodes, the computation

time is O(K )

In the case of K cores, shown in figure A.2(b), we can achieve a computation of O(log2 K ) by

assigning each node in a level to a different core and proceeding upward in a breadth-first

manner, i.e. first we process all nodes at one level before moving up to the next. Given that a

balanced binary tree with K leaves has a height of logd K , the algorithm will terminate in time

O(log2 K ). As pointed out above, loading the entire data at the leaves of the tree has a O(K )

memory footprint.
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Thus according to the resources at hand, the distillation’s tree structure allows us to choose

the optimal trade-off between the two resource types.

A.4 Pedestrian detection

We first apply the distillation procedure to bootstrapping negative samples for object detection.

A.4.1 Data set

We use the INRIA Person data set (Dalal and Triggs, 2005) which is commonly used to train and

evaluate pedestrian detectors. For training, the data consists of 2,416 64×128 cropped colour

images of pedestrians and a set of 1,218 pedestrian-free scenes. To evaluate the performances,

the test set consists of 1,132 pedestrians and 453 scenes. The scenes are used to extract the

negative and the false positive samples in the first training and in the bootstrapping phase. We

use histograms of oriented gradients (HOG, Dalal and Triggs 2005; Felzenszwalb et al. 2010c)

as a descriptor for the images with the parameter values specified in Dalal and Triggs (2005).

A.4.2 Bootstrapping

Let T+ be the set of all available positive samples in T , and T ∗− the set of all available negative

samples. In the case of detection, there are usually a few thousands samples in the former,

and millions or more in the latter.

In bootstrapping, we first train an initial two-class predictor f 0 with T+ and a subset T 0− ⊂T ∗− ,

obtained by sampling uniformly in T ∗− without replacement.

The objective of both our distillation method and all the baselines is to use f 0 to select a

subset T 1− ⊂T ∗− such that we can build a second predictor f 1 with T+ and T 1− , more accurate

than f 0.

In all the techniques we consider, the number of selected negative samples N− is a constant

fraction ζ ∈ [0,1] of the total number of false positives:

N− = |T 1
− | = ⌈

ζ
∣∣{x ∈T ∗

− , s.t. f 0(x)> 0
}∣∣⌉ (A.5)

where de is the ceiling function (i.e. smallest integer greater than).

A.4.3 Performance evaluation

We compare our approach of selecting negative samples among the false positives with the

following methods. The algorithms described below are applied per-scene.
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Uniform sampling consists in sampling N− samples uniformly without replacement in the

subset of false positives, that is, according to the distribution

∀x ∈T ∗
− , px = 1

Z
1{ f 0(x)>0}, (A.6)

where Z is a normalisation constant.

Max-sampling consists in selecting in T ∗− the N− samples with highest f 0 responses, that is

the ones which are the most “incorrectly classified”:

∀x ∈T 1
− , x ′ ∈T ∗

− \T 1
− , f (x)> f (x ′). (A.7)

Weighted sampling consists of sampling N− samples in T ∗− , without replacement, according

to the exponential loss, that is with the distribution

∀x ∈T ∗
− , px = 1

Z
1{ f 0(x)>0}e

f 0(x), (A.8)

where Z is a normalisation constant. This method is somewhat similar to the max-

sampling but also allows to pick samples of small individual weights which have a large

cumulated weight together.

Non-maxima suppression consists in selecting the samples with the highest f 0 responses

and then discarding an area around the selected one to prevent from sampling in its

neighbourhood again. This method is used in object detection to remove multiple

detections and in this case will tend to pick samples equally spaced in the image.

Figure A.3a shows the receiver operating characteristic (ROC) curves of the trained predictors.

The initial predictor is trained with P = 2,416 positive images and N = 10,000 negative ones.

We then retain 3% of the false positive per scene (or at least 10), which lead on average to

H ' 18,000 hard negative samples. Both predictors are trained using AdaBoost for 1,000

rounds on the HOG features. The curves are averaged over 5 runs.

The predictor trained using max-sampling performs worse than the initial one. The weighted

sampling method also performs worse than the initial predictor for the same reason but does

better than max-sampling because it is still able to sample among false positive with smaller

weights. The uniform sampling and the non-maxima suppression perform comparatively

better than the initial predictor. These methods are able to populate the training set with

difficult samples so that the boosting procedure focuses on the interface between positive and

negative classes. Finally, the distillation method does even better than the uniform sampling.

Distillation is able to discard the false positive samples that do not bring anymore information

to the predictor given the ones it has already picked. We can thus say that it has built a richer

training set.
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Figure A.3 – Bootstrapping images to enrich the training set with difficult examples. On
figure A.3a, the max-sampling and weighted sampling perform worse than no bootstrapping
because they tends to put emphasis on redundant samples. The uniform sampling and the
non-maxima suppression perform the same and our distillation process outperforms all other
sampling methods. Figure A.3b shows the influence of the size of the subsets in the distillation.
The greater the size, the closer to the true GEEM the process is.

Figure A.3b depicts the influence of K in the distillation process. As all the scenes do not

contain the same number of false positives, fixing K across all scenes would produce subsets

of different sizes. Instead, we fix N /K (size of the subset) to be constant. As N /K → N , the

distillation gets closer to the true GEEM. The results show here that surprisingly, the size does

not really matter. However, we have noticed that to enforce good diversity in the final distilled

set, scenes should be processed separately.

A.5 Character recognition

We now apply the GEEM procedure to enrich a training set with informative distortions for

image classification.

A.5.1 Data set

We use the MNIST data set (LeCun et al., 1998). The train set consists of 60,000 28×28 gray

scale images of digits from 0 to 9 and the test set contains 10,000 images. We use Haar like

wavelets (Viola and Jones, 2004) as features without pre-processing the images, as in the work

of Kégl and Busa-Fekete (2009) where AdaBoostMH achieves 1.02% test error.
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Method Test error (%)
No distortions 1.2 (+0.0361)
+1 random distortion per image 0.962 (± 0.0616)
+1 distilled distortion per image 0.9075 (+0.0585)

Table A.1 – Classification error on the full MNIST data set. The GEEM procedure is once again
able to choose better sample in comparison to random. We can make the same observation as
for the reduced sets: adding too much GEEM samples does not do better than random (here
more than 3)

A.5.2 Sub-sampling distortions

In the case of jittering we seek to augment a relatively small set of positive samples T+ by

randomly distorting an image and adding the resulting image to the pool of positive samples.

Suppose we create such a set of artificial positive samples T
′
+, we can either create a set of

small cardinality |T ′
+| = N+ or we can create multiple distortions resulting in a set of large

cardinality and then downsample to N+, using GEEM.

Again we first train an initial two-class predictor f 0 with T+ and T− and then create a set T
′
+

of cardinality N
′ À N+. We then use f0 in connection with the GEEM process to sub-sample

T
′
+ down to T 1+ .

We then use T 1+ together with T+ and T− to build the predictor f 1.

A.5.3 Performance evaluation

The images are distorted using the combination of translations of 1 pixel and rotation of angle

α ∈ [−10,10]. Using higher shifts or angles produces images which are too far from the true

distribution of images. Test images are not distorted at test time.

As GEEM requires a initial classifier we train one on the non-distorted set. In our experiments

the training set is augmented by n distortions per digit, that is for a set of S images and n

distortions per image, we train the second classifier with (n +1)S images.

We first analyse the performances of the GEEM procedure on a reduced training set of 1,000

and 5,000 images. Results for full scale experiments are shown in table A.1.

Figure A.4 shows that the GEEM procedure is able to build a more informative training set

than the random. The test accuracy is higher. The reason lies in how the boosting loss is

reduced with this GEEM. Figure A.5 show the loss of validation samples in the early iterations

of the boosting algorithm when training with the new augmented training set. The validation

samples were chosen among the discarded distortions for the GEEM.
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Figure A.4 – Analysis of the training set augmented with distortions. The graph shows the test
accuracy as a function of the number of distortions added per digit (5 distortions means that
the second classifier was trained with N +5N images). The initial test accuracy for 1,000 (resp.
5,000) is 94.47% (resp. 97.37%). First we see that adding distorted images helps. Second, we
see that the GEEM procedure is able to pick “better” samples when few are added (from 1 to 7)
but that random does better after that. See figure A.5 for an explanation from the loss point of
view.

A.5.4 Analysis of the GEEM behavior

To understand a bit further why GEEM is able to build a more informative training set, we

analyse its behaviour in specific settings.

How does GEEM handle similar images?

To analyse how GEEM behave with similar images, we select 5 images from the same class

and duplicate the first one 124 times (in this set, images from index 1 to 124 are the same, and

images 125 to 128 are all different). We run the GEEM procedure to discard images down to 6

and note which indexes are kept. We run this experiment 1,000 times, each time selecting a

new class and 5 images of the class and count how many times each index was kept by the

process.

The histogram in Figure A.6 shows how many times the images were selected on average

over the 1,000 runs. We see that the last 4 indexes (i.e. the images which were unique in the

set) tend to be selected more often than any of the duplicated one. Since we select 6 images

out of 5 unique ones, the duplicated one is at least selected twice at each round. The GEEM

procedure is therefore able to build a diverse set of samples that can be used for training

another classifier.
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(a) Adding 3 deformations per digit
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(b) Adding 7 deformations per digit

Figure A.5 – Analysis of the loss on validation samples for random and GEEM training samples.
GEEM aims at discarding samples whose boosting response can already be predicted with
selected samples. Here we analyse the boosting loss of some validation samples. These
samples were discarded by the GEEM procedure. We see that their loss is even more reduced
than training with a set of random distortions. Figure A.4 show that adding more than 7 GEEM
distortions does not help. This is what we can see on figure A.5b, class 1 where the loss is not
as low for GEEM.
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Figure A.6 – Analysis of the selection of images in a set containing duplicates. In this exper-
iment, we build a set of 128 MNIST images of the same class from 5 different images and
duplicate the first one 124 times. The set is thus 124 times the same image (indices from 1 to
124) alongside 4 different images (indices from 125 to 128). We run the distillation process
to select 6 images out of the 128 with buckets of size 16. We run this experiment 1,000 times
selecting randomly a class each time and count how many times the images where chosen.
We see that the 4 unique images tend to be selected more often than the duplicates which
shows that the GEEM procedure manages to build a diverse set of images.

How does GEEM handle distortions?

We analyse how GEEM behaves in comparison to randomness. First, we choose one image at

random, generate one random distortion and compute the `2 norm between them. Second,

we pick one image at random, generate 100 random distortions (one of which is the original)

and use GEEM to discard all of them but one and compute the the `2 norm between the

original and the remaining distortion. We repeat this experiment 5,000 times.

The histogram of figure A.7 shows the distribution of the `2 norm between the original and

the distortion for both methods. We see that in comparison to the random set-up, the GEEM

procedure will tend to choose a distortion different from the original which once again shows

that GEEM can build a diverse set of samples given the initial classifier.
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Figure A.7 – Analysis of the difference between selecting random distortions and distilled
distortions to augment the training set. In this experiment, we compute the `2 norm between
an original image and a distortion either selected randomly or through distilling it from a set
of 100 distortions. We run the experiment 5,000 times and plot a histogram of the distances
between the original image and the chosen distortion. The figure shows that the distillation
process tends to select images which are different from the original leading to diversity. The
peak observed for the random part is due to the fact that we do not interpolate the grey levels
of the distorted image. When the rotation angle is too small, the resulting image is the same as
the original. This does not occur for the distillation process because it manages not to select
duplicates (see experiment of figure A.6).
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A.6 Conclusion

We presented a novel algorithm that extends the GEEM algorithm to make it applicable to

large-scale data. The proposed extension not only allows the algorithm to scale-up but also

allows for a computation/memory trade-off in its application due its ability to be processed in

a parallel manner.

Through experimental results we show the relevancy of the method for computer vision by

extending the state-of-the-art in two important applications, namely bootstrapping for object

detection and data set augmentation through distortions.

We furthermore analysed the method not only from a theoretical perspective, i.e. its complexity,

but also experimentally showing that the method not only performs well but in fact has a

number of desirable properties that actually appear in practice.

In future work we plan to extend the distillation algorithm to work with a greater family of

predictors, in particular with support vector machines. We are especially interested in the

applicability of such approaches to the family of deformable part models.

Another line of current research is a more thorough theoretical analysis of jointly informative

subset selection and in particular its relation to batch active learning.
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We present an analysis of the image classifier proposed by Coates and Ng (2011). Given a trained

image classifier, we are interested in finding “super” images, that is images on which the given

classifier has a high response. A similar work has been conducted by Nguyen et al. (2015) on

convolutional neural networks in order to generate images that the network classify with more

than 99.99% confidence, although not reminiscent of the class for a human eye at all.
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B.1 Motivation

At testing time, an image is given the label of the classifier which has the highest response

among them. More formerly, the predicted label ĉ of image x is

ĉ = argmax
16c6C

fc (x) (B.1)

Note that values fc (x) can be negative for all c. In the 1-vs-all scheme, it means that all the

classifiers fc predicted the negative class, but we take the “less” negative. In our implementa-

tion, all scores fc lay in the range [−2;2], so a well classified horse with a strong response will

have a score around 2.

We would like to find an image x∗
c with a high score for a given class c. This is an interesting

problem because it answers the question: “Does a very high response image for a given class

look like the object for which the classifier is trained?” It is equivalent to solve the following

optimisation problem:

x∗
c = argmax

x
fc (x), (B.2)

which can be solved by using gradient descent. Starting from a initial image, the iterative

algorithm updates the new image x alongside its gradient:

at step t , x t = x t−1 −ε∇ fc (x t−1) (B.3)

where ε controls the speed of the displacement.

B.2 Implementation

Given the fact that fc (x) encapsulates the patch extraction, the whitening process and the

pooling step, computing its gradient is not practical. As a result, we used finite differences as

an approximation: the gradient of fc (x t ) for x t ∈RN is

∇ fc (x t ) = [∂1 fc (x t ), . . . ,∂N fc (x t )]T , (B.4)

and we approximate it such that:

∀ 16 n 6 N , ∂n fc (x t ) ' fc (x t
1, . . . , x t

n +d , . . . , x t
N )− fc (x t

1, . . . , x t
n −d , . . . , x t

N )

2d
. (B.5)

x t
i denotes the pixels of image x t . d represents the local neighbourhood on which the partial

derivative is approximated. Due to the whitening transformation and the pooling step, we

choose d = 10 to avoid having a null component. And as we are dealing with integers in J0,255K,
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(a) Initial images

(b) Optimal image for class frog (c) Top well/bad classified images for class frog

(d) Optimal image for class horse (e) Top well/bad classified images for class horse

Figure B.1 – Images in B.1a are the initial images used for gradient descent. The images below
are the ones to which the algorithms have converged after 300 iterations of gradient descent,
when the target class was frog (images B.1b) and horse (images B.1d). Pictures B.1c and B.1e
are the images of the test set of CIFAR with a high response in the two considered classes. A
green frame indicates that the image is correctly classified as a frog/horse, and the red frame
indicated that the image is misclassified. We note that even though the bird of picture B.1c has
a positive score in the class bird, it has a bigger score in class frog, possibly due to the perch.

we choose ε such that at least one pixel is changed at each iteration:

ε= 10

||∇ fc (x t )||1
. (B.6)

B.3 Results

Figure B.1 shows the results of the gradient descent after 300 iterations for each of the four

initial images that we considered. It is interesting to see that apart from brightness (which

seems to be determined from the initial image), all procedures converge to the same image for

a given target class. Moreover, a high response image in a class is made of specific frequencies

which are reminiscent of the objects of the class. For instance, the bottom part of the optimal

image for class horse is made of vertical lines. As a result, an image made of such patterns in

this area will tend to have a high score for this class. This is shown in figure B.1e where the

animal legs are clearly visible in this part of the images. Note that the bird in figure B.1c has a

positive score for class bird, but a greater one in class frog, which we can reasonably put down

to the presence of the square perch.

Figure B.2 shows the scores of the different classifiers as the number of iterations of the

gradient descent grows. The classification score of the image x t is increasing for the class we

are targeting and remains small in the others.

This experiment is interesting to carry out because it shows that the classification pipeline
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Figure B.2 – Classifier responses as the number of iterations grows. In both graphs, the red
curve is the response of the classifier which we want to maximise (frog or horse) and the green
curves are the responses of the other classifiers. As expected, the score of the target class (no
matter what is the initial image) increases with the number of iterations, while the others
responses remain small and negative. We also note that this high response can be around 30,
while at test time, a high response of a real image is usually between 1 and 2.

tends to classify the objects according to their poses. Most of the frogs look like the second

example and most of the horses look like the three green-framed ones.
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