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ABSTRACT 

Sample supervised search centric image segmentation denotes a general method where 
quality segments are generated based on the provision of a selection of reference segments. 
The main purpose of such a method is to correctly segment a multitude of identical elements 
in an image based on these reference segments. An efficient search algorithm traverses the 
parameter space of a given segmentation algorithm. A supervised quality measure guides the 
search for the best segmentation results, or rather the best performing parameter set. This 
method, which is academically pursued in the context of remote sensing and elsewhere, 
shows promise in assisting the generation of earth observation information products. The 
method may find applications specifically within the context of user driven geographic object-
based image analysis approaches, mainly in respect of very high resolution optical data. Rapid 
mapping activities as well as general land-cover mapping or targeted element identification 
may benefit from such a method. 

In this work it is suggested that sample supervised search centric geographic segment 
generation forms the basis of a set of methods, or rather a methodological avenue. The 
original formulation of the method, although promising, is limited in the quality of the 
segments it can produce – it is still limited by the inherent capability of the given 
segmentation algorithm. From an optimisation viewpoint, various structures may be encoded 
forming the fitness or search landscape traversed by a given search algorithm. Results are still 
measured with a given empirical discrepancy metric. These structures may interact or have an 
interplay with the given segmentation algorithm. Various method variants considering 
expanded fitness landscapes are possible. Additional processes, or constituents, such as data 
mapping, classification and post-segmentation heuristics may be embedded into such a 
method. 

Here three different method variants are proposed. These novel methods aim to 
demonstrate the general feasibility of the proposed expanded fitness landscape design of 
sample supervised search centric geographic segment generation. The methods employ varied 
constituent types. All experiments throughout this work are conducted with three or four 
differentiated empirical discrepancy metrics that guide the search process. This is to prevent 
bias of any given metric towards any proposed method variant or sub-variant. Generally, 
results are presented demonstrating that the fitness/search landscapes generated by these 
expanded method designs are valid search problems. This is accomplished via parameter 
interdependency testing. Secondly, a selection of search methods is tested with all presented 
approaches, analysing if more complex search methods are needed to traverse the generated 
fitness landscapes. Specifically variants of differential evolution and particle swarm 
optimisation are used. Results highlight that the methods have variable interdependencies and 
that more complex metaheuristics are indeed needed as search methods (compared with, for 
example, random search and a hill climber). 

The first presented method variant demonstrates the utility of encoding data mapping or 
transformation functions within the optimisation loop. Classical segmentation algorithms 
employed within remote sensing, such as multiresolution segmentation, start to have 
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difficulties in segmenting multiple thematically similar elements when their spectral and/or 
geometric similarities start to diverge. A mapping function may tailor the data or the elements 
of interest in such a fashion that the given segmentation algorithm performs better on the 
given problem. Four data mapping functions are tested within such an approach. These 
mapping functions have varied characteristics. These functions consider variables, 
information through the data stack (multiband information) and also neighbourhood 
properties. 

Results are presented with these four method variants, embedding data mapping, against 
the generic formulation of sample supervised segment generation. Four datasets were tested, 
consisting of informal and formal structure identification and cleared fields mapping tasks on 
very high resolution optical data. The computational impact of data mapping is negligible 
with most of the presented functions. Three of the four presented method variants, or rather 
mappings functions, showed promise in such a context. Specifically two mapping functions, 
namely the transformation matrix and genetic transform, showed extensive increases in 
segment quality in some problem instances (in excess of 0.20 in terms of reference weighted 
Jaccard scores). 

As expected, no mapping function performed better under all conditions, as the selection of 
an appropriate function is still problem dependent. Nonetheless, both the transformation 
matrix and genetic transform functions provided statistically significantly better results in 24 
of their 32 investigated problem instances. In the eight instances where results were not 
statistically significantly better, results were comparable or not statistically significantly 
worse than the generic method variant (not worse by 0.02 reference weighted Jaccard metric 
scores). This suggests that these method variants may be employed safely in a range of 
problems or under a range of metric conditions. It should be noted here that experimentation 
was conducted under generalizability conditions (two-fold cross validation and +250 million 
segment evaluations), giving a well-rounded/general indication of method usefulness. 

The second method variant proposed considers graph-based connected component 
segmentation (mathematical morphology). Constrained connectivity, a variant of such 
segmentation based on the notion of a quasi-flat zone, defines spectral dissimilarity as a 
connectivity relation. The core segmentation algorithm consists of a two-dimensional 
parameter space constraining the growth of segments. This method may allow the encoding of 
additional attributes to threshold, or prevent the growth of segments. These attribute 
constraints are considered an additional constituent in an expanded fitness landscape design of 
sample supervised segment generation. Additionally, as with the presented method above, 
data mapping functions may also be encoded into such a method. 

A method is thus proposed consisting of three constituents, namely the core constrained 
connectivity algorithm, a data mapping constituent and an attribute thresholding constituent. 
Six attributes are defined for consideration (increasing/monotonic), considering geometric and 
spectral characteristics that collectively form the attribute thresholding constituent. Here four 
differentiated method variants are presented, consisting of various constituent combinations 
(CC, CC + Attr, CC + Map and CC + Attr + Map). These four method variants are contrasted 
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among themselves to demonstrate their utility in similar extensive evaluation conditions as 
considered with the data mapping function method variant. 

Results demonstrate that thresholdable attributes, initially conjectured to be safely useful, 
do not provide much benefit under cross-validated conditions. In contrast, constrained 
connectivity enhanced with a selection of data mapping functions provided excellent results. 
A statistical ranking placed constrained connectivity enhanced with data mapping as the most 
useful, followed by the most complex method variant, considering both data mapping and 
attributes. Additionally, the attribute constituent requires additional computation time. All 
three constituents display parameter or variable interdependencies. Although useful in some 
instances and even resulting in the best results in a select problem or two, thresholdable 
attributes need to be considered with caution in such a method. 

The third proposed method variant considers the use of spectral data contained within 
provided reference segments. It is proposed to construct a method constituent based around 
using these data. A selection of method variants is proposed, having varied constituents using 
classification to tailor the data. Spectral data are utilised in a one-class classification process 
(non-parametric, non-linear) to generate a mask of potential elements of interest. This process 
forms part of the constituent or search landscape – it is thus modifiable or tunable. The mask 
is used to generate samples of a synthetic secondary class, which lead to a two-class 
classification generating a probability map. This process also forms part of the search 
landscape/constituent. In this implementation, five parameters define the nature of the 
probability map. 

Four method variants are proposed and investigated using such a probability image to 
tailor the data for higher quality image segmentation. These variants consider different 
approaches to fuse or hybridise the probability image and original input image data. Some 
variants contain additional parameters to control the hybridisation. This leads to very modular 
methods, although the fitness landscape dimensionality may increase substantially. As with 
the previous presented methods, extensive evaluations are conducted. In this instance (with 
the removal of a problematic empirical discrepancy metric) all method variants performed 
better than the generic variant of sample supervised segment generation. One method in 
particular, called Hybrid:CP, considers very modular interactions between the probability 
image and original input image and displays very promising results. Unfortunately, these 
methods add a substantial computational impact compared with the generic method 
formulation. This is due to the inclusion of classification (support vector machines). The 
problem may be alleviated by considering classifiers with faster training times. 

These presented methods consider diverse manners in which sample supervised search 
centric geographic image segmentation may be defined, considering additional constituents 
for an expanded fitness landscape. Generally, most proposed variants performed better than 
the original formulation under extensive evaluation conditions. These results suggest such 
method designs, based on expanded fitness landscapes, or rather these sample supervised, 
search centric approaches in geographic object-based image analysis, are promising and 
worthy of further investigation. 
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ZUSAMMENFASSUNG 

Die stichprobenüberwachte suchbasierte Bildsegmentierung ist eine allgemeine Methode, 
bei der (so genannte) Qualitätssegmente auf der Grundlage einer Auswahl von 
Referenzsegmenten generiert werden. Die prinzipielle Aufgabe eines solchen Ansatzes ist die 
korrekte Segmentierung einer Vielzahl identischer Elemente in einem Bild auf der Grundlage 
dieser Referenzsegmente. Ein effizienter Suchalgorithmus traversiert den Parameterraum des 
gegebenen Segmentierungsalgorithmus, wobei ein überwachtes Qualitätsmaß die Suche nach 
den besten Segmentierungsergebnissen oder vielmehr dem performantesten Parametersatz 
lenkt. Diese Methode wird im Kontext der Fernerkundung und weiteren Bereichen erforscht 
und zeigt sich als vielversprechend bei der Unterstützung der Erstellung von auf 
Erdbeobachtung basierenden Informationsprodukten. Die Methode könnte speziell im Bereich 
der überwachten geographischen objektbasierten Bildanalyse, hauptsächlich im Kontext von 
sehr hochauflösenden optischen Satellitendaten, Anwendung finden. Sowohl Notfall- und 
Krisenkartierungen als auch die generelle Klassifikation von Landbedeckung oder die 
Detektion von Zielelementen können von dieser Methodik profitieren. 

In der vorliegenden Arbeit wird die stichprobenüberwachte suchbasierte geographische 
Segmentgenerierung als eine Basis oder vielmehr als ein generelles methodisches Konzept für 
einer Menge von Methoden vorgeschlagen. Wenngleich die ursprüngliche Formulierung der 
Methode vielversprechend erscheint, ist sie, aufgrund ihrer Abhängigkeit von den inhärenten 
Eigenschaften des gegebenen Segmentierungsalgorithmus, hinsichtlich der Qualität der 
generierten Segmente limitiert. Im Kontext von Optimierung können diverse Strukturen 
encodiert werden, die die Fitness oder die zu traversierende Suchlandschaft eines bestimmten 
Suchalgorithmus formen. Die Ergebnisse werden weiterhin mittels eines vorgegebenen 
empirischen Diskrepanzmaßes evaluiert. Diese Strukturen können sowohl untereinander oder 
auch mit dem Segmentierungsalgorithmus selbst interagieren. Verschiedenste Varianten der 
Methode unter Verwendung von erweiterten Fitnesslandschaften sind möglich. Zusätzliche 
Prozesse (Komponenten), wie beispielsweise Datenabbildung (Mapping), Klassifikation 
sowie Heuristiken für eine Post-Segmentierung können in eine solche Methode integriert 
werden.  

Hier werden drei verschiedene Methodenvarianten vorgeschlagen. Mittels dieser neuen 
Methoden soll die generelle Realisierbarkeit des vorgeschlagenen erweiterten Designs von 
Fitnesslandschaften für die stichprobenüberwachte suchbasierte geographische 
Segmentgenerierung demonstriert werden. Die Methoden verwenden vielfältige 
Komponententypen. Alle Experimente in dieser Arbeit werden mit drei beziehungsweise vier 
unterschiedlichen, den Suchprozess lenkenden, empirischen Diskrepanzmetriken 
durchgeführt, um eine Beeinflussung der gegebenen Metriken hinsichtlich aller 
vorgeschlagenen Methodenvarianten und Untervarianten zu vermeiden. Hauptsächlich 
belegen die dargelegten Ergebnisse, dass die von den erweiterten Methoden generierten 
Fitness- beziehungsweise Suchlandschaften valide Suchprobleme repräsentieren. Dieser 
Nachweis erfolgt durch den Test der Parameter auf gegenseitige Abhängigkeit. Des Weiteren 
wird eine Auswahl von Suchmethoden mit allen präsentierten Ansätzen getestet und 
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analysiert, ob noch komplexere Ansätze erforderlich sind, um die jeweils generierten 
Fitnesslandschaften zielführend zu traversieren. Im Besonderen werden Optimierungsansätze 
basierend auf differenzieller Evolution sowie Partikelschwärmen verwendet. Die Ergebnisse 
verdeutlichen, dass die Parameter der Methoden Abhängigkeiten untereinander aufweisen und 
dass – beispielsweise verglichen mit einer zufälligen Suche oder dem Bergsteigeralgorithmus 
– in der Tat komplexere Metaheuristiken erforderlich sind. 

Die Ergebnisse der ersten vorgestellten Methodenvariante belegen die Nützlichkeit der 
Encodierung von Datenabbildung oder Transformationsfunktionen innerhalb der 
Optimierung. Klassische Segmentierungsverfahren im Bereich Fernerkundung, wie 
beispielsweise die Multiskalen-Segmentierung, generieren schlechtere Ergebnisse bei der 
Segmentierung multipler thematisch ähnlicher Elemente sobald sie spektral und/oder 
geometrisch beginnen zu divergieren. Eine Abbildungsfunktion kann die zu verarbeitenden 
Daten oder Elemente jedoch derart anpassen, dass der gegebene Segmentierungsalgorithmus 
bessere Ergebnisse für die jeweilige Problemstellung liefert. Vier charakteristisch 
unterschiedliche Abbildungs-funktionen, die Variablen, Mehrkanal-Informationen und 
Nachbarschaftseigenschaften einbeziehen, werden in einem solchen Ansatz getestet. 

Die Ergebnisse dieser vier Methodenvarianten zur Integration von Datenabbildung werden 
denen der generischen Formulierung der stichprobenüberwachten Segmentgenerierung 
gegenüber gestellt. Vier verschiedene, sehr hochauflösende optische Datensätze wurden mit 
dem Ziel der informellen und formellen Strukturidentifikation sowie der Feldkartierung 
getestet. Der rechnerische Mehraufwand der Datenabbildung hat sich für die meisten der 
präsentierten Funktionen als vernachlässigbar herausgestellt. Drei der vier präsentierten 
Methodenvarianten oder vielmehr Abbildungsfunktionen haben sich in den Experimenten als 
vielversprechend gezeigt. Insbesondere zwei Abbildungsfunktionen – die Transformations-
matrix und die genetische Transformation – haben für einige Problemstellungen einen 
beträchtlichen Anstieg der Segmentqualität bewirkt (über 0,20 bezüglich gewichteter Jaccard-
Koeffizienten).  

Wie erwartet, führte keine der Abbildungsfunktionen unter allen Bedingungen zu den 
besten Resultaten, da die Wahl einer geeigneten Funktion von der jeweiligen Problemstellung 
abhängt. Nichtsdestotrotz führten sowohl die Transformationsmatrix als auch die genetischen 
Transformationsfunktionen in 24 von 32 untersuchten Problemstellungen zu statistisch 
signifikant besseren Ergebnissen. In den anderen acht Fällen waren die Ergebnisse 
vergleichbar oder nicht statistisch signifikant schlechter als die der generischen 
Methodenvariante (nicht schlechter als 0,02 bezüglich gewichteter Jaccard-Koeffizienten). 
Dies suggeriert eine sichere Verwendung dieser Methodenvarianten in einer Reihe von 
Problemen beziehungsweise in einem Bereich von bestimmten Konditionen der Metriken. 
Alle Experimente wurden unter verallgemeinerbaren Bedingungen durchgeführt (zweifache 
Kreuzvalidierung und über 250 Millionen Segmentevaluierungen), wodurch auf eine 
generelle Nützlichkeit der Methoden geschlossen werden kann. 

Die zweite vorgeschlagene Methodenvariante verwendet eine graphenbasierte, auf 
verbundenen Elementen basierende Segmentierung (mathematische Morphologie). Basierend 
auf dem Konzept von quasi-flachen Zonen, ist die eingeschränkte Konnektivität eine 
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mögliche Variante einer solchen Segmentierung. Hier wird spektrale Unähnlichkeit als 
Konnektivitäts-relation definiert. Der Kern des Segmentierungsalgorithmus wird von einem 
zwei-dimensionalen Parameterraum gebildet, mit dem das Wachstum der Segmente 
beeinflusst werden kann. Dieser Ansatz erlaubt die Encodierung von zusätzlichen Attributen 
zur Schwellwertanwendung oder zum Verhindern von Segmentwachstum. Die Beeinflussung 
oder Beschränkung der Attribute bildet eine zusätzliche Komponente in einem erweiterten 
Design von Fitnesslandschaften für die stichprobenüberwachte Segmentgenerierung. Zudem 
können zusätzlich, ähnlich wie bei der oben präsentierten Methode, 
Datenabbildungsfunktionen integriert werden. 

Daher wird eine Methode, bestehend aus den folgenden drei Komponenten vorgeschlagen: 
dem auf beschränkter Konnektivität basierenden Kernalgorithmus, der Datenabbildungs-
komponente sowie der Komponente für die Schwellwertbildung von Attributen. Sechs 
verschiedene Attribute (steigend/monoton) zur Beschreibung geometrischer und spektraler 
Charakteristiken werden hier untersucht. Diese Charakteristiken bilden im Kollektiv eine 
Komponente für die Schwellwertbildung. Es werden hier vier abgeleitete Methodenvarianten 
präsentiert, die aus vielfältigen Kombinationen von Komponenten bestehen (CC, CC + Attr, 
CC + Map and CC + Attr + Map). Diese vier Varianten werden untereinander verglichen, um 
ihren Nutzen unter ähnlich umfangreichen Evaluierungsbedingungen, wie bei der 
Methodenvariante mit Datenabbildungsfunktion, aufzuzeigen. 

Entgegen der ursprünglichen Vermutung, dass die Verwendung von Attributen nützlich ist, 
zeigen Kreuzvalidierungsergebnisse, dass dies keinen großen Mehrwert bringt. Im Gegensatz 
dazu hat der Ansatz der eingeschränkten Konnektivität, verbessert durch eine Auswahl von 
Datenabbildungsfunktionen, exzellente Resultate hervorgebracht. Dieser Ansatz, gefolgt von 
der komplexesten Methodenvariante unter Verwendung von Datenabbildung und Attributen,  
wurde von einem statistischen Ranking als die nützlichste Methode eingestuft. Die 
attributbasierte Komponente erfordert darüber hinaus zusätzliche Rechenzeit. Alle drei 
Komponenten weisen voneinander abhängige Parameter beziehungsweise Variablen auf. 
Wenngleich Attribute zur Schwellwertbildung in einigen Instanzen nützlich sind und in zwei 
Selektierungsproblemstellungen die besten Ergebnisse lieferten, sind diese dennoch mit 
Vorsicht in einer solchen Methode zu behandeln. 

Die dritte vorgeschlagene Methodenvariante basiert auf der Verwendung der spektralen 
Information von bereitgestellten Referenzsegmenten. Es wird eine Methodenkomponente, die 
diese Daten nutzt, entworfen. Eine Auswahl von verschiedenen Varianten, bestehend aus 
unterschiedlichen Komponenten zur Anpassung der Daten mittels Klassifikation, wird hier 
vorgestellt. Die Erstellung einer Maske mit potentiell interessierenden Elementen erfolgt 
mittels Klassifikation der spektralen Daten (nicht-parametrisches, nicht-lineares 
Einzelklassen-Problem). Dieser Prozess repräsentiert einen Teil der Suchlandschaft-
Komponente und ist damit sowohl modifizierbar als auch justierbar. Die abgeleitete Maske 
wird für die Generierung von Beispielen einer synthetischen sekundären Klasse verwendet. 
Basierend auf dem daraus resultierenden Zwei-Klassen-Problem kann eine 
Wahrscheinlichkeitskarte generiert werden. Dieser Prozess stellt zudem auch einen Teil der 
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Suchlandschaft-Komponente dar. In der vorliegenden Implementierung definieren fünf 
Parameter die Beschaffenheit der Wahrscheinlichkeitskarte. 

Vier Methodenvarianten werden in dieser Arbeit vorgeschlagen und – unter Verwendung 
der Wahrscheinlichkeitsbilder für die Anpassung der Daten mit dem Ziel einer besseren 
Bildsegmentierung – untersucht. Die Varianten verfolgen verschiedene Ansätze zur 
Fusionierung oder Hybridisierung von Wahrscheinlichkeitsbild und ursprünglichen 
Eingangsdaten. Einige der Varianten beinhalten Parameter zur Kontrolle und Beeinflussung 
der Hybridisierung. Dies führt zu sehr modularen Methoden, wenngleich die Anzahl der 
Dimensionen einer Fitnesslandschaft hier erheblich ansteigen kann. Äquivalent zu den zuvor 
vorgestellten Methoden, werden auch hier ausgiebige Evaluierungen durchgeführt. Im 
vorliegenden Fall (nach Beseitigung einer problematischen empirischen Diskrepanzmetrik) 
wurden mit allen Varianten bessere Ergebnisse erzielt, als mit der generischen Variante der 
stichprobenüberwachten Segmentgenerierung. Insbesondere eine der Methoden (Hybrid:CP), 
die sehr moderate Interaktionen zwischen dem Wahrscheinlichkeitsbild und den 
ursprünglichen Eingangsdaten verwendet, liefert sehr vielversprechende Ergebnisse. 
Unglücklicherweise haben diese Methoden, verglichen mit der generischen 
Methodenformulierung, einen erheblich höheren Rechenaufwand zur Folge. Dieses Problem 
besteht aufgrund der Einbindung der Klassifikation (support vector machines) und könnte 
durch die Verwendung von Klassifikatoren mit schnelleren Trainingszeiten eingedämmt 
werden. 

Die vorgestellten Methoden verwenden vielfältige Definitionen einer stichproben-
überwachten suchbasierten geographischen Bildsegmentierung unter Einbezug zusätzlicher 
Komponenten für eine erweiterte Fitnesslandschaft. Generell haben die meisten der 
vorgeschlagenen Varianten unter umfangreichen Evaluierungsbedingungen bessere 
Ergebnisse geliefert, als die ursprüngliche Formulierung. Diese Ergebnisse legen nahe, dass 
die vorgestellten Methodenentwürfe, basierend auf erweiterten Fitnesslandschaften 
beziehungsweise auf beispielüberwachten suchbasierten Ansätzen im Bereich der 
geographischen objektbasierten Bildanalyse, sehr vielversprechend sind und daher weiteren 
Untersuchungen unterzogen werden sollten. 
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1.1. Overview 

This dissertation elaborates upon methodology within the context of sample supervised search 
centric geographic image segmentation. In such a method, segments are automatically generated based 
on example reference segments. Expanded fitness landscapes are proposed to improve segment quality 
and a range of method variants are presented in this vein. 

In this chapter, a section is presented (Section 1.2) to set the context of this work. This leads to the 
description of a specific remote sensing image analysis methodology and related problem formulation 
in Section 1.3. The contribution of this work is presented in Section 1.4. This is followed by a 
description of the dissertation structure (Section 1.5) and a list of publications and secondary material 
submitted as part of this dissertation (Section 1.6). 
 

1.2. Remote Sensing Image Analysis 

1.2.1. Object Recognition 

Digital image processing and image analysis methodology have garnered great interest in the last 
four decades within scientific disciplines that may possibly be labelled, collectively, as the image 
analysis sciences. Image analysis encompasses the extraction of information from imagery, or the 
provision of information, via the process of image processing. Varied approaches exist and new ones 
are continuously being proposed to extract information from imagery, thereby pushing the boundaries 
of efficiency and accuracy. The applicability of a method is strongly dependent on the nature of the 
data and the desired information product. 

Although various general works exist, echoing these broad sentiments and detailing the various 
variants of image analysis, e.g. [1-3], a series of short course materials summarises the main types of 
object recognition succinctly [4]. Object recognition implies identifying and labelling an image, or 
sub-parts of an image and is the type of image analysis considered in this dissertation. The authors of 
[4] discuss four broad types of object recognition, namely bag-of-words models, parts-based models, 
discriminative methods and concurrent segmentation and recognition. The bag-of-words approach 
entails the creation of histograms of small elementary image parts and their subsequent classification. 
Similarly, a part-based approach analyses elementary image parts, but also considers their spatial 
distributions, or context. 

Discriminative methods entail the use of classification, with an image partitioned into smaller parts 
or overlapping windows. A set of rich features or attributes may be calculated for these parts and a 
given classifier may be tasked to judge if a part contains, or is, a certain element of interest (e.g. an 
example from within remote sensing [5]). Segmentation and recognition entail the partitioning of an 
image, with the aim of generating and subsequently identifying semantically correct image partitions. 
These broad method categories describe general processes, with specific methods combining aspects 
of these processes, or defining interacting processes, being common [6-11]. Generally, there is an 
underlying research theme in the image analysis sciences of improving the quality of results, among 
other research goals. 
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1.2.2. Very High Resolution Optical Remote Sensing Image Analysis 

Within the discipline of remote sensing, there also exists an extensive body of work focusing on 
methodological aspects of image analysis. Methodology, as considered here, implies the creation of 
information products, or maps, derived from satellite and airborne imagery of the earth’s surface. Such 
imagery has unique characteristics as opposed to imagery or data encountered within other imaging 
disciplines. Optical remote sensing image analysis methodology has undergone a well reported and 
significant shift since the turn of this century, mainly owing to the proliferation of commercially 
available Very High Resolution (VHR) optical imagery [12-16] and subsequent challenges to and 
potential benefits of its analysis. 

Traditionally, optical remote sensing image analysis places firmer emphasis on concepts of context 
and spatial aggregation, loosely speaking, using notions of both parts-based models and simultaneous 
segmentation and recognition. Image segmentation is a tool well suited to assist in the analysis of VHR 
optical data [13,17,18]. This may be due to the typical scenario of scene objects consisting of multiple 
resolution cells, or pixels, within VHR optical data, and to the presence of common spectral and 
thematic relations of scene objects [14]. 

The breadth of literature on image segmentation is extensive [19-21], with remote sensing also 
displaying various novel and adapted methodologies [13,18]. Followed approaches within remote 
sensing include, but are not limited to, region merging variants (e.g. the well-known Multiresolution 
Segmentation (MS) [22]), region growing segmentation [23], watershed-based approaches [17] and 
mathematical morphology and graph-based segmentation [24,25]. Spectral, geometric and textural 
properties are commonly considered as homogeneity predicates [26]. See [27] for an overview of a 
selection of segmentation algorithms used in practice within remote sensing. It should be noted that 
other image processing could also be considered to conduct simultaneous object segmentation and 
recognition, including Cartesian genetic programming [28], cellular automata [29] and various 
approaches from mathematical morphology [30] and computer vision [31]. 

Various aspects need consideration when utilising segmentation as a primary tool in VHR optical 
image analysis. Examples include notions of hierarchical segmentation [12,32], segment quality [33-
35], the notion of semantically meaningful image segments [36], the integration of context information 
[37], classification/machine learning approaches to be used [38,39], feature descriptors to be 
considered [40], data representation [41], computational costs [42] and the general design of an 
automated or manual method or workflow [37,43]. An academic sub-discipline has evolved around the 
broad theme of simultaneous segmentation and recognition within remote sensing, in part to address 
many of these considerations, namely Geographic Object-Based Image Analysis (GEOBIA) [14]. 

 

1.2.3. Geographic Object-based Image Analysis 

GEOBIA defines a methodological avenue or a style of image analysis approaches within remote 
sensing [14-16,36,37,43-45]. GEOBIA strives to address the general themes of deriving information 
products faster or more autonomously, and generating more accurate products. At the core of GEOBIA 
is the creation of initial image partitions, most commonly through image segmentation [14], and the 
subsequent aim of progressing to thematically accurate land-cover information. Cognitive or user- 
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driven method building is common (rule-set development) [14,37]. A distinction may be made 
between thematically meaningful segments/geographic objects and general image objects [36]. How to 
progress from image objects to geographic objects may also be considered a research theme within 
GEOBIA. It should be noted that GEOBIA might be considered a specific viewpoint or community 
and that works involving simultaneous segmentation and recognition within remote sensing may not 
necessarily fall within its definitions or aims (see [14] for an indication of the research agenda of 
GEOBIA). 

Various approaches exist within GEOBIA to ultimately generate geographic objects. Generally, it is 
considered that a single level of image segmentation and classification of segments is insufficient for 
most mapping tasks. This is mainly due to variations in thematic and spectral correlations of land-
cover elements and the subsequent inability of a given segmentation algorithm to generate the desired 
semantic segments. Additional procedures would be needed to progress to semantic 
segments/geographic objects. Figure 1.1 [14] illustrates two such general approaches, advocated and 
commonly seen in practice [37]. In Figure 1.1(a), a workflow is shown where multiple sets of 
segments are generated (different algorithms/parameterisations) and iteratively refined via various 
image processing and classification tasks. Figure 1.1(b) is similar, with a focus on a hierarchical 
segmentation, and additionally using information present in the hierarchy to progress to a final 
classification. Note that these processes are user driven. 

 

 

Figure 1.1. [14] Two generalised approaches for image analysis found within GEOBIA. 
Progressing from image objects to geographic objects (classification) may involve multiple 
runs of a given segmentation algorithm (Figure 1.1(a)), hierarchical segmentation (Figure 
1.1(b)) and various approaches modifying segments based on expert, hierarchical or contextual 
knowledge. 

Although deriving semantically correct image segments would typically not initially be possible 
(the reason for the approaches such as in Figure 1.1), it is still aimed at and is an area of active 
research within remote sensing and beyond [14,23,46-52]. Generally, the closer a partitioning 
approaches the desired final result, the fewer subsequent processes need to be invoked or designed 
(e.g. via rule-sets or other automated procedures). Image segment quality is thus an important and 
well-studied measure within such approaches [27,33-35,53-55].  

(a) (b) 
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Improving segment quality (automatically) has substantial benefits in terms of automating methods 
and creating more accurate information products. This ultimately contributes to the greater theme 
within remote sensing of providing geo-spatial intelligence. A selection of automatic techniques exists 
to assist in the process of generating thematically correct image segments, broadly categorised based 
on their need for user interaction. They may be employed in various stages of the general approaches 
depicted in Figure 1.1. These techniques find their origin in other imaging disciplines, where similar 
problems have been encountered. Unsupervised methods attempt to define an appropriate 
segmentation automatically based on image-wide statistics [12,54,56-58], either in the context of a 
single-scale representation or a multi-scale representation (e.g. Figure 1.1(b)). A criticism of such 
approaches is their insensitivity to targeted elements of interest. 

Another approach attempts to generate segments based on the provision of a selection of exemplar, 
template or reference segments [46,52,53,59-62]. The geometry and other properties of the provided 
reference segments are used to drive a search or construction process for quality segmentation. 
Supervised segment measures, or rather empirical discrepancy metrics [35], are used to judge segment 
quality and drive the search or construction process. Such a general approach has the advantage of 
being able to tailor segmentation to a specific element of interest and removes the guesswork and 
labour that would be needed by an image analyst otherwise. This approach may be called supervised 
segmentation or automated segmentation algorithm parameter tuning. Here, more holistically, it is 
referred to as a sample supervised search centric approach within geographic object-based image 
analysis [63]. It is the general method considered, and elaborated upon, in this dissertation. 

 

1.3. Automated Segmentation Algorithm Parameter Tuning 

The general supervised segmentation algorithm parameter tuning approach forms part of a family of 
methods found at the intersection of the image analysis sciences and the sub-discipline of computer 
science focused on efficient search methods (e.g. evolutionary computation, metaheuristics). The 
authors of [64] (Chapter 1) present an overview of ways in which efficient search methods may be 
employed within image analysis tasks. Metaheuristics, which denote (generally) population-based 
stochastic search methods, are commonly the search methods considered in such method designs. In 
[64], examples are given where evolutionary computation may be used for low- mid- and high-level 
vision tasks. Alternatively, the involvement of an efficient search method may be defined by whether it 
conducts tuning of a given method or is involved in the construction process of a method [59,64,65]. 
Sample supervised segment generation is defined as a tuning process in this work. Generally, such an 
approach may be used if there are numerous similar objects of interest in a scene, such as buildings, 
fields, waterbodies and vehicles. 

A general overview of an example usage scenario of sample supervised segment generation 
(generic variant as first seen in [59]) is given along with details of the method, explained in the context 
of the example. Figure 1.2 illustrates an arbitrary information extraction task and depicts a subset of a 
VHR optical image over part of a refugee camp (the whole camp is of interest). The task may entail 
characterising and counting all structures to assist in logistics and planning activities for the camp. In 
this example, an image analysis philosophy might be followed based on the general approach depicted 
in Figure 1.1(a), where separate classes are depicted with separate segmentation and refinement 
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processes. A sample supervised segment generation approach may assist in optimising segment quality 
before refinement or the initiation of other processes. Initially, a user might be interested in finding all 
the tents. A small selection of example objects (seven) are digitised or provided by other means, e.g. 
[49]. They are highlighted in Figure 1.2 by chequered yellow and black polygons and surrounded by 
green (and a red) rectangle(s). The tan and black chequered polygons denote additional samples, later 
to be used in classification. 

 

 

Figure 1.2. An example image analysis task where the aim could be to identify and 
characterise all structures. Seven tents were digitised and presented to a generic sample  
supervised segment generation method as reference segments. 

The reference segments are extracted along with small subset imagery centred on them (rectangles). 
These two sets of imagery are provided as input to the general sample supervised segment generation 
method, shown in Figure 1.3 [63]. An iterative search process is invoked that generates parameter sets 
for a given segmentation algorithm, e.g. the well-known Multiresolution Segmentation [22] (MS). 
During each iteration of the search process, all the subset imagery is segmented (seven in this 
example) and the generated segments are compared with the provided reference segments. Commonly, 
empirical discrepancy metrics [35] are used to judge the level of similarity between generated and 
reference segments. The calculated quality measure, or to use metaheuristic terminology, the fitness 
score, is passed on to the given optimiser which uses the information to guide the search process in the 
next iteration (generation). 
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Figure 1.3. [63] The general architecture of the generic variant of sample supervised segment 
generation as found in [59,62,66]. 

After a certain number of iterations have passed, or when a certain level of segment quality is 
reached, the method terminates and gives as output the best performing segmentation algorithm 
parameter set. Figure 1.4 [61] illustrates an abstract segment quality evaluation scenario where R 
denotes a reference segment and S (S1, S2 and S3) defines generated segments. 

 

 

Figure 1.4. [61] An abstract segment quality evaluation scenario, where a given metric 
measures segment quality and provides the output to the sample supervised segment 
generation method. 

Commonly spatial metrics are used to measure segment quality. The Reference Weighted Jaccard 
(RWJ) [61] measure is given as an arbitrary example (developed in this work), 
 

𝑅𝑅𝑅𝑅𝑅𝑅 = 1 −�
|𝑅𝑅 ∩ 𝑆𝑆𝑖𝑖|
|𝑅𝑅 ∪ 𝑆𝑆𝑖𝑖|

×
|𝑅𝑅 ∩ 𝑆𝑆𝑖𝑖|

|𝑅𝑅|

𝑛𝑛

𝑖𝑖=1

 

 
where i is an iterator running over all intersecting segments (Si), || denotes cardinality, ∪ the union, 

and ∩ the difference operators. 
Figure 1.5 illustrates a two-dimensional parameter slice, or search surface, generated by RWJ for 

such a problem using Multiresolution Segmentation (MS). Lower values indicate better segment 
results. Each cell depicts a given parameter set combination and thus a segmented image with said 
parameter set (and segment quality given by the colour/metric value). Visiting each cell in a 
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multidimensional space, or brute force search, is computationally impracticable (due to segmentation 
and to a much lesser extent other processes) [59]. 
 

 

Figure 1.5. An example two-dimensional parameter slice (three dimensions in this example), 
or fitness landscape, generated by RWJ. Note the multimodal nature (multiple local minima). 

Metaheuristics are commonly preferred to traverse the parameter set of the given segmentation 
algorithm [51,59-61,67-70], owing to various advantages over simpler search methods. Most 
importantly they are derivative-free population-based methods, less likely to fall into local optima as 
found in Figure 1.5. Figure 1.6 further illustrates this problem on two abstract benchmark functions, 
namely using a variant of Cuckoo Search [71] (programmed for this work). Note the aggregation of 
points in Figure 1.6(a) (“camel”), finding the true global optimal result and the failure of the method to 
find the optimal central optimal result in Figure 1.6(b) (“Ackley”). 

 

 

Figure 1.6. Two benchmark search problems where points depict positions visited by a given 
optimiser [71], illustrating an “easy” (a) fitness landscape and a “difficult” fitness landscape 
(b). 

More detail on this general approach, including supporting concepts and a literature review, may be 
found in Chapter 2. See [51,70] and the Appendices for (usable) research tools based on this concept. 
Generally, if the method as depicted in Figure 1.3 delivers good results (as judged by metrics), such 
results may be used; otherwise additional processing may be needed as illustrated in Figure 1.1. 

(a) (b) 
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Figure 1.7 illustrates subsequent segmentation and classification results from the problem depicted 
in Figure 1.2. Note that no additional processes were invoked, except automating the parameter tuning 
of the given segmentation algorithm (MS in this example [22]), and using a few additional examples 
for a manually tuned one-class Support Vector Machine (SVM) [72] (manual parameter tuning and 
attribute selection). More details on the software constructed for this demo (and others in the context 
of this work) may be found in the Appendices. 
 

 

Figure 1.7. Basic classification results after running the generic variant of sample supervised 
segment generation and conducting basic classification (one-class SVM). Note the bad 
geometry of the segments related to the tents. 

Figure 1.7 serves to illustrate a general problem with the sample supervised segment generation 
method – on all but the easiest of problems the segmentation results are insufficient to be used as is. 
This specific segmentation problem is truly difficult, with large variations in spectral and thematic 
similarity, muddled or overlapping structures and soft boundaries. Figure 1.8 illustrates an enlargement 
detailing the individual tents to illustrate the difficulty of the problem. Additional processes, as 
detailed in Figure 1.1, would be needed to derive a quality information product and a simple 
segmentation and classification process as depicted here would not be possible. 

It should be noted that the general sample supervised segment generation method only attempts to 
find the optimally achievable results within the capabilities of the given segmentation algorithm. Also, 
this optimally achievable result might not always be found, as illustrated with the synthetic fitness 
landscape in Figure 1.6(b). Nonetheless, the more accurate segmentation is, in terms of over-, under- 
segmentation and geometry, the easier subsequent processes become. 
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Figure 1.8. Enlargement over a part of Figure 1.2 to illustrate the difficult nature of the image 
analysis problem. Elements of interest (tents) are spectrally diverse, not homogeneous, not 
always properly separated from one another, and have soft transitions with their surroundings. 

Improving on this general method has thus enjoyed research attention, e.g. [48,50,53,67,68,73] (see 
Chapter 2 for more details). Elaborating on this general method is the focus within this dissertation. A 
thesis on its extension is presented next, allowing for significantly improving the quality of segments 
without requiring additional user interaction. 
 

1.4. About this Dissertation 

1.4.1. Expanded Fitness Landscapes for Geographic Sample Supervised Segment Generation 

This dissertation explores the idea of defining expanded fitness landscapes in geographic sample 
supervised segment generation. Additional image processing and/or classification processes, referred 
to here as constituents, may be added in a sample supervised segment generation framework. Land-
cover element homogeneity is typically of such a nature that simple segmentation algorithms fail to 
achieve acceptable results, irrespective of how finely controlling parameters are tuned. This is 
illustrated in the above figures and is the reason for more elaborate workflows. A fitness landscape, to 
use optimisation terminology, defines the domain of all variables or parameters controlling a specific 
process. Individual points, and the accompanying parameter set, define the results of a method 
executed on a problem with the given parameter set, e.g. Figures 1.5 and 1.6 where the RWJ is the 
given quality measure. The authors of [74] present a seminal work explaining the effect of various 
fitness landscapes on the search performance of classical genetic algorithms. 

Such expanded search landscapes may incorporate various additional constituents interacting with a 
given segmentation algorithm in a sample supervised segment generation method. The given 
segmentation algorithm may be affected by, and may affect these other constituents (e.g. see [75,76] 
for variable/parameter interdependency tests). This necessitates the creation of a singular fitness 
landscape, increasing the search problem dimensionality, difficulty and the time required to solve it. A 
constructed expanded search problem/landscape potentially allows for the derivation of superior 
results, specifically/even under conditions measuring generalizability (as done in this work). 
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This idea is underscored by various general works within the optimisation and computer vision 
communities, where defining, analysing and solving various search problems are common [64]. 
Additional inspirations include the original sample supervised segmentation technique [59,66] and an 
awareness of its limitations, various works suggesting interactions of image analysis philosophies, e.g. 
[9,10,77], and interactions of processes within machine learning, e.g. simultaneous classifier free- 
parameter tuning and attribute subset selection [78]. 

Figure 1.9 gives an overview of the concept of expanded fitness landscapes in the context of the 
sample supervised segment generation method. The white shaded cells denote the general approach 
within sample supervised segment generation, where a segmentation algorithm functions on data and 
delivers an output (single-scale, multi-scale or class independent [14,48]). The shaded cells denote 
possible extensions via expanded fitness landscapes. 

 

 

Figure 1.9. Expanded fitness landscapes in sample supervised segment generation. The shaded 
cells (grey) illustrate additional constituents that may be added to the general method (white 
cells). The three processing steps thus combine to form an expanded fitness landscape. 

The data modification constituent is illustrative of processes affecting or modifying image data 
directly, so that the given segmentation algorithm may perform better on the given problem. In short, 
data mapping may force a closer thematic and spectral similarity. Generalizability may be factored in. 
Constituent types that may be considered here include: 

• Data mapping or transformation functions (point based, neighbourhood based, colour space 
transforms). 

• Image filters and iterative image filters (e.g. cellular automata [29]). 
• Classification based data manipulation (sampling, classifier, attributes). 
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The segment modification constituent suggests incorporating parameterised algorithms modifying 
segments via merging and splitting (or more elaborate decision processes). Such algorithms may 
observe segment internal or external content. Elements from these three constituents, namely the data 
modification constituent, core segmentation algorithm constituent, and the segment modification 
constituent, collectively form the expanded fitness landscape. Additionally, segmentation algorithm 
selection or construction may also be considered as a searchable element. The general aim in this work 
is thus not the presentation of new segmentation algorithms, but the exploration of a method design 
incorporating existing, well-studied, remote sensing image segmentation methods (e.g. [22,24,79]) and 
how general results may be further improved. 
 

1.4.2. Research Contribution 

Contributions in this dissertation are related to the general geographic sample supervised segment 
generation methodology. Specifically they are: 

• Propose expanded fitness landscapes incorporating tuneable constituents interacting with a 
given segmentation algorithm. 

• Propose, develop and evaluate a range of methods based on this general principle, including: 
o a variant incorporating data mapping functions; 
o a variant conducting simultaneous attribute tuning and data mapping in the context of 

graph-based connected component segmentation; and 
o a variant using reference segment spectral content for classification to tailor data. 

 
Other minor contributions include: 
• Contribute to research methodology within the context of this method via methodological 

transfer from related disciplines. 
• Present a new empirical discrepancy measure, the Reference Weighted Jaccard (RWJ) metric 

[61]. 
• A research software framework (C++) for exploration of such methods (see Appendices). 

 

1.4.3. Proposed and Evaluated Method Variants 

To substantiate the thesis, three method variants are proposed and evaluated that incorporate 
expanded fitness landscapes. Firstly, the concept of data modification and its interaction with 
segmentation is explored via data mapping functions. This idea was chiefly inspired by works within 
computer vision and remote sensing, focusing on the influences of colour space representations on 
image processing/image segmentation results, e.g. [80,81]. Figure 1.10 [61] illustrates this general 
approach, where a transformation function (data mapping) constituent forms part of the search problem 
or optimisation loop. Two well-known segmentation algorithms are tested within this approach, 
namely, Multiresolution Segmentation (MS) [22] and Simple Iterative Linear Clustering (SLIC) [79]. 
Four mapping functions are tested (combination of adapted and novel), having various properties. 
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Figure 1.10. [61] Expanded fitness landscape via data mapping or transformation functions. 

This general idea is subsequently extended to the domain of mathematical morphology-based image 
segmentation. The graph-based segmentation algorithm Constrained Connectivity (CC) [24,82-85] 
allows for the addition of arbitrary attributes to constrain the growth of segments, in addition to core 
parameters controlling the algorithm. A method variant is proposed and analysed [86] incorporating 
three constituents, namely those of data mapping functions, core CC parameters and a range of spectral 
and geometric thresholdable attributes further tailoring segments, as illustrated in Figure 1.11. 

 

 

Figure 1.11. [86] Sample supervised segment generation incorporating the CC algorithm, data 
mapping functions and thresholdable attributes. 

The general idea of utilising reference segment spectral content in some useful manner is also 
explored, illustrated in Figure 1.12. A method variant is proposed and analysed [88], incorporating 
adjustable classification components generating probability imagery, which in turn influences data 
mapping. The dimensionality of the fitness landscape may increase significantly in such a design. A 
range of method variants is investigated, based on this concept. Such a design allows for a significant 
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increase in segment quality, at the expense of requiring more computing time owing to classification 
involved – one-class and two-class SVMs [72,87] in this instance. 
 

 

Figure 1.12. [88] A sample supervised segment generation method design incorporating 
classification processes. 

1.4.4. Research Design 

In this work a general quantitative comparative research design is followed, which is common 
within the optimisation community [89,90] and also within remote sensing methodological studies. 
This may also be referred to as experimentalism [89] (see [91] for an interesting treatise on 
research/research design within evolutionary computation). Research methodology within this context 
may also be transferred from machine learning [92]. 

Proposed method variants falling within the context of expanded fitness landscapes for geographic 
sample supervised segment generation are analysed in two ways. Firstly they are compared with the 
original formulation for sample supervised segment generation in terms of classical measures such as 
final results, generalizability and required computing times. Numerous experimental conditions are 
advocated. These include using various problem instances or data sets, using four different empirical 
discrepancy metrics (metrics may display bias) and conducting a very large number of experimental 
runs (250 000 000+ segment evaluations in Chapter 3 alone). Within each chapter the utilised datasets 
or problem types are described. Various statistical measures are used to report results such as the 
student’s t-test, non-parametric ranking, Nemenyi post-hoc test and cross-validation [89,90,93]. 

Secondly, the proposed method variants are analysed to render their various properties, such as the 
validity of the proposed methods as suitable optimisation problems. Two metaheuristics are commonly 
tested with all approaches, namely Differential Evolution (DE) [94,95] and Particle Swarm 
Optimisation (PSO) [95,96]. They are compared with each other and with simpler search methods 
(random sampling and a hill climber) to validate that these method variants are valid search problems. 
The relative performances of these search methods are also investigated, e.g. [97]. Parameter 
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interdependencies are also examined in some method variants to affirm the interdependent nature of 
method constituents [75,76]. 

 

1.5. Dissertation Structure 

This dissertation has a cumulative structure. The individual chapters are published journal articles 
(and in one instance a peer reviewed book chapter), reproduced with publisher permission within this 
dissertation. In Chapter 2 (book chapter), the general concept of sample supervised segment generation 
is examined in greater detail, along with a review of works related to this approach. The proposed 
method variants as summarised above are detailed in the subsequent Chapters 3, 4 and 5. In Chapter 3, 
the method variant incorporating data mapping functions is presented. Chapter 4 details the method 
variant incorporating graph-based segmentation with additional adjustable attributes. In Chapter 5, the 
method variant is presented detailing the use of reference segment spectral content. A synthesis of the 
dissertation is given in Chapter 6, detailing research highlights, shortcomings and suggestions for 
future work. 

The dissertation contains four sections within the Appendices. Appendix A details three conference 
papers presented during this research (three presentations/talks at international conferences). These 
papers served as pilot studies for the general methodological avenue and for the specific method 
variants. Experimental software was developed for each method variant. Minor details and a short user 
guide on the software are given in Appendix B. Appendix C contains supplementary results to explain 
the nature of some experimental runs (high parameter standard deviation) delivering multiple, nearly 
identical quality scores with vastly different parameter sets. Appendix D contains algorithm details on 
the DE search method and the MS and SLIC segmentation algorithms. CC segmentation is detailed 
sufficiently in Chapter 4. 
 

1.6. Publications Forming Part of this Dissertation 

Chapter 2 [63], peer reviewed book chapter – Accepted for publication: 
Fourie, C.; Schoepfer, E. Sample supervised search-centric approaches in geographic object-based 
image analysis (geobia): Concepts, state-of-the-art and a future outlook. In Earth observation for 
land and emergency monitoring - innovative concepts for environmental monitoring from space, 
Balzter, H., Wiley-Blackwell: Hoboken, NJ, USA, 2015, in press. 
 
Chapter 3 [61], peer reviewed journal article – Published (Science Citation Index listed): 
Fourie, C.; Schoepfer, E. Data transformation functions for expanded search spaces in geographic 
sample supervised segment generation. Remote Sensing. 2014, 5, 3791-3821. 
 
Chapter 4 [86], peer reviewed journal article – Published (Science Citation Index listed): 
Fourie, C. On attribute thresholding and data mapping functions in a supervised connected 
component segmentation framework. Remote Sensing. 2015, 7, 7350-7377. 
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Chapter 5 [88], peer reviewed journal article – Published (Science Citation Index listed): 
Fourie, C.; Schoepfer, E. Classifier directed data hybridization for geographic sample supervised 
segment generation. Remote Sensing. 2014, 6, 11852-11882. 
 
Appendix: 
A.1 [98], peer reviewed conference paper – GEOBIA 2012 (talk): 
Fourie, C.; Schoepfer, E. Combining the heuristic and spectral domains in semi-automated 
segment generation, Paper presented at Geographic Object-based Image Analysis (GEOBIA 2012), 
Brazil, 7-9 May 2012. 
 
A.2 [99], peer reviewed conference paper – IGARSS 2013 (talk): 
Fourie, C.; Schoepfer, E. Connectivity thresholds and data transformations for sample supervised 
segment generation, Paper presented at Geoscience and Remote Sensing Symposium (IGARSS 
2013), IEEE International, Melbourne, 21-26 July. 
 
A.3 [69], extended illustrated abstract – GEOBIA 2014 (talk): 
Fourie, C.; Schoepfer, E. Classifier directed data transformations in sample supervised segment 
generation, Paper presented at Geographic Object-based Image Analysis (GEOBIA 2014), 
Thessaloniki, Greece, 21-24 May. 
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Abstract 

Sample supervised search centric image analysis has garnered research attention in various imaging 
disciplines concerned, to some extent, with identifying multitudes of target elements in an image. In a 
remote sensing image analysis context such a methodological philosophy might find value in a rapid 
mapping scenario or even as part of general land cover mapping approaches. A user is not involved in 
the decisions of how to construct or tune image processing for the given information extraction 
problem, but is rather tasked to give a few examples of the elements of interest, similar to the concept 
of supervised classification. The information extraction method is automatically constructed, with the 
construction process guided by various notions of quality derived from comparing the limited user 
provided samples with generated results. Such a design philosophy holds substantial value for rapid or 
emergency response mapping endeavours such as the Copernicus Emergency Management Services 
(EMS). Current land-cover mapping methodologies and technologies are not tailored to the needs of 
rapid mapping. The concept of sample supervised optimisation based image analysis is examined, in 
which an efficient search algorithm is used, in various ways, to construct or tune a method. The 
application of such a general search centric information extraction philosophy within the discipline of 
Geographic Object-based Image Analysis (GEOBIA) is reviewed, with a few discussions given on 
limitations of such a general approach. GEOBIA, as a sub discipline of both geographic information 
science and remote sensing, denotes various methodological approaches to image analysis centered on 
the concept of semantic segmentation. Finally, considering developments in sample supervised image 
analysis from outside of the domain of remote sensing, a synthesis is presented on potential avenues 
for research on sample supervised search centric methods within GEOBIA. 
 

2.1. Search Centric Sample Supervised Image Analysis 

2.1.1. Image Analysis as a Design Problem 

Image analysis signifies the process of extracting required or useful information from a digital 
image, typically using various forms of image processing and classification. Research on image 
analysis spans several diverse and well established disciplines; some focused on specific problem 
domains and applied research [1] while others are concerned with more primary, problem insensitive 
inquiries [2, 3]. Some example domains where image analysis research forms a prominent part of 
activities include digital image processing, satellite remote sensing, biomedical image analysis, 
astronomy, mathematical imaging, image information mining and computer vision. The intrinsic 
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characteristics of the images in these domains and thus the developed approaches to image analysis are 
as diverse as the fields that are concerned with it. 

Image analysis processes can range from simple expert system classifier based approaches 
observing the spectral values of basic elements in an image (e.g. pixels), to complex processes 
considering spatial [4] and hierarchical context relationships, using numerous feature descriptors 
(attributes of image elements) [5], combining various primary analysis paradigms such as semantic 
segmentation, template matching, discriminative models and parts based models [6] and also involving 
various approaches taken from machine learning, e.g. as applied in context based image retrieval [7] 
and optimization [8]. 

Remote sensing image analysis poses as an interesting domain where the nature of the used analysis 
techniques evolved due to the progression of the fidelity of the spatial resolution of the captured 
imagery [9]. Classically image analysis within this domain was conducted with simple supervised, 
unsupervised or expert system’s classification approaches functioning on the spectral values of pixels 
in multi-band images. Typically on modern very high resolution (VHR) optical imagery, approaches 
attempting to conduct semantic segmentation along with using context information are more common 
[10]. Irrespective of the domain in which the image analysis is performed, the method, consisting of 
image processing and/or classification techniques, used to conduct the information extraction needs to 
be designed. 

2.1.2. Metaheuristics as Tools for Design 

Metaheuristics, which signify a family of efficient problem independent stochastic search 
algorithms are well suited and extensively studied in various fields as efficient tools to aid in design 
processes [11, 12] despite the non-deterministic nature of the methods and lack of theoretical models 
to many algorithms [13]. Within the fields concerned with image analysis and especially computer 
vision, metaheuristics have been studied and applied extensively in extremely varied ways to design 
solutions [14, 15]. 

Figure 2.1 illustrates a simple general architecture common to most population based 
metaheuristics. An initial population is defined, typically randomly initiated, consisting of a group of 
candidate solution vectors or agents to a design problem. An individual agent within the population 
contains all the building blocks for a method, encoded as real, integer, discrete or binary values, 
depending on the specific details of the given metaheuristic. These values can control, amongst others, 
parameters for pre-exisiting image processing components. Although problem specific, values within 
agents are typically interdependent. 

A metaheuristic search method proceeds iteratively. These iterations are referred to as generations if 
the metaheuristic is nature inspired (e.g. as with evolutionary inspired algorithms such as genetic 
algorithms and differential evolution). Each agent of the population undergoes a fitness evaluation 
during iterations of the algorithm, which denotes the process of calculating how well the agent 
performs on the given problem. This evaluation process is defined by a fitness function, also called an 
objective function. After the fitness evaluations of all agents in the population the method termination 
condition is queried. If any agent in the population has a fitness score (quality of the solution) greater 
than a specified threshold, if a certain number of method iterations have passed or if very little change 
is observed among subsequent method iterations, the method terminates. The agent possessing the best 
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solution vector represents the result of the search process. If the method does not terminate, a new 
population is created. The agents of the new population may be defined via combining algorithms 
utilising different agents in the population, some randomization and knowledge of how an agent 
performed compared to previous iterations. 

 
 

 

Figure 2.1. Generalised architecture of simple population based metaheuristics. 

The domain or space explored by metaheuristics is often referred to as the search landscape. Figure 
2.2 illustrates a two dimensional search landscape, defined by a common benchmark function 
(Ackley’s function). The red dots represent positions visited by a metaheuristic during the search 
process, in this instance an adaptation of modified cuckoo search [16]. Lower z-axis values imply 
better solutions. 

Figure 2.2 also illustrates the concept of local optima, where the central global optimal position in 
terms of solution quality is surrounded by eight solution positions of lesser quality, although 
performing better than their immediate surroundings. Note the agglomeration of agents around the 
central global optimal position. The use of metaheuristics are routinely justified on such problems, 
where simpler single agent strategies, either using search landscape gradient information or not, 
struggles to escape from such local optima [17]. Metaheuristics use the concepts of exploitation and 
exploration to efficiently traverse search landscapes in search of the global optimum: agents typically 
use information from their own best performances in addition to information from the performances of 
other good performing agents to modify their own values [11, 17]. From a design perspective, the 
ways in which one could encode solution vectors as control processes to generate search landscapes 
such as in Figure 2.2 are boundless. 
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Figure 2.2. An arbitrary search landscape, with positions visited by a metaheuristic during 
the search process denoted with red dots. 

Specific solution vector encodings related to image processing and image analysis could be 
extremely complex and require extensive fitness evaluations and computing time. Metaheuristics may 
assist in addressing such problems by attempting to solve them faster and obtaining more robust results 
compared to classical search methods [11]. Figure 2.3 illustrates two fitness traces of two search 
algorithms. A fitness trace signifies the quality of the best agent/solution vector as the iterative search 
process proceeds (e.g. the solution vector quality of the best performing red dots in Figure 2.2 as a 
function of iterations). The fitness traces in Figure 2.3 are generated by the Differential Evolution (DE) 
metaheuristic and Random Search (RND) for an arbitrary seven parameter design problem in image 
analysis. For this design problem, the use of the DE metaheuristic is justified over such a simpler 
search strategy. A lower solution quality signifies better results. 
 

 

Figure 2.3. Fitness traces generated by two different search methods for an arbitrary 
design problem in an image analysis context. 
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In a search process, each fitness evaluation is assigned with a unit of computational cost. 
Commonly for many problems, including problems in the image analysis domains, such potentially 
expensive fitness evaluation costs are the main drivers for attempting to search as efficiently as 
possible. Metaheuristics typically only explore a fraction of the search landscape compared to brute 
force search or simpler search strategies [18] to obtain optimal or near optimal solutions. In many 
practical instances this allows for design to be performed with metaheuristics. The time taken to search 
for a solution is also influenced by the problem difficulty or the nature of the search landscape [13] as 
defined by the fitness function. Metaheuristics are typically evaluated with black box optimsation 
benchmarks [19] using experimental research methodologies [20]. 

2.1.3. Granularity and Fitness Functions in Sample Supervised Search Centric Image Analysis Method 
Design 

It can be argued, and has been alluded to [12, 14, 18], that the way in which a metaheuristic is used 
in image analysis method design may be described by the granularity of method construction. 
Granularity defines the fineness or coarseness of the basic building blocks of the method design 
process. At a coarse level, agent values could simply define free parameters of an image processing 
method that needs to be tuned, for example the parameters of a segmentation algorithm [18, 21-23] or 
the parameters (e.g. a threshold value to identify water in a satellite image) of an expert system’s 
classification approach. At a finer granularity, the building blocks could be more basic units or 
definition processes, such as defining structuring elements in classical mathematical morphology 
image processing [24], defining cellular automata rules [25], finding a sequence of good image 
processing using genetic programming [8] or even for defining the nature of attributes used in 
classification processes [26]. 

More complex information extraction frameworks are also possible, for example approaches that 
interleave object recognition and machine learning in the search process [27, 28] or even approaches 
that search for coarse grained methods within the search process [29]. It can be debated that the finer 
the granularity of the building blocks, the higher the dimensionality of the search landscape, and the 
more difficult the search problem becomes. Alternatively stated, the finer the granularity, the more 
search time would be needed. On the other hand, finer grained processes might execute faster (per 
fitness evaluation) than coarse grained processes and would probably be more flexible to various 
problem instances. 

Keeping in mind the granularity of method building blocks that defines the search landscape 
complexity, another major consideration to using metaheuristics in design is how to define the fitness 
function. In image analysis method design, solution quality can be defined by various quality measures 
describing the quality of the final information product or only intermediary steps in the image analysis 
process. The output could thus be new intermediary data (data in, data out) or information. 

Two common fitness function groupings are identified, measures observing low- and mid-level 
processes, specifically segmentation results, and classification accuracy measures. Empirical goodness 
methods [30, 31] define unsupervised notions of image simplification or segmentation quality, 
typically by evaluating statistical measures from generated image areas or segments. Empirical 
discrepancy measures [30] are supervised quality measures, where generated results are measured 
against provided ground truth, reference or gold standard examples. With classification, user’s and 
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producer’s accuracy, kappa, geometric means, f-score and various other quality criteria could measure 
the generated results against the provided reference results. 

Thus, search centric sample supervised image analysis and search centric sample supervised 
segment generation denotes method design processes where a sample or selection of reference 
elements is provided. The result of a fitness evaluation is how well certain generated elements match 
with provided reference elements. An interesting, but potentially computationally prohibitively 
expensive alternative to searching for a solution is to calculate all possible solutions in an ordered 
manner (e.g. tree hierarchies as used with interactive image information mining) and extract the set 
that matches most closely with the provided reference elements [32]. 
 

2.2. Approaches in Geographic Object-Based Image Analysis 

GEOBIA defines a general image analysis philosophy centered on the concept of semantic 
segmentation [9, 33, 34]. As an important objective GEOBIA addresses the development of methods 
and accompanying theory to replicate a human’s ability to interpret remote sensing imagery in 
automated and semi-automated ways [35]. The proliferation of VHR data, increased computing power 
and closer integration between Geographic Information Systems (GIS) and remote sensing processes 
are often cited as driving forces to the development of GEOBIA [9, 33]. When concerned with VHR 
data, basic thematic units may be much larger than individual pixel sizes. Attempting to classify such 
imagery with pixel-based approaches often leads to the so-called speckle or salt and pepper effect in 
classification results [33]. 

Central to GEOBIA approaches is the generation of image objects [36], typically using various 
image segmentation algorithms. Other common constituents in GEOBIA include classification, 
attribution and information presentation considerations [37]. A distinction is made between image 
objects, which are arbitrary image segments and geographic or geo-objects, which denote thematic 
elements of interest [35, 36]. Progressing from image objects to thematic objects typically proceeds in 
two ways, either via attempting to segment elements of interest correctly from the start, or by using 
various post segmentation processes to progress to semantic objects. In remote sensing image analysis 
problems, elements of interest may be numerous, and numerous types of elements might also be of 
interest. 

In some problem instances, especially if the spatial and spectral characteristics of elements of 
interest are similar, a thematic segmentation or geographic object generation process may be attempted 
with a segmentation algorithm by tailoring its parameters to the problem. Figure 2.4 illustrates such a 
scenario and depicts white tents of similar geometric and spectral characteristics, segmented with an 
arbitrary segmentation algorithm. In other scenarios, elements of interest that are thematically identical 
might be too different to allow for simple segmentation. 

For more complex image analysis problems where semantic segmentation cannot be achieved 
easily, various approaches within GEOBIA have been proposed. A multi-scale image analysis 
philosophy might be advocated, where a scale-scape constraint segmentation algorithm is run multiple 
times to create a hierarchy of image objects [32, 38]. Information through the hierarchy might be used 
to identify proper thematic objects (classification) in addition to using context and attribute 
information within a specific layer, e.g. [39]. 
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Figure 2.4. A simple segmentation problem where spectrally and geometrically similar 
elements of interest are segmented with a single segment layer. 

A prominent strategy for addressing both simple and complex problems within GEOBIA is an 
expert system’s or rule set/rule based approach [9, 10, 33]. The various image processing and 
classification, and sequences of processes needed to identify elements are defined by an expert user. 
The set of methods or procedures designed are encapsulated in a rule set. Such a rule set is typically 
created on a specific input image, but it may be used to extract information on other imagery. 

Common procedures in rule set development include performing general image processing, 
defining image segmentation operations with various parameters to tune, merging and splitting 
segments, assigning or defining attributes attached to segments and classifying segments using expert 
knowledge or supervised/unsupervised classifiers. Using segment relations as information in 
hierarchical segmentation layers and in segments of a single layer is also common. Rule sets may 
contain additional processes and may also display complexity in orderings or sequences of processes 
[10]. Rule set development is commonly facilitated with commercial or free image analysis software 
[33, 40, 41]. 

Although this general strategy in GEOBIA is highly advocated, especially in problem instances 
with highly complex image details [9], two general concerns could be raised. Firstly, the transferability 
(generalizability) of rule sets to other geographic areas or by using data captured by different sensors 
may be a concern and are not routinely, explicitly incorporated into method designs. Secondly the 
process of designing a rule set is time consuming and highly dependent on the skill of the designer. 
One of the primary problems identified in this regard is selecting and tuning a segmentation algorithm 
for a specific scenario. Some approaches address this problem by using various empirical goodness 
measures to automatically define good segment layers [38, 42]. Another general approach utilizes 
search methods to find good segment layers, which is presented next. 
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2.3. Search Centric Sample Supervision within GEOBIA 

2.3.1. Automatic Segmentation Algorithm Parameter Tuning 

Within GEOBIA a general search centric automatic segmentation algorithm parameter tuning 
approach has been proposed due to the need for more streamlined processes [21, 23, 43, 44], especially 
when considering rule set approaches. Due to the computationally expensive nature of image 
segmentation a thorough search of the search space is commonly not feasible, requiring the use of 
efficient search methods. This general approach draws inspiration from earlier works from outside the 
domain of remote sensing [18, 22] and is also actively pursued in other imaging disciplines, e.g. [28]. 
Figure 2.5 illustrates a generalised architecture of such a method. The method attempts to find good 
segments based on a limited number of user provided reference segments or objects. A user provides 
reference segments either via digitizing or with other available input methods [45]. Other uses of 
metaheuristics have also been demonstrated in this domain, e.g. for feature selection [46]. 

During the optimization loop iterations, the search algorithm gives as output a parameter set for the 
given segmentation algorithm. Next the image, or subsets of the image for efficiency, is segmented 
with the tuned segmentation algorithm. The segmented image is compared with the provided reference 
segments to generate a quantitative measure of quality. This constitutes the fitness evaluation in the 
search process. The result of the fitness evaluation is passed on to the optimizer, which uses the 
information to direct the search process in subsequent iterations of the search method. Various 
stopping criteria could be specified for this general method, as is common for metaheuristic 
approaches. 
 

 

Figure 2.5. Generalised architecture of a search centric sample supervised segment 
generation approach. 

Figure 2.6 illustrates an example scenario of how such a general approach may be used. A user 
might select or digitize elements of interest (Figure 2.6a), in this example tents in a refugee camp. The 
user may view the results of the automatic segmentation algorithm parameter tuning process (Figure 
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2.6b), followed by a classification procedure to identify similar elements, for example by using a 
novelty detector and the reference objects as training data (Figure 2.6c). 
 

 

Figure 2.6. An example mapping scenario where such an automatic segmentation 
algorithm parameter tuning process may form part of the image analysis workflow. 

Research surrounding this general approach strives to show its practical feasibility and performance 
in a remote sensing and GEOBIA context. Research focussed tools with graphical user interfaces have 
been developed [47-49] for such an approach due to its interactive and visual nature. The freeware 
Segmentation Parameter Tuning (SPT) tool [49] allows a user to automatically tune a range of 
segmentation algorithms under different metric and search method conditions, along with the ability to 
export results for further use. Geographic Object Novelty Detector (Geo-ND) [47] is a simple proof-
of-concept tool illustrating a complete workflow incorporating target detection using automatic 
segmentation algorithm parameter tuning in addition to classification processes. 

2.3.2. Measuring Segment Quality 

An important aspect of this general approach described is how to measure the amount of similarity 
between the generated segments and the reference segments. Quality is typically measured with 
empirical discrepancy methods [30] with various imaging disciplines making use of such techniques. 
In GEOBIA and more generally in remote sensing numerous quality measures have also been 
proposed, although not always used as fitness functions in search processes [21, 50-58]. Measures 
typically observe notions of area overlap (e.g. Figure 2.7) where a reference segment (R) is matched 
for spatial coherence with a generated segment (S). Notions of over-segmentation, under-
segmentation, geometry, edge-offsets and spectral properties may also be encoded into such quality 
metrics. 

Figure 2.8 illustrates three image subsets with an example reference segmented delineated by a bold 
red polyline. The objective could be to accurately segment buildings. During the search iterations of 
the method depicted in Figure 2.5, such evaluations are performed. Quality scores of the Reference 
Weighted Jaccard (RWJ) measure is also shown [48], with lower values signifying better segmentation 
results, with a range of [0,1]. Figure 2.8(a) illustrates a segmentation algorithm parameter set and 
accompanying image segments (green lines) resulting in an over-segmentation. Figure 2.8(b) 

a b c 
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represents a better or adequate segmentation, while Figure 2.8(c) represents an under-segmentation 
scenario. 

 

 

Figure 2.7. A representation of area overlap. Empirical discrepancy measures or spatial 
metrics could measure the amount of spatial overlap between the reference (R) and a 
generated (S) segment. 

 

Figure 2.8. Three segmentation evaluation examples using the RWJ metric evaluating the 
mismatch between reference (red line) and generated (green lines) segments. 

2.3.3. Advances in Search Centric Sample Supervised Segment Generation 

Various aspects of such a sample supervised search centric method have been subjected to further 
investigations within GEOBIA and remote sensing. The behaviour of using spatial metrics have been 
shown to be highly correlated [55] on a metric test bed consisting of general area-overlap metric 
variants (e.g. Figure 2.7). Multi-objective optimization, where various metrics are used that typically 
observe different quality aspects have also been demonstrated [53]. 

Another major consideration is the choice of search method or optimiser. The selection of an 
appropriate method is typically conducted using experimentalism [20]. The utilized optimisers 
progressed from classic genetic algorithms [21] to proven faster methods such as differential evolution 
[59] and direct search derivative free methods [60]. For more complex optimization problems the use 
of metaheuristics are warranted over simpler search strategies [48]. Future implementations might 
select appropriate methods based on both experimentalism [20] and method performances on black 

RWJ:0.81 a b RWJ:0.65 c RWJ:0.72 
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box optimization benchmarks [19]. Parallel computing implementations for fitness evaluation 
processes such as segmentation have also been demonstrated that could reduce the required computing 
times [61]. 

A general objective in search centric sample supervised method research is to create methods that 
are either faster or leads to better quality solutions than current methods. The generalizability and 
adaptability performances of methods to problems have received little research attention. Some 
methods address problem complexity by incorporating algorithms to merge segments that are unable to 
be segmented correctly – irrespective of the tuning of the segmentation algorithm [62, 63]. 
Segmentation algorithms may also be defined that are more modular and thus better able to fit a range 
of problem instances [64, 65]. 

Another line of thinking that addresses the general drive to generate improved results suggests the 
creation of enlarged or higher dimensional search spaces. These enlarged search spaces not only 
consider or contain segmentation algorithm parameters, but also other parameterisable processes 
surrounding segmentation that might influence the results [48, 66]. Data transformation functions or 
low-level image processing processes could be appended to the search spaces [43, 48], potentially 
resulting in better segmentation results. This notion has been extended to mathematical morphology 
inspired segmentation approaches, where attribute tuning, segmentation algorithm tuning and data 
transformation function tuning are combined in a single search space [65]. Metaheuristics could also 
be used to select the appropriate attributes in such approaches [67]. Another approach propose the 
selection, or searching of, mathematical morphology connected filters for a given problem [68]. 

Research methods surrounding sample supervised segment generation typically focus on comparing 
a new formulation against previous approaches in terms of achieved segment quality, required 
processing time and the robustness of results [23, 48, 69]. Generalisability performances and sampling 
size requirements may also be considered as performance indicators. Initial contributions focussed on 
proof-of-concept, commonly as conference papers (e.g. [21]), with more recent work (e.g. [48]) 
borrowing heavily from comparative research methods [20] from the optimisation community. 
 

2.4. Limitations of Search Centric Sample Supervised Segment Generation Approaches in 

GEOBIA 

Although the general technique of search centric sample supervised segment generation within 
GEOBIA shows promise, some limitations should be highlighted. A common problem or concern with 
a search centric sample supervised method is its ability to adapt to difficult or unseen problems [21]. A 
method might just be unable to address the given problem. Having expert knowledge of the 
capabilities of the used segmentation algorithm(s) could allow a user to judge the feasibility of the 
method beforehand. Another concern is the definition of a class of interest or the similarity of elements 
within a class. Thematically similar elements of interest might have vastly different spectral and 
geometric characteristics, suggesting that a segmentation algorithm may not be effectively tuned to 
solve such a problem [70]. For example, “buildings” in Figure 2.9 range from large rectangular bright 
objects to small grass roofed huts, suggesting multiple runs (sub-classes) of a method for a single class. 
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Figure 2.9. A segmentation scenario where the object of interest could be buildings of 
vastly different spectral and geometric characteristics. 

The number of samples needed for such an approach to generalize well to the elements of interest 
has not been the topic of an investigation. Typically a small selection of reference samples are used in 
experimentation, with generalizability mechanisms such as cross-validation optional [48]. Methods 
from supervised classification could potentially be transferred to address such concerns [69, 71]. 
Another concern related to sampling is the processing time required and the extent of the areas that are 
segmented. More samples imply more processing time. Subsets of the image, centered on the reference 
segments can be extracted and used as input to a method, provided that segmentation results are 
identical compared to subsets (segmentation algorithm dependent). 

Although various metrics have been used in such a general approach, little is known how metric 
values relate to final classification accuracies. It can be assumed that better quality segments leads to 
better quality classification results and information products. The utilized classification methods and 
attributes (features) should also be considered. Profiling the relations or correlations among used 
metrics and classifiers considering various (attribute) conditions might be fruitful. The value of 
different metrics or observed aspects or even of multi-objective optimization strategies might be better 
understood, specifically how the notions of under- and over-segmentation relate to classification 
results. 

There are substantial uncertainties surrounding the usage and evaluation of metaheuristics. 
Although the general methods described here are considered applications of metaheuristics, the 
concerns raised in basic research should be noted. Metrics define the characteristics of the search 
landscape (e.g. Figure 2.2) and encoding or creating additional processes in the search landscape also 
inherently influences its characteristics [48]. Theory on how metaheuristics behave on various search 
landscapes are in its infancy [13, 72] with models able to predict problem difficulty a topic of active 
research [73]. In the context of search centric sample supervised segment generation approaches a 
handful of search methods have been experimentally profiled in terms of fitness traces over different 
search landscapes [48]. Simpler search methods such as a hill climber and random search displayed 
varied performances on a range of typical search landscapes [48], suggesting further investigations into 
the appropriateness of using specific search methods in these problem contexts. 

Based on the uncertainties regarding performance theories and models, empirical research or 
experimentalism is generally advocated when conducting research on metaheuristic applications [13, 
20, 74]. Such approaches typically require extensive experimentation to calculate measures of quality, 
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robustness and generalizability, with numerous experimental runs required on various problem 
instances and under various conditions or parameter sets. Such considerations should be noted when 
conducting experimentation within image analysis and especially when considering segmentation, 
which is typically a computationally expensive process. 
 

2.5. An Outlook on Search Centric Sample Supervision in GEOBIA Approaches – Epistatic 

Links and Search Granularity 

In the context of GEOBIA and considering advances in image processing and metaheuristics, the 
question could be raised how one could define components of GEOBIA workflows as optimization 
problems. A current philosophy in rule set development suggest an expert user explores or investigates 
ways to obtain good results or build methods [10]. Efficient search methods could assist in such 
method construction or tuning processes. A very specific application of metaheuristics in GEOBIA is 
to tune the parameters of segmentation algorithms (as described above), but more encompassing or 
integrative implementations could be considered. 

Classical GEOBIA processes such as attribution, segmentation, low-level image processing and 
classification [37] typically display high degrees of complex interactions [10] or high degrees of 
epistasis (dependencies) [75]. Such processes are parameterisable and their interactions could also be 
encoded in some manner. A simple example from the domain of machine learning suggests 
simultaneous classifier free parameter tuning and attribute subset selection [76]. Classification and 
attributes are not only dependent on each other (unless attribute selection is implicit in the classifier), 
but in all likelihood on the nature of the generated segments (segment parameters and metric scores). 
In addition, attributes themselves could be highly modular and designable [26] or tuneable [77]. The 
domain of mathematical morphology inspired image processing and analysis encompasses numerous 
highly modular, parameterisable or designable components related to segmentation (e.g.[78]). 

Ways in which one could encode combined search problems from such varied components for 
efficient methods are unclear, although having different data quantizations in a single optimization 
problem are feasible [79]. Figure 2.10 illustrates an artificial or toy problem (Figure 2.10a) where the 
encoding of an arbitrary search centric sample supervised method consists of more elaborate parameter 
domains [66]. In this instance two classification processes (a one-class and a two class support vector 
machine, Figure 2.10b, c) interacts with a data layering and segmentation process (Figure 2.10d) to 
aim to correctly segment and find the elements of interest. 

 

 a b c d 
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Figure 2.10. An arbitrary search centric image analysis method executed on a artificial 
problem (a) considering pixel-based classification processes (b, c) and their interaction 
with data transformation and segmentation processes (d). 

Another point of contention is how such processes could elegantly integrate with existing GEOBIA 
workflows or philosophies (rule set development), and how good synergies between user 
experience/interaction and automatic search could be advocated. This is an important consideration in 
the context of emergency response or rapid mapping. In such scenarios information products need to 
be generated quickly. It is unclear if even the most advanced method designs could successfully 
address moderately difficult remote sensing image analysis problems on their own. A basic approach 
as depicted in Figure 2.6 would probably not deliver results of sufficient quality in most problem 
instances. In addition, there are numerous ways or intermediate steps to measure quality at the image 
processing and classification levels. These measures (or combinations of them) should correlate with 
user judgment. Another line of thinking suggests the creation of agent based modelling for rule-set 
adaptation [80]. 

The general processes described above and specifically the image processing could be considered as 
coarse grained processes. It is known that integrative approaches combining various aspects of image 
processing are needed to address complex image analysis problems [6, 81]. It would be interesting to 
see how fine grained (search centric) processes such as cellular automata [24] and genetic 
programming based image processing [8] would compare with segmentation algorithm parameter 
tuning considering the required search times, quality of results achieved and generalizability 
performances. Fine grained search centric methods might have interesting influences on, or synergies 
with traditional rule set based approaches, which currently only consider coarse grained parameter 
tuning processes with high generalizability performances. 
 

2.6. Conclusion  

Search centric sample supervised image analysis approaches might find use alongside traditional 
image analysis approaches within software environments, even if initially only to remove the 
guesswork from parameter tuning processes. Ultimately the involvement of a metaheuristic could 
range from simple parameter tuning to designing the entire image analysis method [14]. Although any 
mapping scenario might benefit from such strategies (e.g. land cover mapping), time critical mapping 
tasks (e.g. Copernicus Emergency Management Services) where user interaction is actively 
encouraged might benefit substantially. In such instances image analysis solutions (supervised 
classifiers, rule sets) to various problems can not readily be designed beforehand. 

An overview of metaheuristics as tools for design was presented, with a focus on how such 
approaches have been applied within the domain of GEOBIA. Usage considerations and limitations of 
such a general approach were also highlighted. Based on developments from outside the domain of 
GEOBIA and acknowledging the unique processes within it, an outlook was given on potential 
avenues for future research, focusing on the concept of epistatic links among processes. How search 
centric sample supervised methods could integrate with current GEOBIA approaches to create efficient 
workflows should be a topic for future investigation. 
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Currently search centric sample supervised approaches remain steadfastly within the domain of 
research, as performances are not sufficiently adequate (as of yet) and method nuisances are plentiful. 
Systematic investigations on the various aspects of search centric sample supervised methods will 
probably continue. Such approaches touch upon concepts from various academic disciplines or 
domains. In the case of GEOBIA and considering the current and potential designs of search centric 
sample supervised methods, concepts from machine learning, optimization, computer vision, image 
processing and remote sensing are involved (among others). This may also be evident based on the 
diversity of citations in this manuscript. 
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Abstract 

Sample supervised image analysis, in particular sample supervised segment generation, 
shows promise as a methodological avenue applicable within Geographic Object-Based 
Image Analysis (GEOBIA). Segmentation is acknowledged as a constituent component 
within typically expansive image analysis processes. A general extension to the basic 
formulation of an empirical discrepancy measure directed segmentation algorithm 
parameter tuning approach is proposed. An expanded search landscape is defined, 
consisting not only of the segmentation algorithm parameters, but also of low-level, 
parameterized image processing functions. Such higher dimensional search landscapes 
potentially allow for achieving better segmentation accuracies. The proposed method is 
tested with a range of low-level image transformation functions and two segmentation 
algorithms. The general effectiveness of such an approach is demonstrated compared to a 
variant only optimising segmentation algorithm parameters. Further, it is shown that the 
resultant search landscapes obtained from combining mid- and low-level image processing 
parameter domains, in our problem contexts, are sufficiently complex to warrant the use of 
population based stochastic search methods. Interdependencies of these two parameter 
domains are also demonstrated, necessitating simultaneous optimization. 

Keywords: geographic object-based image analysis; segmentation; data transformations; 
sample supervised; spatial metrics; metaheuristics 
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3.1. Introduction 

A general method in the context of geographic sample supervised segment generation is proposed 
and profiled. Parameter interdependencies are noted between low- and mid-level image processing 
processes. Creating combined search spaces using algorithms from these two groupings are proposed 
that could lead to improved segmentation results. In this section an orientation to the problem of 
semantic segmentation within Geographic Object-based Image Analysis (GEOBIA) is given and 
empirical discrepancy method based supervised segment generation approaches that address this 
problem are reviewed, to which our method also belongs. Motivation for the proposed method is 
presented, with details on how it extends the general sample supervised segment generation approach. 

3.1.1. Semantic Segmentation in Geographic Object-Based Image Analysis 

Geographic Object-based Image Analysis (GEOBIA) [1–4] has garnered interest by practitioners 
and researchers alike as an effective avenue of methods, based on the principle of semantic 
segmentation, to address specific remote sensing image analysis problems. The increased spatial 
resolution of optical Earth observation imagery to below the sub-decimeter level and a swath of new 
applications highlighted the inefficiency of traditional remote sensing image analysis techniques (per-pixel 
methods) not addressing scale-space considerations [5–7]. In the context of object-based image 
analysis, semantic image partitioning or segmentation is a common constituent of approaches that 
attempt to create a more meaningful or workable representation of the data [2,3]. Common other 
constituents in GEOBIA approaches include attribution (feature description), classification (supervised 
and expert system’s approaches), and information representation, with potentially complex interactions 
among them [8], and potentially differing levels of supervision [9]. 

Popular variants of segmentation algorithms (e.g., region-merging and region-growing) used within 
the context of GEOBIA may have controlling mechanisms or parameters dictating the relative sizes 
and geometric characteristics of generated segments [10,11]. A segmentation process could either be 
performed with the aim of creating a single segment layer addressing a specific problem, or as part of a 
hierarchical image analysis approach [12]. In many problem instances it could be feasible to segment 
some elements of interest with a single pass of a segmentation algorithm, due to the similar geometric 
characteristics of these elements. In the context of multi-scale analysis approaches, the aim could be to 
identify appropriate scale-space representations that would ease subsequent post-segmentation element 
identification processes. 

Finding a suitable segmentation algorithm parameter set and resulting segments is an important 
aspect of the analysis procedure with a definite influence on subsequent results. It is not uncommon for 
parameter tuning to be conducted in a user driven empirical trial-and-error process, which is labor 
intensive and could fail to obtain optimal results. In image analysis disciplines this subjectivity has 
driven research into various approaches that aim to evaluate the quality of segments based on some 
given quality criteria. Such approaches could be grouped into two broad categories based on how an 
indication of quality is given [13]. 

Empirical goodness methods [13] encode human intuition or notions of quality (e.g., shape, intra 
region uniformity, statistical properties) in the evaluation procedure without any a priori information 
on correct segmentation. An example of such an approach is using local variance to define layers in 



47 
 
multi-scale image segmentation [7]. Empirical discrepancy methods [13] requires information 
regarding correct segmentation, typically in the form of reference segments provided by a user judged 
to be representative of the desired output. These reference segments are compared, based on geometric 
and/or spectral characteristics encoded into metrics, with generated segments to give an indication of 
quality. It could be argued that empirical discrepancy methods synergize well with many user-driven 
or expert system’s GEOBIA approaches, as a user is readily available to give examples or indicators of 
quality during the method development or even during the execution phase. 

3.1.2. Sample Supervised Segment Generation 

Sample supervised segment generation describes methods that aim to automatically generate good 
quality segments based on limited reference segment examples [14]. Commonly empirical discrepancy 
methods are used to measure quality and drive a search process to find a good segmentation set from 
potentially many generated results [15–17]. Such approaches are typically iterative methods that 
search in a directed or undirected manner for good results. Due to the computationally expensive 
nature of image segmentation, emphasis is often placed on searching for good results efficiently, 
typically by using and experimentally evaluating [18] metaheuristics for this purpose. Sample 
supervised segment generation can be seen as an explicit example of more general approaches found at 
the intersection of evolutionary computation and image analysis/computer vision [19]. A distinction 
can be made [14] based on the granularity of the search process—whether the search method is used to 
construct a segmentation algorithm/image processing method [20–24], common with cellular 
automata, mathematical morphology and genetic programming approaches, or either for tuning the free 
parameters of an algorithm [14,25–28]. 

The free parameter tuning approach has been investigated in the context of Very High Resolution 
(VHR) remote sensing optical image analysis problems [25,29], where the parameter space of a 
popular segmentation algorithm is searched [10]. In this context such an approach shows promise with 
segmentation algorithms that generalize well. None the less the approach is still very sensitive to 
numerous considerations, such as the quality and quantity of the given reference segments, image 
characteristics, and the intrinsic ability of the segmentation algorithm to reach the desired reference 
segments [25] (which is difficult to determine a priori), the choice of empirical discrepancy method [15], 
and the capabilities of the utilized search method [30]. 

The intrinsic ability of the segmentation algorithm to achieve the desired results is one of the most 
challenging concerns. For illustration, when using an algorithm strongly constrained in the scale-space, 
land-cover-elements of varying size cannot be segmented correctly using a single segmentation layer, 
irrespective of how the algorithm is tuned. Another scenario common in the context of satellite image 
analysis could be that the elements of interest are geometrically similar, but deviations in their spectral 
characteristics prevent adequate segmentation. This could pose a problem for a segmentation algorithm 
strongly observing spectral characteristics. Some approaches address this issue by introducing 
automatic post-segmentation procedures to merge over-segmented objects [31,32]. More commonly 
such problems are addressed with expert systems or rule set approaches where segments are split and 
merged depending on the given problem [8]. 
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3.1.3. Integrative Approaches to Image Analysis 

Due to the shortcomings of image segmentation approaches to detect semantic objects in complex 
natural images as described above, various approaches have been proposed that combine cues from 
different image analysis methods. Such strategies commonly attempt to combine low-, mid-, and high-level 
image processing processes, with the processes functioning independently or having some form of 
communication or information exchange among them [33–40]. Often an interaction between template 
matching (high-level process) and semantic segmentation (mid-level process) is advocated. Similarly 
within the domain of classification, approaches have been put forth that consider different aspects of a 
methodology simultaneously due to interactions among the constituent parts, for example simultaneous 
attribute selection and classifier free parameter tuning [41–43]. 

In the context of image processing, another line of work explores the effect of data representations 
or color spaces on image analysis tasks, also within the domain of remote sensing [44–47]. This 
constitutes the selection or creation of low-level image processing where the data is transformed to 
another representation or color space that is more suited to the given problem. In [46] different color 
spaces are created and evaluated quantitatively for the task of a multi-scale segmentation of aerial 
images using sequential forward selection. Low-level processes are sometimes also modelled as 
optimization problems [48,49]. These low-level image processing data transformation approaches do 
not consider the interaction between the data transformations and subsequent processes. 

3.1.4. Combined Low- and Mid-Level Image Processing Optimization for Geographic Sample 
Supervised Segment Generation 

In the context of sample supervised segment generation (Section 3.1.2) and inspired by integrative 
approaches to image analysis and work on data transformations as described in Section 3.1.3, a general 
approach is proposed in this work that models the generation of quality segments as an optimization 
problem integrating low- and mid-level image processing. Low-level parameterized image processing 
methods, such as in [48,49], are combined with parameterized image segmentation algorithms (e.g., [10]) 
to form an expanded parameter search space. This search space is traversed iteratively with a metaheuristic 
to find the optimal combined parameter set, consisting of the parameters of the low-level process as well as 
the parameters for the segmentation algorithm. It is shown that interdependencies [50,51] exists between 
these two parameter domains. In the context of this approach a wide range of combinations of low- and 
mid-level processes are possible, resulting in higher dimensional search spaces and being slightly more 
computationally expensive than a segmentation parameter tuning only approach, but with the potential 
to generate markedly improved segmentation results. 

The initial concept was first suggested by the authors as a conference contribution in [52]. Here, the 
investigation is extended by testing the generalizability performance of the method, also using a range 
of metrics and performing more exhaustive experimental runs, investigating the performances and 
applicability of different search methods, testing additional promising data transformation functions, 
and illustrating parameter domain interdependencies. 

In Section 3.2 an overview of the general method is given with details on its constituent parts. Section 
3.3 describes the data, representative of common problems such a method could assist in addressing. 
In Section 3.4 the evaluation and profiling methodologies are described, with results and discussions 
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presented in Section 3.5. Section 3.6 concludes by highlighting some shortcomings and open questions 
for further research. 

3.2. Expanded Search Spaces in Sample Supervised Segment Generation 

3.2.1. Method Overview 

The method described here follows the general architecture of empirical discrepancy metric guided 
optimization-based methods [14,25,26]. Figure 3.1 illustrates the architecture of the variant presented 
in this work. The main contribution lies in the introduction of low-level image processing in the 
optimization loop, increasing the dimensionality of the search space. The method can be broken down 
into three distinct components. A user input component, the optimization loop, which constitutes the 
main body of the method and the output component. 

The input component requires a user to provide input imagery and a selection of reference segments 
representative of the elements of interest. In our implementation such input data are handled separately 
with the reference segments delineated in a binary raster image, although sharing the metadata of the 
input image. As a preprocessing step, subsets are extracted from the input image and reference 
segments image over the areas where reference segments are provided. In Figure 3.1, such an image 
subset and corresponding reference segment subset is illustrated under the input component. It should 
be noted that the method takes as input all created subsets (a subset stack), not just those of a single 
element as depicted in Figure 3.1 for simplicity. The collection of input image and reference segments 
subsets are used within the optimization loop. 

 

 

Figure 3.1. The method architecture for sample supervised segment generation with added 
data transformation functions. 

The optimization loop consists of an efficient search method traversing two parameter domains 
simultaneously and receiving feedback from a spatial metric (empirical discrepancy method). The 
search method used here is detailed in Section 3.2.2. Figure 3.1 illustrates the interacting processes at 
iterations of the optimization loop. Firstly a parameter set is transferred from the optimizer to a given 
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data transformation function (low-level image processing process). This data transformation function, with 
the provided parameter values, is invoked on the input image subsets returning transformed image subsets. 
A range of low-level image transformation functions are tested with this method, detailed in Section 3.2.3. 

A second parameter set is passed on from the optimizer to the given segmentation algorithm. The 
segmentation algorithm with its provided parameter values is invoked on the transformed image 
subsets, resulting in a stack of segmented images (as in Figure 3.1). The segmentation algorithms used 
in this work are detailed in Section 3.2.4. Finally a spatial evaluation metric is invoked, taking as input 
the reference segments subsets (under “input”) and the segmented image subsets. The final score given 
by the evaluation metric is the average over all provided reference segment subset and segmented 
image subset pairs. In the context of using metaheuristics such a metric is also referred to as an 
objective or fitness function. This score is passed on to the optimizer, which uses the information to 
direct the search in the next iteration. A range of single-objective evaluation metrics are tested in this 
work, detailed in Section 3.2.5. In Section 3.2.6 some example segmentation results are highlighted, 
with different parameters from the segmentation algorithm and data transformation domains and 
accompanying metric scores. 

The method terminates after a certain number of user defined search iterations have passed, but 
various other stopping strategies are possible. As an output the parameter set resulting in the best 
segmentations are given, as judged by the evaluation metric. Note that during the search process 
processing is only done on the small image subsets to reduce computing time. After the method terminates 
the output (parameter set) can be used to segment the whole image or other images. Cross-validation and 
averaging strategies may help to ensure generalizability. 
 

 

Figure 3.2. An example encoding of a parameter set traversed by a given search algorithm, 
highlighting the creation of a joint set from the segmentation algorithm and a low-level 
image processing function. 

Figure 3.2 illustrates an example encoding or parameter space that is traversed by the search 
algorithm. In this example the parameter space consists of a four parameter data transformation 
function (Spectral Split, detailed in Section 3.2.3) and a three parameter segmentation algorithm 
(Multiresolution Segmentation (MS), detailed in Section 3.2.4) resulting in a combined seven 
dimensional search space. The value ranges of the parameters are also shown. In our implementation 
all quantizations for parameters are converted to real values, due to the use of a real-valued optimizer. 
Figure 3.3 illustrates a two-dimensional exhaustive calculation of fitness of the seven dimensional 
parameter space from Figure 3.2 on an arbitrary problem and metric, highlighting multimodalities or 
interdependencies between two parameters from the two different parameter domains. Lower values 
suggest better segmentation results. 
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Figure 3.3. Two dimensions (band position 1 and scale parameters) of the seven 
dimensional search space of the parameter set depicted in Figure 3.2 (average of 15 
reference segments) using the Reference Weighted Jaccard (RWJ) metric (Section 3.2.5). 

 

Figure 3.4. An example user interface for the search centric sample supervised segment 
generation approach described in this work. 

In practice such a method could be implemented as a user driven software application or add-on, as 
illustrated in Figure 3.4. A user could be given the ability to digitize or select reference segments as 
well as control the search process and assess the results in a quantitative and qualitative manner. 
Intervention in the parameter tuning process of the segmentation algorithm and the data transformation 
function could be facilitated with user input controls, for example via interactive parameter sliders to 
visualize changes in segment results. Thus the method could function in a manual or automatic 
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manner. Such a tool or method could be used independently or as part of a more encompassing image 
analysis process. 

3.2.2. Differential Evolution Metaheuristic 

Due to the potentially complex search landscapes (e.g., Figure 3.3) generated by the parameterized 
algorithms and evaluation metrics, stochastic population-based search methods are commonly 
employed in sample supervised segment generation approaches [14,26,30]. Such search methods do 
not use any derivative information (gradients) from the search landscape to direct the search. These 
methods have multiple agents or individuals traversing the search landscape, with information 
exchange among the agents and individual behavior controlling the convergence and exploration 
characteristics of aforesaid methods. 

The Differential Evolution (DE) metaheuristic is used here, specifically the “DE/rand/1/bin” variant 
detailed in [53]. DE generalizes well over a range of problems, is intuitive and relatively easy to 
implement. For experimental conformity the population size is kept constant at 30 agents (random 
starting positions), although the search landscape dimensionalities range from two to thirteen. See [53] 
for details on the formulation of DE. The amplification factor of the difference agent (F) is set to 0.75 
and the crossover constant (CR) to 0.3. DE was chosen and tuned based on preliminary 
experimentation [18] comparing it with other simple metaheuristics (particle swarm optimization, 
modified cuckoo search) for typical problem types addressed here, also corroborated with findings 
elsewhere [30,54]. 

3.2.3. Data Transformation Functions 

In image processing simple data transformation or mapping functions are typically employed for 
image enhancement, implying an image is changed for either easier interpretation or for easier/more 
accurate further processing. Functions are typically point- or neighborhood-based, taking as input pixel 
values and giving as output new values. Point-based functions modify values taking as input only data 
from the given pixel (e.g., contrast stretch). Neighborhood-based functions also use data from 
surrounding pixels to modify a pixel (e.g., smoothing and edge-detection filters). Transformation 
functions may have controlling parameters influencing the output. In this work four transformation 
functions possessing controlling parameters are tested. All input imagery is assumed to consist of 
three bands.  

Figure 3.5 illustrates an unmodified subset of a satellite image depicting small structures (Figure 
3.5a), along with four transformation functions (Figure 3.5b–e) investigated in this work. Controlling 
parameters were given random values in generating the figures. The transformation functions vary in 
terms of observing local and neighborhood properties, observing multiple bands, algorithm flexibility 
and number of parameters. The four transformation functions are briefly described. 

3.2.3.1. Spectral Split 

Spectral Split [52] is a simple n + 1 parameter transformation function where n is the number of 
bands in the image. The transformation function changes the values of pixels around a specified, 
parameterized value called position. For each band (n) of the input image, there is a corresponding 
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position parameter. Another parameter, called height, controls the magnitude of the change around the 
position parameter(s). Pixels outside the range height compared to position are unaffected by the 
transformation. Spectral Split can be written as: 

𝑓𝑓(𝑥𝑥𝑛𝑛) = � 𝑥𝑥𝑛𝑛 ∶ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛) ≥ ℎ𝑒𝑒𝑝𝑝𝑒𝑒ℎ𝑝𝑝,
𝑥𝑥𝑛𝑛 + (𝑥𝑥𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛) − 𝑎𝑎𝑝𝑝𝑒𝑒𝑝𝑝(𝑥𝑥𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛) × ℎ𝑒𝑒𝑝𝑝𝑒𝑒ℎ𝑝𝑝  (1) 

where the sign function returns either −1 or 1 depending on the sign of the input. The abs function 
returns the absolute value of the input. Spectral Split can create areas of spectral continuity and also 
strong discontinuities (see Figure 3.5b). The low number of controlling parameters (four when 
concerned with a three band image) of the function may limit its ability to be effectively tailored for a 
specific problem. A simple modification to the function could see a separate height parameter for each 
input band. 
 

 
Figure 3.5. Output imagery from four data transformation functions tested in this work as 
part of a combined search space: (a) No Transformation, (b) Spectral Split, 
(c) Transformation Matrix, (d) Genetic Contrast, (e) Genetic Transform. 

3.2.3.2. Transformation Matrix 

A transformation matrix is tested here as a data transformation function (entitled Transformation 
Matrix), commonly used for color space transformations. Pixels of a given coordinate of an image 
stack can be represented as a point matrix. Multiplying the point matrix with a transformation matrix 
gives as output a new transformed point matrix. In the case of three image bands, such a 
transformation matrix consists of nine variables, modelled here as parameters for an image 
transformation (Equation (2)). Such a transformation allows certain bands to carry more weight, or 
highlight certain synergies of the data (see Figure 3.5c). The range of the parameters is set to [−0.2, 1]. 
As opposed to the other transforms described here, which only consider pixel values, spatial aspects 

a b c 

d e 
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and parameter values, the Transformation Matrix allows for a change of pixel values based on 
parameters and values from other channels. 

�
n1
n2
n3
� = �

𝑎𝑎 𝑎𝑎 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑒𝑒 ℎ 𝑝𝑝

� �
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� (2) 

3.2.3.3. Genetic Contrast 

Some works also propose to consider image contrast enhancement as a parameterized optimization 
problem, with a variant considering local spectral distributions proposed in [48,55]. A real valued 
encoding variant [55] of this image enhancement method is tested as a low-level transform, entitled 
Genetic Contrast for convenience. Genetic Contrast changes a pixel’s value based on global image 
spectral characteristics, local characteristics (neighborhood standard deviation and mean values) and 
four controlling parameters (see Figure 3.5d). Genetic Contrast is written as: 

𝑓𝑓(𝑥𝑥) =  
𝑘𝑘 × 𝐺𝐺

𝜎𝜎(𝑥𝑥) + 𝑎𝑎
�𝑥𝑥 − 𝑐𝑐 × 𝑚𝑚(𝑥𝑥)� + 𝑚𝑚(𝑥𝑥)𝑎𝑎 (3) 

With G denoting the image global mean value, σ(x) the standard deviation around pixel x and m(x) 
the mean around pixel x. Controlling parameters are denoted with a, b, c, and k, with ranges [0, 1.5] for 
a, [0, G/2] for b, [0, 1] for c, and [0.5, 1.5] for k. 

3.2.3.4. Genetic Transform 

General approaches have also been put forth that consider low-level image processing as an 
optimization problem, with some of the early works focussing on basic image enhancement [49,56]. 
Such an approach is investigated here as a potential low-level transform forming part of the combined 
low- and mid-level image processing search landscape. A ten parameter transformation function [49,56], 
for convenience called Genetic Transform, is tested. Genetic Transform consists of four  
parameter-controlled non-linear transformation functions, with either one or two controlling 
parameters. These four functions are weighted (convex combination) by four additional parameters to 
form a singular function. This allows for flexibility in the prominence of the different transforms, in 
addition to flexibility in the actual structures of the mappings. All bands in an image are handled with 
the same functions (parameters). Input values are scaled to the range [0, 1]. The four transforms are 
written as Equations (4–7). 

𝑓𝑓1(𝑥𝑥) =
log (1 + 𝑒𝑒𝑝𝑝1−1  × 𝑥𝑥)

𝑝𝑝1
 (4) 

𝑓𝑓2(𝑥𝑥) =
(1 + 𝑝𝑝2)𝑥𝑥 − 1

𝑝𝑝2
 (5) 

𝑓𝑓3(𝑥𝑥) =
1

1 + ((1 − 𝑥𝑥)
𝑝𝑝3 )𝑝𝑝4

 (6) 

𝑓𝑓4(𝑥𝑥) =
1

(1
𝑥𝑥 + 𝑝𝑝6 − 1)𝑝𝑝5

 (7) 
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Figure 3.6 illustrates example mappings of the four functions with arbitrarily chosen parameter 
values. The combined function is written as: 

𝑓𝑓(𝑥𝑥) = 𝑝𝑝7 × 𝑓𝑓1(𝑥𝑥) + 𝑝𝑝8 × 𝑓𝑓2(𝑥𝑥) + 𝑝𝑝9 × 𝑓𝑓3(𝑥𝑥) + 𝑝𝑝10 × 𝑓𝑓4(𝑥𝑥) (8) 

Similar to Spectral Split, Genetic Transform is a point-based function that could lead to stronger 
spectral discontinuities or continuities due to the non-linear rescaling of the data (Figure 3.5e). In 
contrast, it has more controlling parameters, increasing search landscape dimensionality, but is 
theoretically more flexible and may, thus, fit better to a given problem. 

3.2.4. Image Segmentation Algorithms 

Two image segmentation algorithms are tested within the approach described, a fast clustering 
algorithm and a variant of region-merging segmentation. 

 

 
 

Figure 3.6. Cont. 
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Figure 3.6. Four parameterized transformation functions, weighted to constitute the 
Genetic Transform function. 

3.2.4.1. Simple Linear Iterative Clustering Algorithm 

Simple Linear Iterative Clustering (SLIC) [57] is considered a superpixel algorithm—which 
attempts to group an image into larger spectral atomic units as opposed to the original pixel level. The 
algorithm is intended for use on natural color imagery. Semantic segmentation is typically not 
attempted with such algorithms, but results may be used in further segmentation processes. The SLIC 
algorithm clusters (segments) pixels in a five dimensional space using region constrained k-means 
clustering. The space consists of the two dimensions of the image (x and y dimensions) and three input 
bands; which are assumed to be in the red, green, blue color space. The SLIC algorithm converts the 
RGB color space to the CIELAB color space before further processing (not done in this work). SLIC is 
used here with some liberty in the context of semantic image segmentation due to the computational 
efficiency of the algorithm, allowing for near real time manual segmentation algorithm parameter tuning, 
and middling segmentation results on problems addressed in this work. 

3.2.4.2. Multiresolution Segmentation 
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The basic Multiresolution Segmentation (MS) algorithm [10] is a three parameter variant of  
region-merging segmentation. The scale parameter of the MS algorithm, which incorporates notions of 
the spectral degree of fitting before and after a virtual segment merge and object size, controls the 
relative sizes of segments. Two other parameters namely shape/color and compactness/smoothness controls 
the weight of two geometry homogeneity criteria (compactness and smoothness [10]) against each other 
(compactness/smoothness) and against the scale parameter (shape/color). Other geometric homogeneity 
criteria may also be considered [29]. A variant not considering band weighting [10] is utilized. 

3.2.5. Spatial Metrics 

Four empirical discrepancy metrics are employed as fitness functions to direct the search process. 
These four fitness functions are utilized in the context of single-objective optimization and use notions 
of spatial overlap, as opposed to edge matching or empirical goodness metrics. Doing comparative 
experimentation with multiple fitness functions are advocated (four in our case), as quality are 
measured differently among the functions. Various metrics matching a single generated segment to a 
reference segment have been shown to be highly correlated [15], with a singular metric in the test bed 
considering over- and under segmentation more elaborately diverging from the correlation [15]. Thus, 
results are reported with a metric matching a single generated segment to that of a reference segment 
and three metrics allowing for multiple generated segments to be matched with a given reference 
segment (having internal differences). Metrics allowing for multiple generated segments to be matched 
with a single reference segment are more flexible to a wide range of problem instances, for example if 
some reference segments are routinely over-segmented or if, due to segmentation algorithm 
limitations, over-segmentation is common. 
 

 

Figure 3.7. An abstract segmentation evaluation scenario with the reference segment 
denoted by R, the generated segments by Si and the generated segment with the largest 
overlap with R as S. 

Figure 3.7 illustrates an abstract segmentation evaluation scenario with the reference segment 
denoted by R, generated segments intersecting the reference segment by Si, the generated segment with 
the largest overlap with the reference segment as S and the number of segments intersecting with R as 
n. Results of such evaluations are averaged over multiple reference segments. The four utilized metrics 
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are described using set theory notation. “| |” Denotes the cardinality (the number of pixels in the 
segment). The optimal value for all metrics described here is zero. 

3.2.5.1. Reference Bounded Segments Booster 

The Reference Bounded Segments Booster (RBSB) [25] metric measures the amount of mismatch 
between R and S against R, with a range of [0, ∞] and can be written as: 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 =
|𝑅𝑅 ∪ 𝑆𝑆| − |𝑅𝑅 ∩ 𝑆𝑆|

|𝑅𝑅|  (9) 

3.2.5.2. Larger Segments Booster 

A variant of the Larger Segments Booster (LSB) [31] metric is used here, written as: 

𝐿𝐿𝑆𝑆𝑅𝑅 =
|𝑅𝑅 ∪ 𝑆𝑆ℎ| − |𝑅𝑅 ∩ 𝑆𝑆ℎ| + 𝑎𝑎

|𝑅𝑅|  (10) 

where 𝑆𝑆ℎ = 𝑆𝑆𝑖𝑖 ∪  𝑆𝑆𝑖𝑖+1 ∪ …∪ 𝑆𝑆𝑛𝑛 and with each Si having at least half of its pixels in R. b Denotes the 
number of pixels intersecting R. 

3.2.5.3. Partial and Directed Object-Level Consistency Error 

Inspired by the Object-level Consistency Error (OCE) [17], which is influenced by the Jaccard 
index [58], a partial and directed variant of OCE is defined, entitled PD_OCE, with a range of [0, 1] 
and written as: 

𝑃𝑃𝑃𝑃_𝑂𝑂𝑂𝑂𝑂𝑂 = �
|𝑅𝑅 ∩ 𝑆𝑆𝑖𝑖|
|𝑅𝑅 ∪ 𝑆𝑆𝑖𝑖|

×
|𝑆𝑆𝑖𝑖|

∑ �𝑆𝑆𝑗𝑗�𝑛𝑛
𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 (11) 

A specific Si covering only a fraction of R but with a very large component outside of R have a large 
influence on the metric score, which could be an erroneous quality notion in many problem instances. 

3.2.5.4. Reference Weighted Jaccard 

Also inspired by the Jaccard index, a new metric is proposed, the Reference Weighted Jaccard 
(RWJ), with a range of [0, 1] and written as: 

𝑅𝑅𝑅𝑅𝑅𝑅 = �
|𝑅𝑅 ∩ 𝑆𝑆𝑖𝑖|
|𝑅𝑅 ∪ 𝑆𝑆𝑖𝑖|

×
|𝑅𝑅 ∩ 𝑆𝑆𝑖𝑖|

|𝑅𝑅|

𝑛𝑛

𝑖𝑖=1

 (12) 

As opposed to the OCE/PD_OCE metric, the RWJ metric weights the summation of results against 
the contribution of Si to R. 

3.2.6. Examples of Data Transforms with Segments and Metric Scores 

Figure 3.8 illustrates several different combinations of data transformation function parameters 
(Spectral Split) and segmentation algorithm parameters (Multiresolution Segmentation) in terms of 
RWJ metric scores. The other parameters of the segmentation algorithm and transformation function 
were kept constant. Note the differences in metric scores when considering a MS scale parameter of 50. 
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Figure 3.8. RWJ metric scores on a single object (house) of interest delineated by a bold 
red line. The Multiresolution Segmentation algorithm and Spectral Split transformation 
function were employed. 

3.3. Data 

Four example problems are addressed and tested with this approach. Fully pre-processed subsets of 
VHR optical imagery (Figure 3.9) were obtained, depicting a settlement (Jowhaar, Figure 3.9a), 
refugee camps (Hagadera, Bokolmanyo, Figure 3.9b,c) and a settlement surrounded by informal 
agriculture (Akonolinga, Figure 3.9d). The aims could be to obtain information for conducting urban 
planning (Figure 3.9a), structure counting and characterization (Figure 3.9b,c) and agricultural 
monitoring for land-use planning (Figure 3.9d). It is attempted to segment structures (Figure 3.9a–c) and 
fields (Figure 3.9d) using a single segmentation layer using the sample supervised segment generation 
approach described. Provided reference segments are enclosed by white bounding boxes. The 
Bokolmanyo site (Figure 3.9c) pose an easy segmentation problem, with the other three problems 
proving to be more difficult to segment accurately using only a single segment layer. In practice 
subsequent processes could refine results, especially on the more difficult problems. All imagery 
consists of three input bands, have 8-bit quantization and are pansharped. Table 3.1 lists some image 
metadata, including the number of utilized reference objects or segments for each image. 

 

RWJ: 0.357 RWJ: 0.421 RWJ: 0.772 

RWJ: 0.367 RWJ: 0.419 RWJ: 0.222 
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Figure 3.9. The four datasets used in this study, entitled (a) Jowhaar, (b) Hagadera, (c) 
Bokolmanyo, (d) Akonolinga. Dataset details are given in Table 3.1. 

Table 3.1. Dataset metadata, including the number of utilized reference segments. 

Test Site 
Target 

Elements 
Sensor 

Spatial 
Resolution 

Reference 
Segments 

Channels 
Date 

Captured 
Jowhaar 1  Structures GeoEye-1 0.5 m 40 1, 2, 3 2011/02/26 
Hagadera 2  Structures WorldView-2 0.5 m 38 4, 6, 3 2010/10/07 

Bokolmanyo 1 Tents GeoEye-1 0.5 m 28 1, 2, 3 2011/08/24 
Akonolinga 3 Fields QuickBird 2.4 m 35 1, 2, 3 2008/03/06 

Note: 1 ©GeoEye, Inc. 2011, provided by e-GEOS S.p.A. under GSC-DA, all rights reserved. 2 ©DigitalGlobe, Inc. 2010, 

provided by EUSI under EC/ESA/GSC-DA, all rights reserved. 3 © European Space Imaging/DigitalGlobe, 2008, 

provided by EUSI. 

3.4. Methodology 

The method described here is quantitatively compared in terms of segmentation accuracies with a 
general sample supervised segment generation approach not performing any data transformations 
(detailed in Section 3.4.1). Several search methods are investigated with such an approach, to validate 
the usefulness of more complex variants (Section 3.4.2). In addition to the segmentation evaluation, 
some convergence profiling is done on variants of the method. Finally the presences of parameter 
interdependencies are investigated to justify the creation of enlarged search spaces (Section 3.4.3). 

3.4.1. Data Transformation Functions for Expanded Search Spaces 

The general usefulness of transformation function expanded search spaces is investigated. The four 
sites and reference segments detailed in Section 3.3 (Figure 3.9) is used with the sample supervised 
segment generation approach detailed in Section 3.2. For each site, the method is executed using the 
four transforms described in Section 3.2.3 and using the MS and SLIC segmentation algorithms. In 
addition to using the transforms, the method is also run using no data transformation function. 
Evaluation is conducted using the four different evaluation metrics described in Section 3.2.5. In total, 
40 different experimental setups or methodological variants are tested per site, allowing for evaluating 
the usefulness of such an approach in general, but also giving indicators of the usefulness of specific 
transforms and segmentation algorithms. 

The utilized DE metaheuristic is given 3000 search iterations (30 agents) to traverse the search 
space in all experimental instances, thus, not giving enlarged search spaces more computing time or 
evaluations. All experiments are repeated 25 times to generate a measure of specificity and also to 

a b c d 
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allow for testing the statistical significance among method variants, amounting to ± 250 million 
segmentation evaluations. Two-fold (hold-out) cross-validation is performed in all experimental runs 
to prevent overfitting of the parameter sets to the given reference segments.  

3.4.2. Metaheuristic Evaluation and Convergence Behavior Profiling 

The appropriateness of using a population based metaheuristic on the search spaces created by 
combining simple transformation function parameters and segmentation algorithm parameters is 
investigated. For two of the test sites, the proposed method is run using four different transformation 
function strategies. The DE metaheuristic is compared for such applications (search landscapes) with 
simple to implement search strategies, namely a Hill Climber (HC) and Random Search (RND). For 
each test site, using the different transformation function strategies, the three search methods are 
compared via fitness trace characteristics and resultant segment quality after 3000 search iterations. 
Fitness traces/plots are averaged over 25 runs. 

The convergence behavior of the method operating under no data transformation and data 
transformation conditions is also investigated. Four of the transformation strategies are compared. Due 
to the computationally expensive nature of such an approach, a search process should typically be 
terminated as soon as possible. It is investigated how larger search space variants compare with 
simpler, lower dimensional, variants in terms of convergence behavior, for example to determine if 
simpler variants have some early accuracy advantage over complex variants. 

3.4.3. Parameter Domain Interdependencies 

As with classification, search processes can suffer from the curse of dimensionality. Problems could 
be decomposed into smaller separate problems for more efficient processing if there exist no 
interdependencies [50,51] among the processes or parameter domains. Some processes could add value 
to a solution without, or minimally, interacting with other processes. In the context of GEOBIA, 
examples could be post hierarchical segmentation segment merging procedures observing attribute 
criteria, contextual classification not sensitive to segment characteristics (segmentation algorithm 
parameters) or a form of spectral transformation and segmentation (e.g., mathematical morphology) 
resulting in slightly different/better segments, as opposed to not performing the spectral 
transformation, but having identical segmentation algorithm parameters. 

Tests are conducted to validate the existence of interdependencies between the data transformation 
function parameters and segmentation algorithm parameters used in this study, which can be strongly 
anticipated in this context. The sample supervised method described here is run on a test site using the 
two segmentation algorithms, four metrics and four transforms in selected combinations. The optimal 
segmentation algorithm parameter values generated by the variants of the method are recorded 
(25 runs) and contrasted, specifically the differences when using different transforms versus using no 
transformation function. Differing optimal values gives an indication of interdependencies. 

Furthermore a simple statistical variable interdependency test is performed between parameters 
from the segmentation algorithm and data transformation function domains, as detailed in [50]. A 
variable or parameter 𝑥𝑥𝑖𝑖 is affected by 𝑥𝑥𝑗𝑗 if, given a parameter set 𝑎𝑎 = (… , 𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑗𝑗 , … ) and  
𝑎𝑎 = (… , 𝑥𝑥𝑖𝑖′ , … , 𝑥𝑥𝑗𝑗 , … ) and 𝑓𝑓(𝑎𝑎) ≤ 𝑓𝑓(𝑎𝑎) (fitness evaluation), with a change of 𝑥𝑥𝑗𝑗 to 𝑥𝑥𝑗𝑗′  in sets 𝑎𝑎 and 𝑎𝑎 to 
create 𝑎𝑎′and 𝑎𝑎′, the equation 𝑓𝑓(𝑎𝑎′) > 𝑓𝑓(𝑎𝑎′) holds. For one site, using the MS segmentation algorithm 
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and Spectral Split transformation function, an exhaustive parameter dependency test based on 100 
randomly initiated values for the described evaluation is performed. Any value above 0 indicates 
variable interaction, although higher values suggest more regular interaction. 

3.5. Results and Discussion 

3.5.1. Data Transformation Functions for Expanded Search Spaces 

Tables 3.2–5 list the results of the experimental runs on the four test sites. The values indicate the 
best fitness achieved, averaged over 25 runs. The standard deviations are also given. Different data 
transformation functions may be contrasted within each metric category (horizontal grouping). Lower 
values indicate better results. Results from different metrics cannot be compared (vertical grouping), 
although the results from the two segmentation algorithms within each metric category may be 
contrasted. The shaded cells delineate results obtained using variants of the method employing data 
transformations that resulted in worse quality scores compared to the variant of the method using no data 
transformations. Results that are not statistically significantly different from the no transformation variant 
according to the student’s t-test with a 95% confidence interval are also delineated with shaded cells. 

Table 3.2. Jowhaar site results. 

Jowhaar 
 

No Transform Spectral Split 
Transformation 

Matrix 
Genetic 

Transform 
Genetic 
Contrast 

RBSB SLIC 0.49 ± 0.03 0.43 ± 0.06 0.36 ± 0.03 0.39 ± 0.06 0.47 ± 0.04 

 
MS 0.31 ± 0.04 0.31 ± 0.05 0.25 ± 0.07 0.32 ± 0.04 0.35 ± 0.06 

PD_OCE SLIC 0.82 ± 0.01 0.80 ± 0.01 0.69 ± 0.02 0.72 ± 0.02 0.85 ± 0.01 

 
MS 0.78 ± 0.01 0.73 ± 0.02 0.57 ± 0.03 0.61 ± 0.03 0.80 ± 0.01 

RWJ SLIC 0.45 ± 0.01 0.43 ± 0.03 0.34 ± 0.02 0.41 ± 0.03 0.49 ± 0.02 

 
MS 0.30 ± 0.02 0.30 ± 0.02 0.22 ± 0.02 0.32 ± 0.02 0.39 ± 0.02 

LSB SLIC 0.45 ± 0.00 0.43 ± 0.01 0.30 ± 0.03 0.41 ± 0.01 0.48 ± 0.02 

 
MS 0.33 ± 0.02 0.33 ± 0.03 0.26 ± 0.02 0.31 ± 0.02 0.37 ± 0.02 

Table 3.3. Hagadera site results. 

Hagadera 
 

No Transform Spectral Split 
Transformation 

Matrix 
Genetic 

Transform 
Genetic 
Contrast 

RBSB SLIC 0.47 ± 0.00 0.44 ± 0.03 0.31 ± 0.03 0.49 ± 0.04 0.52 ± 0.07 
  MS 0.60 ± 0.07 0.53 ± 0.09 0.39 ± 0.09 0.51 ± 0.12 0.70 ± 0.15 

PD_OCE SLIC 0.80 ± 0.00 0.78 ± 0.01 0.64 ± 0.04 0.77 ± 0.01 0.78 ± 0.01 
  MS 0.78 ± 0.02 0.74 ± 0.02 0.62 ± 0.02 0.74 ± 0.02 0.80 ± 0.02 

RWJ SLIC 0.47 ± 0.02 0.49 ± 0.02 0.37 ± 0.01 0.45 ± 0.01 0.51 ± 0.01 
  MS 0.49 ± 0.02 0.45 ± 0.03 0.39 ± 0.03 0.46 ± 0.03 0.51 ± 0.03 

LSB SLIC 0.58 ± 0.02 0.58 ± 0.02 0.41 ± 0.02 0.56 ± 0.03 0.65 ± 0.02 
  MS 0.58 ± 0.03 0.57 ± 0.04 0.49 ± 0.03 0.56 ± 0.03 0.65 ± 0.04 

Examining Tables 3.2–5 it is evident that simple expanded search spaces (under identical search 
conditions) can assist in generating better quality segments. The magnitude of the improvement 
depends on the definition of quality (metric), the characteristics of the features of interest in the image 
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as well as the specific data transformation function employed. Notwithstanding, under certain metric 
and transformation function conditions, consistently worse results are obtained. The Genetic Contrast 
transformation function in particular does not add value to most problem instances investigated here. 
This could be due to the smoothing/distorting effect of the function (Figure 3.5d). In addition, the 
Spectral Split function only improves results fractionally, if at all. 

Table 3.4. Bokolmanyo site results. 

Bokolmanyo 
 

No Transform Spectral Split 
Transformation 

Matrix 
Genetic 

Transform 
Genetic 
Contrast 

RBSB SLIC 0.23 ± 0.00 0.28 ± 0.09 0.20 ± 0.04 0.19 ± 0.02 0.28 ± 0.05 
  MS 0.22 ± 0.07 0.21 ± 0.05 0.18 ± 0.04 0.15 ± 0.04 0.34 ± 0.12 

PD_OCE SLIC 0.78 ± 0.00 0.64 ± 0.04 0.50 ± 0.03 0.46 ± 0.03 0.75 ± 0.03 
  MS 0.75 ± 0.02 0.56 ± 0.04 0.39 ± 0.03 0.36 ± 0.03 0.76 ± 0.03 

RWJ SLIC 0.33 ± 0.01 0.32 ± 0.04 0.23 ± 0.02 0.25 ± 0.02 0.42 ± 0.02 
  MS 0.29 ± 0.01 0.26 ± 0.02 0.20 ± 0.02 0.22 ± 0.02 0.39 ± 0.03 

LSB SLIC 0.60 ± 0.01 0.58 ± 0.04 0.49 ± 0.03 0.50 ± 0.03 0.68 ± 0.02 
  MS 0.48 ± 0.01 0.46 ± 0.03 0.40 ± 0.04 0.39 ± 0.02 0.64 ± 0.05 

Table 3.5. Akonolinga site results. 

Akonolinga   No Transform Spectral Split 
Transformation 

Matrix 
Genetic 

Transform 
Genetic 

Contrast 
RBSB SLIC 0.61 ± 0.00 0.69 ± 0.14 0.62 ± 0.06 0.54 ± 0.06 0.58 ± 0.02 

  MS 0.36 ± 0.05 0.38 ± 0.07 0.38 ± 0.09 0.38 ± 0.16 0.45 ± 0.14 
PD_OCE SLIC 0.82 ± 0.00 0.79 ± 0.01 0.78 ± 0.02 0.76 ± 0.02 0.84 ± 0.01 

  MS 0.79 ± 0.01 0.77 ± 0.01 0.76 ± 0.02 0.76 ± 0.02 0.80 ± 0.01 
RWJ SLIC 0.46 ± 0.01 0.47 ± 0.02 0.44 ± 0.03 0.40 ± 0.02 0.41 ± 0.01 

  MS 0.32 ± 0.02 0.33 ± 0.02 0.34 ± 0.03 0.32 ± 0.02 0.35 ± 0.03 
LSB SLIC 0.43 ± 0.00 0.44 ± 0.02 0.33 ± 0.01 0.31 ± 0.01 0.37 ± 0.01 

  MS 0.33 ± 0.02 0.33 ± 0.02 0.32 ± 0.02 0.32 ± 0.01 0.34 ± 0.02 

Adding the Transformation Matrix and Genetic Transform functions on the other hand almost 
always results in improved segmentation accuracies, with varying magnitudes. Figure 3.10 highlights 
RWJ metric scores using SLIC as the segmentation algorithm. Note the performances of the 
Transformation Matrix and Genetic Transform functions. Under a few metric and image conditions 
(Tables 3.2–5), improvements in excess of a decrease of 0.20 in metric values are noted with these two 
transforms. In the eight instances where these functions did not improve results, the results were not 
worse by more than a 0.02 change in metric values (minor) and only requiring neglectable additional 
computing for performing the data transformation. 

The behavior of the RBSB metric on the Akonolinga site using the SLIC segmentation algorithm 
could be due to the fact that the given range of the scale parameter in SLIC was not sufficiently large 
to segment some of the relatively large fields in this scene. RBSB matches the largest overlapping 
generated segment with the reference segment, potentially creating noise/discontinuities in these 
instances and thus causing difficulty for the search algorithm (30 randomly initialized agents). 
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Figure 3.10. Averaged RWJ metric scores (lower is better) for SLIC segmentation on the 
four sites using the five different transformation function strategies. 

 

Figure 3.11. Example of best segmentation results achieved on (a) original image and (b) 
an image transformed with the Genetic Transform function for the Bokolmanyo site using 
the MS segmentation algorithm and RWJ metric. 

Figures 3.11 and 3.12 highlight the best segmentations achieved with different transformation 
functions compared to the variant of the method not performing transformations. Note the more 
accurate boundaries on the reference segments (outlined in red) as well as better fits on structures not 
delineated due to averaging results and performing cross-validation to improve generalizability. 
Additional post-segmentation processing steps could improve results. In addition, note that image 
transformation is done solely for the purpose of generating better segments. Subsequent 
processes/methods should run on the original image data (e.g., Figure 3.11a), but using the segments 
generated on the transformed space (e.g., Figure 3.11b). 

a b 
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Figure 3.12. Example of best segmentation results achieved on (a) the original image and 
(b) an image transformed with the Transformation Matrix for the Hagadera site using the 
MS segmentation algorithm and RBSB metric. 

 

Figure 3.13. Fitness traces for three search methods on the Bokolmanyo site (MS 
segmentation) using the (a) No Transform, (b) Transformation Matrix, (c) Spectral Split 
and (d) Genetic Transform transformation strategies. The x-axes delineate search iterations. 
The y-axes delineate RWJ evaluation scores. 

3.5.2. Metaheuristic Evaluation and Convergence Behavior Profiling 

Figures 3.13 and 3.14 illustrate the fitness traces of the DE, HC and RND search methods averaged 
over 25 runs for the elements of interest (averaged) in the Bokolmanyo and Jowhaar sites. Each  
sub-graph illustrates results using a different image transformation strategy. The search landscape 

a b 

(a) (b) 

(c) (d) 
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dimensionalities of the different method variants are given in brackets. Final metric scores may differ from 
results presented in Section 3.5.1 due to cross-validation, which is not possible here for a fitness trace. 
 

 

Figure 3.14. Fitness traces for three search methods on the Jowhaar site (SLIC 
segmentation) using the (a) No Transform, (b) Transformation Matrix, (c) Spectral Split 
and (d) Genetic Transform transformation strategies. The x-axes delineate search iterations. 
The y-axes delineate RWJ evaluation scores. 

In all instances the differential evolution method gave the best final metric scores as well as 
maintaining the lowest values during the search process. This highlights some difficulty 
(discontinuities/ruggedness, deceptiveness, and multimodality) of the search landscapes (e.g., Figure 
3.3), necessitating the use of more complex search strategies. Within a few generations, less than 250 
search iterations, the DE search strategy starts to deliver meaningfully better results compared to the 
other two simple search strategies. As the dimensionality of the problem increases, in general, the 
magnitude of the differences in the results of the DE versus HC/RND increases. The advantages of 
using a more complex search strategy like DE is much more marginal when considering the variant of 
the method not employing any data transformation (Figures 3.13a and 3.14a). 

Figure 3.15 shows fitness traces generated for the Jowhaar site using the SLIC and MS 
segmentation algorithms and four of the transformation function strategies. It is evident that simpler, or 
lower dimensional strategies (e.g., No Transform or Spectral Split) do not provide an initial 
performance increase over more complex, higher dimensional, variants (e.g., Transformation Matrix 
and Genetic Transform). This could be due to general usefulness of some transforms leading to better 
results by just randomly selecting points in the search space, with the magnitude in fitness differences 
increasing as the actual search progresses. Different fitness traces rarely cross, with the Transformation 
Matrix strategy, for both SLIC and MS, providing better final metric scores as well as maintaining the 

(a) (b) 

(c) (d) 
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best results throughout the search process. Considering the MS segmentation algorithm, the No 
Transform, Spectral Split and Genetic Transform strategies have very similar fitness traces, but with 
no penalty for using the more complex variants. 

Interestingly for this specific problem, the MS algorithm outperforms the SLIC algorithm under any 
transformation condition. Additionally, observing the fitness traces in this section, it could be argued 
that 1000 to 1500 search iterations are sufficient, keeping in mind the problems, metrics and 
transformation functions considered. 
 

 

Figure 3.15. Fitness traces for the two tested segmentation algorithms (SLIC and MS) on 
the Jowhaar site using the different transformation function strategies. The x-axes delineate 
search iterations. The y-axes delineate RWJ evaluation scores. 

3.5.3. Parameter Domain Interdependencies 

Tables 3.6 and 3.7 lists the parameters obtained for the MS and SLIC segmentation algorithms under 
different metric and data transformation conditions. The achieved fitness scores are also given. Examining 
Table 3.6, which denotes resultant parameters with the MS algorithm, very specific final fitness scores (low 
standard deviations) are generated by a wide range of different parameter sets under each data 
transformation condition. Thus multiple optima exist when considering the MS algorithm that 
approximates to the same (optimal) achievable segmentation quality, similar to the blue shaded cells 
illustrated for an arbitrary problem in Figure 3.3. None the less, various combinations of optimal scale 
parameter values achieved under different transformation conditions are statistically significantly different 
according to the student’s t-test with a 95% confidence interval (e.g., MS/PD_OCE No Transform and 
Spectral Split), suggesting different optimal values under different transformation conditions. 
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Table 3.6. Multiresolution Segmentation (MS) segmentation algorithm parameters 
obtained over different metric and data transformation function conditions for the 

Hagadera test site. 

MS, PD_OCE Fitness Scale Shape Compactness 
No Transform 0.78 ± 0.02 16.48 ± 9.05 0.12 ± 0.11 0.58 ± 0.29 
Spectral Split 0.74 ± 0.02 12.06 ± 6.37 0.04 ± 0.04 0.54 ± 0.38 

Transformation Matrix 0.62 ± 0.02 10.99 ± 3.95 0.09 ± 0.07 0.71 ± 0.36 
Genetic Contrast 0.80 ± 0.02 15.98 ± 8.56 0.12 ± 0.09 0.65 ± 0.40 

Genetic Transform 0.74 ± 0.02 11.61 ± 4.29 0.13 ± 0.11 0.67 ± 0.39 
MS, RWJ     

No Transform 0.49 ± 0.02 24.21 ± 17.66 0.13 ± 0.22 0.69 ± 0.37 
Spectral Split 0.45 ± 0.03 15.30 ± 5.57 0.04 ± 0.03 0.66 ± 0.33 

Transformation Matrix 0.39 ± 0.03 13.12 ± 13.95 0.12 ± 0.26 0.49 ± 0.36 
Genetic Contrast 0.51 ± 0.03 18.16 ± 10.60 0.09 ± 0.12 0.71 ± 0.30 

Genetic Transform 0.46 ± 0.03 18.22 ± 16.08 0.11 ± 0.24 0.54 ± 0.38 

Table 3.7. SLIC segmentation algorithm parameters obtained over different metric and 
data transformation function conditions for the Bokolmanyo test site. 

SLIC, PD_OCE Fitness Scale Compactness 
No Transform 0.78 ± 0.00 7.26 ± 0.25 27.40 ± 0.00 
Spectral Split 0.64 ± 0.04 9.46 ± 1.93 31.17 ± 9.76 

Transformation Matrix 0.50 ± 0.03 8.66 ± 0.47 36.02 ± 6.39 
Genetic Contrast 0.75 ± 0.03 9.68 ± 1.32 27.69 ± 8.23 

Genetic Transform 0.46 ± 0.03 7.68 ± 0.54 30.69 ± 9.51 
SLIC, RWJ    

No Transform 0.33 ± 0.01 9.16 ± 1.37 38.03 ± 0.77 
Spectral Split 0.32 ± 0.04 10.72 ± 1.56 38.56 ± 1.96 

Transformation Matrix 0.23 ± 0.02 8.22 ± 0.25 38.22 ± 2.83 
Genetic Contrast 0.42 ± 0.02 10.28 ± 1.00 37.22 ± 6.02 

Genetic Transform 0.25 ± 0.02 9.42 ± 1.02 36.50 ± 4.45 

Table 3.8 lists the achieved scale parameter values over the allocated 25 runs using the RWJ metric 
and no data transformation as shown in Table 3.6. Note the two distinct value ranges, around 7–9 and 
again at 24, resulting in the high standard deviation of 17.66 for the scale parameter, but still resulting 
in a fitness score with a standard deviation of less than 0.02. Under all transformation conditions, low 
shape/color parameters are generated, with relatively low standard deviations. No significant 
conclusion can be made on the behavior of the shape/color and compactness/smoothness parameters. 

Table 3.8. Scale parameter values obtained (sorted) from the results depicted in Table 3.6 
with MS segmentation, no transformation and the Reference Weighted Jaccard (RWJ) 

metric. 

Scale 7.8 7.8 7.8 7.8 9.2 9.2 9.2 10.6 21.8 21.8 24.6 24.6 
24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6 49.8 72.2 75 
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Opposed to the results from the MS segmentation algorithm, the SLIC algorithm (Table 3.7) 
displays more specific scale and compactness parameter values as well as delivering very specific 
fitness scores. Again, various combinations of optimal scale parameter values achieved are statistically 
significantly different according to the student’s t-test with a 95% confidence interval. This verifies, as 
with the MS algorithm, apparent parameter dependencies between the parameter domains of the 
segmentation algorithms and data transformation functions. 

Finally Table 3.9 lists the results of the parameter interdependency test [50] performed on the 
Bokolmanyo site with the MS algorithm and Spectral Split combination under the RWJ metric 
condition. The parameters listed on the vertical axis are considered affected by the parameters listed 
horizontally if the result of an interdependency test is greater than zero. The table is divided into four 
quadrants, depicting the interactions of the two parameter domains. If both the top right and bottom 
left quadrants returned 0 for all cells, the two parameter domains can be considered as not interacting. 
In this simple example, all parameters are affected by all other parameters, to varying degrees. This 
suggests interdependencies. Interestingly, considering 100 evaluations for each cell, some 
interdependencies are frequent or strong (of no importance in determining interdependency). The scale 
parameter of the MS algorithm can be considered as its most important or sensitive parameter, 
reflected by the high degree by which its value is affected by all the other parameters. Note that these 
results reflect parameter interactions or the frequency of interactions, and not the contributions to 
segment quality of the interactions. 

Table 3.9. Parameter domain interdependency test over 100 runs for the MS segmentation 
algorithm and Spectral Split transform on the Bokolmanyo site using the RWJ metric. 

 B1 B2 B3 Height Scale Shape Compt 
B1  22 27 26 4 9 39 
B2 24  33 26 1 4 34 
B3 21 31  30 3 4 31 

Height 36 34 39  3 7 34 
Scale 34 33 29 34  40 39 
Shape 24 29 35 36 28  41 
Compt 14 27 14 14 2 2  

3.6. Conclusions 

3.6.1. Potential of Expanded Search Spaces in Sample Supervised Segment Generation 

In this work a sample supervised segment generation method was presented and profiled. Expanded 
search spaces were introduced in the optimization loop, here by adding low-level image processing 
functions. In the context of segmentation problems, such an expanded search landscape allows for 
creating closer correlations between thematic and spectral similarity, allowing the given segmentation 
algorithms to generate better quality segments. In addition, such an extension to an automatic 
segmentation algorithm parameter tuning system is simple to implement. 

An interesting and sometimes advocated effect of such sample supervised optimization based 
approaches, is their potential to generate good or quality solutions in ways an expert user might never 
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have foreseen. In our examples the results from Table 3.7 (also see Figure 3.12b) serve as a good 
example of such a scenario. Combining the MS segmentation algorithm with the Transformation 
Matrix, setting a low scale parameter (compared to the other variants) and creating washed-out 
monotone imagery works very well in numerous problem instances. 

Four parameterized data transformation functions, having varied and sometimes complex internal 
characteristics have been tested with this method. Experimentation was conducted under various 
problem, metric, transformation function and segmentation algorithm conditions with generally 
favorable results advocating the utility of this method compared to simpler variants. Generalizability 
was also considered, with numerous reference segments tested and all results given as cross-validated. 
Care should be taken in selecting combinations of segmentation algorithms and data transformation 
functions, as a worsening of results are also possible under certain conditions. Such transformation 
functions or modifications of the data are exclusively used internally in the segmentation process and 
the resulting transformed data have no use for further analyses or visualization procedures. 

The utility of using more complex search methods for traversing these enlarged search spaces was 
also investigated. It was shown that simpler search strategies, such as a single agent hill climber and 
random search, were inefficient in exploring the search landscape compared to a differential evolution 
search strategy. In addition, variants of the method having much more parameters and thus 
significantly higher dimensional search spaces do not have any initial disadvantage in the search 
process compared to simpler variants or the variant not performing any data transformation. This 
suggests, in this context, no search duration penalty in adding transformation functions. Finally, it is 
shown via optimal achieved segmentation parameters and a simple interdependency test that the  
low-level and mid-level processes investigated here are (highly) interdependent, necessitating 
simultaneous optimization of these two parameter domains. 

The method described here can be used on its own if the considered problem is simple enough, 
keeping in mind the capabilities of the segmentation algorithm. This could be judged by the output 
metric scores. A very low score implies results are sufficiently good to use the segments as is. 
Otherwise, such an approach could form part of a more complete image analysis strategy, where the 
method is used to generate intermediary results, with other methods or processes performing more 
encompassing image analysis. For example in an expert systems approach (e.g., rule set development) 
segments can be generated as optimally as possible, quantitatively judged, for a certain land-cover type 
before more elaborate processes are used to split, merge and classify segments. 

3.6.2. Methodological Shortcomings and Open Questions for Future Research 

Although such a method shows promise, some shortcomings and open issues are highlighted here. 
Firstly, the number of training samples needed by such a method to generalize well is unknown. In this 
work reference segment sets contained between 28 and 40 references, thus with two-fold  
cross-validation between 14 and 20 references were used to train the model. In preliminary 
experimentation, reference sets containing less than 5–8 references displayed bad generalization 
performance. More complex and thus more flexible models (search landscapes) might fit closer to the 
training reference segments than simpler variants and have worse generalizability, unless 
generalizability tests such as cross-validation are explicitly implemented. 
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Another open issue surrounding generalizability is how well different combinations of segmentation 
algorithms and low-level image processing generalizes over a range of problems, something not 
explicitly tested here. It could be stated that, considering the conditions in this study, the MS 
segmentation algorithm with the Genetic Transform and Transformation Matrix functions do perform 
well over a range of problems. Different low-level image processing functions might be suited to 
different problem types or categories. Future work could investigate additional promising functions 
used in combination with commonly used segmentation algorithms. Neighborhood based transforms 
might be worth investigating. Search landscape dimensionality should be kept in mind, as enlarged 
search spaces are more difficult to traverse. 

The computationally expensive nature of image segmentation necessitates the efficient traversal of 
the search landscape. Such a sample supervised strategy advocates user interaction, so the method 
should ideally complete in a time frame acceptable to a user engaged with the image analysis. The 
computing time for a fitness evaluation iteration in this work (excluding Genetic Contrast) ranges from 
0.10 ± 0.01 seconds (SLIC segmentation, 28 subsets from the Bokolmanyo site, No Transform) to  
3.36 ± 0.28 seconds (MS segmentation, 40 subsets from the Akonolinga site, Genetic Transform) on an 
Intel Xeon E5-2643 3.5 GHz processor using single threaded processing. Running fitness evaluations 
(subset segmentation, transforms, fitness calculation) on a parallel computing architecture could be 
considered. In addition, motivated by the computationally expensive nature of fitness evaluation, more 
careful consideration could be given to the choice of the optimizer. Performing rigid meta-optimization 
(not conducted in this work), using metaheuristics with self-adapting metaparameters or 
hyperheuristics could be considered for further investigation. 

The choice of an optimal metric is, in our opinion, an open issue. In this work four different 
metrics, which are able to measure over- and under-segmentation were used. In addition to the general 
“area-overlap” metrics tested here, metrics observing spectral characteristics and boundary offsets 
could be considered. Metrics sensitive to user inaccuracies in delineating reference segments could 
also be considered. It is still unclear how different metrics relate or correlate to final classification 
accuracies. Multi-objective optimization may also be considered. 

Finally, the optimization concept of “epistatic links” (parameter interdependencies) [51] could, in 
some sense, be applied to some interactions in GEOBIA processes [8,9]. In this work an interaction 
between two domains was investigated and profiled. Investigating the potential of modelling classical 
GEOBIA processes as complex optimization problems could be profitable. Quality can be measured 
via empirical discrepancy methods, empirical goodness methods and even traditional notions of 
classifier accuracies. 
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Abstract 

Search-centric, sample supervised image segmentation has been demonstrated as a viable 
general approach applicable within the context of remote sensing image analysis. Such an 
approach casts the controlling parameters of image processing—generating segments—as a 
multidimensional search problem resolvable via efficient search methods. In this work, this 
general approach is analyzed in the context of connected component segmentation. A 
specific formulation of connected component labeling, based on quasi-flat zones, allows 
for the addition of arbitrary segment attributes to contribute to the nature of the output. 
This is in addition to core tunable parameters controlling the basic nature of connected 
components. Additional tunable constituents may also be introduced into such a 
framework, allowing flexibility in the definition of connected component connectivity, 
either directly via defining connectivity differently or via additional processes such as data 
mapping functions. The relative merits of these two additional constituents, namely the 
addition of tunable attributes and data mapping functions, are contrasted in a general 
remote sensing image analysis setting. Interestingly, tunable attributes in such a context, 
conjectured to be safely useful in general settings, were found detrimental under cross-
validated conditions. This is in addition to this constituent’s requiring substantially greater 
computing time. Casting connectivity definitions as a searchable component, here via the 
utilization of data mapping functions, proved more beneficial and robust in this context. 
The results suggest that further investigations into such a general framework could benefit 
more from focusing on the aspects of data mapping and modifiable connectivity as 
opposed to the utility of thresholding various geometric and spectral attributes. 
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4.1. Introduction 

Research into operational remote sensing image analysis methodologies continues to enjoy attention 
in response to real-world requirements within the private and public sectors. This is evident in the 
variety of journals, conferences, and workshops within the context of remote sensing methodology, 
with a concomitant increase in niche interdisciplinary sub-disciplines. Two examples, dealing mainly 
with optical data, are Geographic Object-Based Image Analysis (GEOBIA) [1] and mathematical 
imaging within remote sensing [2]. This contribution falls within the context of these two sub-
disciplines. 

A new variant of sample supervised segment generation is analyzed, recently presented as a 
conference contribution [3]. Sample supervised segment generation denotes a general search-centric 
methodological framework for generating quality image segments based on the provision of a selection 
of exemplar segments [4–7]. Segments generated via such an approach may be used in further 
processes to progress to a final information product. A connected component (quasi-flat zone) 
segmentation algorithm, specifically an attribute-enhanced variant of Constrained Connectivity (CC) 
[8–11], is embedded into such a sample supervised segment generation framework. The modular and 
extendable nature of the segmentation algorithm allows for the definition of arbitrary attribute criteria 
to assist in shaping the nature of the generated segments. Such tunable attribute criteria are cast as an 
additional parameter constituent within the sample supervised segment generation framework. 
Additionally, data transformation or mapping functions [6] may be added as a constituent in such a 
framework. Utilizing mapping functions falls within the context of defining connected components 
more elaborately, also considered for connected component segmentation algorithms via additional 
processing (pre-filtering/post-filtering) [12,13], via analyzing scene-wide statistics [14,15], and via the 
notion of hyperconnections [16–18]. Adding mapping functions into such a framework results in three 
distinct, interdependent parameter constituents that need consideration. 

The contribution of this work is two-fold. Firstly, the feasibility of the proposed framework is 
analyzed to demonstrate that it constitutes a valid optimization problem, having interacting 
constituents and being searchable via metaheuristics. The presented method may be cast as four 
separate variants, using various constituent combinations. Secondly and primarily, the relative merits 
of the two added constituents are contrasted, namely that of additional mapping functions and that of 
tunable attribute criteria. It is demonstrated in a selection of remote sensing image analysis problems, 
under various metric conditions and also under cross-validated conditions, that utilizing geometric and 
attribute criteria to shape the nature of the generated segments may be detrimental. This suggests more 
careful consideration in the utilization of attributes in the context of such a framework. 

This paper is structured as follows. Section 4.2 presents an overview and review of background 
principles related to the segmentation approach used, as well as some aspects of a sample supervised 
segment generation framework. In Section 4.3, the investigated method and its variants are detailed. 
The data used are described in Section 4.4. In Section 4.5, the method is experimentally evaluated and 
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its variants are contrasted. Concluding comments and prospects for future work are given in Section 
4.6. 

4.2. Background and Related Work 

4.2.1. Graph-Based Connected Component Segmentation 

Graph-based connected component segmentation defines a family of image-processing methods 
stemming from work within the broader context of mathematical morphology. See [19] for a general 
overview of mathematical morphology and [20] for an overview of segmentation concepts and 
approaches. Developments and applications within remote sensing mirror the advancements of basic 
research within mathematical morphology. Classic mathematical morphology tools (erosion, dilation, 
and reconstruction filtering) [19] found successful applications within remote sensing, e.g., [21,22]. 

A major development in the proliferation of applications of mathematical morphology tools in 
remote sensing is the notion of a flat zone. A flat zone defines a specific level in a hierarchical image 
partitioning based on grey-level intensities [20,23,24]. Various successful methods and applications 
have been presented based on this notion, e.g., [2,25–28]. This development was elaborated upon with 
the notion of a quasi-flat zone, which relaxes the restrictive definition of a flat zone by introducing a 
certain level of dissimilarity tolerance between pixels (parameter controlled) [8,9,20,29]. Quasi-flat 
zones form the basis of flexible segmentation algorithms, suited to remote sensing image analysis 
problems. Resultant segmentation algorithms have attractive properties, including ease of extensibility 
and inherent modularity [16,29], computational and memory efficiency [9,30,31] (especially in 
hierarchical formulations), uniqueness (same segmentation on repeated runs, some formulations [8]), 
and mathematically rigorous formulations. Efficient data structures and computational efficiencies are 
major considerations in such approaches. Comparative and practical analyses with other commonly 
used segmentation algorithms within remote sensing are needed, e.g., [32]. 

4.2.2. Constrained Connectivity 

Constrained Connectivity (CC) is an image partitioning or simplification (segmentation) method 
based on the identification of quasi-flat zone connected components [8,10,11,13,29]. Spectral 
difference or grey-level difference is defined as a connectivity relation, denoted by α (alpha) and called 
the local range (parameter). Other constraints may be introduced. This notion was originally developed 
to address the chaining effect of the single linkage clustering method [8]. Quasi-flat zone approaches 
may be considered an alternative or extension of the mathematical morphology approaches applied in 
remote sensing that considers image local extrema in processing, e.g., [23,33,34]. The algorithm is 
hierarchical, with a fully calculated hierarchy known as an alpha tree. Within an alpha tree, all 
constraints (parameter combinations) are calculated and stored in a tree data structure [9,31], with 
connected components efficiently computed via Tarjan’s union-find algorithm [9,31] (or others). 

CC may be defined as the partitioning of an image into α-connected (alpha) components. Two 
pixels are considered connected (α-connected) if there exists a path between them such that the grey-
level difference of successive pixels in this path does not exceed a given value (α). The connected 
component (segment) of a given pixel p and other pixels q for a given α may be denoted as follows: 
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𝛼𝛼 − 𝑂𝑂𝑂𝑂(𝑝𝑝) = {𝑝𝑝} ∪ {𝑞𝑞| 𝑎𝑎 𝑝𝑝𝑎𝑎𝑝𝑝ℎ 𝑆𝑆 = (𝑝𝑝 = 𝑝𝑝1, … , 𝑝𝑝𝑛𝑛 = 𝑞𝑞),𝑝𝑝 > 1, 𝑎𝑎𝑠𝑠𝑐𝑐ℎ 𝑝𝑝ℎ𝑎𝑎𝑝𝑝 𝑃𝑃(𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖+1)
≤ 𝛼𝛼𝑓𝑓𝑝𝑝𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 1 ≤  𝑝𝑝 < 𝑝𝑝} 

(1) 

D denotes a range function that calculates the difference between the spectral values of two given 
connected pixels. Note that successive segmentations of α-CC are hierarchical (increasing α values) 
and that a unique partition (identical over various runs) is generated. Various approaches [8,31] may be 
followed for computing an α-CC segmentation efficiently, with a priority queue approach followed here 
[8]. 

A useful additional parameter, namely the global range criterion (w), may also be introduced.  
w constrains the creation of connected components by limiting the maximum spectral difference 
between any two pixels in a connected component. Additional constraining attributes (increasing/non-
increasing) (“Attr”) may also be further introduced via predicates evaluating the potential connected 
components. The connected component of a pixel may then be described as: 

(𝛼𝛼,𝑤𝑤) − 𝑂𝑂𝑂𝑂(𝑝𝑝) = {𝑝𝑝} ∪ {𝑞𝑞| 𝑎𝑎 𝑝𝑝𝑎𝑎𝑝𝑝ℎ 𝑆𝑆 = (𝑝𝑝 = 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 = 𝑞𝑞),𝑝𝑝 >
1, 𝑎𝑎𝑠𝑠𝑐𝑐ℎ 𝑝𝑝ℎ𝑎𝑎𝑝𝑝 𝑃𝑃(𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖+1) ≤ 𝛼𝛼 𝑓𝑓𝑝𝑝𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 1 ≤  𝑝𝑝 < 𝑝𝑝 𝑎𝑎𝑝𝑝𝑑𝑑𝑀𝑀𝑎𝑎𝑥𝑥(𝑆𝑆) −𝑀𝑀𝑝𝑝𝑝𝑝 (𝑆𝑆) ≤ 𝑤𝑤}  

(2) 

with a further predicate (P) able to restrict the growth defined for a given connected component (X) 
as: 

𝑃𝑃�(𝛼𝛼,𝑤𝑤) − 𝑂𝑂𝑂𝑂(𝑝𝑝)� =  𝑝𝑝𝛼𝛼𝑠𝑠𝑒𝑒 𝑝𝑝𝑓𝑓 𝐴𝐴𝑝𝑝𝑝𝑝𝛼𝛼(𝑋𝑋) ≤ 𝑝𝑝,𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒 𝑝𝑝𝑝𝑝ℎ𝑒𝑒𝛼𝛼𝑤𝑤𝑝𝑝𝑎𝑎𝑒𝑒 (3) 

where t denotes a threshold value for a given attribute (e.g., segment area) and Attr a function 
calculating the value of the attribute. For example, during the computation of connected components, 
if a given potential connected component (e.g., X) satisfies the local and global range criteria (α, w), 
but the calculated area attribute of the potential connected component exceeds a given threshold value 
(t), it is not substantiated. If the calculated area attribute is below the given threshold value, the 
connected component is substantiated (a visual example of constraining attributes is given in Section 
4.3). 

Max(S) and Min(S) return the maximum and minimum spectral values within path S, respectively. 
Various approaches exist to handle multichannel imagery [8,35,36]. Here a constraint is simply 
triggered for the entire given image (all bands) if any of the composite bands trigger a constraint. 

Figure 4.1 illustrates an abstract image, with pixel values labeled with their intensity values, as well 
as shaded for easier visualization (lower value = brighter pixel). Bold lines delineate connected 
component borders. Figure 4.1a shows an image segmented (𝛼𝛼w-CC) with (0,0)-CC, (1,1)-CC (Figure 
4.1b), (1,2)-CC (Figure 4.1c), and (2,3)-CC (Figure 4.1d). Dotted lines denote an absence of a path 
between two pixels for the given constraints. 

Figure 4.2 shows segmentation results using αw-CC on a subset of a real image (arbitrary) to 
highlight general characteristics. Transition regions [10] are characterized by multiple single pixel 
connected components in areas where the transition between homogeneous areas spans several pixels.  
Some approaches may be applied to diminish this effect [10,12] (Figure 4.2c—Iterative area filtering), 
not considered here owing to experimental anomalies observed with such additional processing.  
Post-processing may simply be applied to remove single pixels (among others). A structure is 
delineated with a red polyline (example element of interest) (a), with segmentation results shown using 
(25,75)-CC (b), a pre-processed [10] image segmented with (25,75)-CC (c) to minimize the effect of 
transition regions and (50,200)-CC (d). 
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(a) (b) 

  
(c) (d) 

Figure 4.1. An abstract image, segmented with the αw-CC method illustrating its general 
characteristics, with (0,0)-CC shown in (a), (1,1)-CC in (b), (1,2)-CC in (c), and (2,3)-CC 
in (d). 

  
(a) (b) 

  
(c) (d) 

Figure 4.2. An image subset (a) segmented with (αw-CC) to show its common 
characteristics on real imagery, with the local and global range parameters set to 25 and 75 
(b), 25 and 75 with a region growing filter (c), and to 50 and 200 (d), respectively. The red 
polyline indicates an example element a user might be interested in. 
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4.2.3. Metaheuristics 

Metaheuristics constitutes a class of optimization algorithms (minimization or maximization) which 
are commonly multi-agent and stochastic in nature, and contain elements of search intensification and 
search diversification (see e.g., [37] for an overview). Many metaheuristic algorithm designs are 
inspired by naturally occurring search processes. Their main practical utility is in reducing computing 
costs to obtain optimal, or, more typically, near optimal results. Their application needs careful 
consideration in the choice of metaheuristic to be used (applicability, no free lunch theorem, search 
landscape characteristics), the handling of meta-parameters (meta-optimization, self-adaptation, 
empirical tuning, hyper-heuristics) and the nature of statistical evaluations and reporting being some 
examples [38–42]. Their utility in a certain context may be evaluated via experimentation [39], with 
robustness, absolute and relative results, standard deviation, required computing times, and search 
process characterization some of the measurable aspects. Their application in remote sensing image 
analysis is wide; they are employed for feature selection and generation, classification processes, and 
various image-processing tasks. 

Here a selection [43] of classic metaheuristics and simpler search algorithms is employed and 
evaluated as parameter optimizers in the investigated framework. More specifically, classic variants of 
two well-known real-valued population-based optimizers are used, namely Differential Evolution (DE) 
[44] and Particle Swarm Optimization (PSO) [45]. The “DE/rand/1/bin” [44] variant of DE is used 
with meta-parameters empirically tuned (30 Agents, F = 0.75, CR = 0.3). Similarly, for PSO (30 
Agents, Inertia Weight = 0.7, Best own weight = 1.5, Best weight = 1.5). A Hill Climber (HC) is also 
employed (D = 30), along with random sampling (RND). 

4.2.4. Empirical Discrepancy Metrics 

Empirical discrepancy metrics [46] constitute a family of measures used to evaluate the quality of 
image segmentation. They are supervised, as they need a reference or ground truth to compare 
generated results with produced results. Notions of geometry, overlapping area, boundary offsets, and 
content are commonly encoded in such metrics, either via producing a singular result or as separate 
results (multi-objective frameworks). Analytical or unsupervised measures may also be considered 
[47]. A selection of empirical discrepancy metrics is employed here, namely the Reference Weighted 
Jaccard (RWJ) [6], Reference Bounded Segments Booster (RBSB) [48], and the Partial and Directed  
Object-Level Consistency Error (PD_OCE) [6,49]. They are chiefly based on the concept of area 
overlap, with the ability to measure notions of over- and under-segmentation. These metrics are 
summarized in Table 4.1 ([6,48,49]) (set theory notation), with R and S denoting a reference and 
generated (S) segment respectively. I is an iterator running through all generated segments (S) 
intersecting R. Their formulations are substantially different (some more precise, some more general), 
allowing for a varied interpretation of results and also for creating variation in search landscape 
characteristics (when employed to direct a search process). The optimal result for an evaluation is zero. 
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Table 4.1. The three empirical discrepancy metrics employed to measure the quality of 
generated segments against the provided reference segments. 

Metric Formulation Reference 

RWJ 1 −�
|𝑅𝑅 ∩ 𝑆𝑆𝑖𝑖|
|𝑅𝑅 ∪ 𝑆𝑆𝑖𝑖|

×
|𝑅𝑅 ∩ 𝑆𝑆𝑖𝑖|

|𝑅𝑅|

𝑛𝑛

𝑖𝑖=1

 [6] 

RBSB 
|𝑅𝑅 ∪ 𝑆𝑆| − |𝑅𝑅 ∩ 𝑆𝑆|

|𝑅𝑅|  [48] 

PD_OCE 1 −�
|𝑅𝑅 ∩ 𝑆𝑆𝑖𝑖|
|𝑅𝑅 ∪ 𝑆𝑆𝑖𝑖|

×
|𝑆𝑆𝑖𝑖|

∑ �𝑆𝑆𝑗𝑗�𝑛𝑛
𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 [6,49] 

4.2.5. Sample Supervised Segment Generation 

Sample supervised segment generation comprises a general image processing approach where an 
image segmentation task is cast as a search or optimization problem. A segmentation algorithm is 
defined, with its controlling aspects cast as variables or parameters forming a multidimensional search 
problem. Such an approach was initially proposed to simply tune the free parameters of a given 
segmentation algorithm for a given image analysis task [4]. Research into this general approach has 
been presented in various image analysis disciplines e.g., [4,7,50], including remote sensing [5,6,51]. 
Generally an appropriate level of a hierarchical segmentation algorithm is sought for a given image 
element type (e.g., specific buildings). In general, metaheuristics are employed as optimizers and 
empirical discrepancy metrics to drive the search process. Alternatively said, empirical discrepancy 
metrics may define the search landscape. Note that sample supervised segment generation is a specific 
implementation of the more general notion of image analysis via efficient search. See [52] for a 
primer. The method presented in Section 4.3 follows this general approach of sample supervised 
segment generation, where more detail may be found. 

Various aspects of such an approach have been examined, including the applicability of various 
search methods e.g., [6,51], metric behavior [53,54] and the performance of domain-specific 
segmentation algorithms in this context [6,50]. Generalizability to unseen data, sampling requirements, 
method extensions, and method integration are open topics [6,54,55]. Note that parameters may also 
define construction processes of lower-level building blocks for image analysis, with mathematical 
morphology and genetic programming well suited to such designs [56,57]. 

4.3. Method 

4.3.1. Method Details 

A variant of sample supervised segment generation is presented [3] (conference paper), incorporating 
mapping functions for data adaptation and additional attributes for constraining segment growth. Figure 
4.3 illustrates the architecture of the method, which is based on the general architecture of sample 
supervised segment generation [4]. The main distinguishing aspect of this variant is the three 
interacting parameter constituents handled by the given optimizer. 

Initially a selection (5–50) of samples or reference segments is provided for the method, obtainable 
by various means (manual, semi-automated, or automated). A pre-processing phase conducted 
exclusively to save computing costs extracts image subsets centered over the reference segments.  
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This may impact results in scenarios with non-unique segmentation algorithms. CC as used here 
generates unique results. The image subsets and accompanying reference segments are given as input 
to the optimization loop (see Figure 4.3). 

 

Figure 4.3. The architecture of the sample supervised segment generation method 
incorporating data mapping functions and attribute thresholding [3]. IEEE© 2013. 
Reprinted, with permission, from [3]. 

 
During the optimization loop phase, an optimizer (e.g., DE) traverses a parameter set over a certain 

number of iterations, which may control various image-processing functions on the image subsets.  
Three constituent parameter sets are defined in this method. Firstly, the controlling parameters of a 
given data mapping function transform or map the image subsets to a new domain. A few mapping 
functions are investigated with this method, detailed in Section 4.3.2. The transformed image subsets 
are subjected to the CC segmentation algorithm, with the optimizer providing the values for the local 
and global range parameters. This two-dimensional parameter set is the second constituent. The third 
constituent is a selection of segment spectral and geometric attributes, with the generated values 
defining attribute thresholds preventing segment growth within the attribute-enhanced CC framework. 
The image subsets are thus transformed and segmented, with the three parameter constituents 
controlling the characteristics of the generated segments. 

The generated segments are evaluated (averaged) against the provided reference segments via a 
given empirical discrepancy metric. The RWJ, PD_OCE, and RBSB metrics are used here. The metric 
score is given to the optimizer as feedback of the performance of the given parameter set (all three 
constituents). The optimizer uses the information on quality to direct its search process for the next 
iteration of the optimization loop. Various termination criteria are possible for the optimization loop; 
here it is simply terminated after a certain number of iterations. 

Finally after the optimization loop terminates, the best performing parameter set is given as output. 
The entire image may subsequently be segmented with the same image processing as employed in the 
optimization loop, with the image processing operators set with the output parameter set. Note that 
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data mapping is conducted for segment generation and the byproduct is not used in further image 
processing. Also, the search process is used only during the training phase. 

Note that there exists an optimal achievable result, within all the parameter value combinations.  
This result may not be perfect, i.e., not match the provided reference segments exactly, but is as good 
as it can get. In practice an exact match is highly unlikely. Also note that a search method may fail in 
finding the optimal achievable result. Multiple optimal achievable results are also possible, e.g., 
multiple parameter sets delivering the same optimal achievable metric score. 

The three parameter constituents of the method are evaluated for their relative usefulness in a 
general setting. The presented method may function in four distinct ways. Firstly, the method may 
simply optimize the two parameters of CC, without any extra data mapping of attribute thresholding 
processes. This variant is simply called CC. Secondly, additional constraining attributes may be 
introduced, with this variant called CC + Attr (Attributes). Alternatively, CC may function with an 
additional mapping function, called CC + Map (Mapping function). As depicted in Figure 4.3, the full 
method entails tuning all three constituents, called CC + Attr + Map. Figure 4.4 illustrates an example 
of an 11-dimensional parameter set traversed by an optimizer in the full formulation of the method 
(CC + Attr + Map). Constituents are detailed in the next sections. 

 

Figure 4.4. An example of an 11-dimensional parameter set traversed by the CC + Map + 
Attr full method variant. Example parameters within each constituent are written vertically. 

In the situation of discrete parameter quantization (byte and short in this implementation), Figure 
4.4 illustrates an optimization problem with more than 3 × 1023 unique parameter combinations. The 
nature of the image processing (which these parameters control) dictates the difficulty of the search 
problem. An efficient search method may only search a fraction of such a space to obtain an optimal or 
near optimal result. This is strongly dependent on the “searchability” of the resultant search surface 
[4]. The validity of the proposed method as a valid optimization problem is also investigated, with a 
selection of optimizers experimentally evaluated. Details of the mapping functions used and their 
attribute constituents are briefly given. 

 

4.3.2. Mapping Functions 

In the generic formulation of CC, basic dissimilarity is defined by the spectral difference between 
two pixels. Alternative definitions of connectivity may be considered as detailed in Section 4.2.2. In 
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this work an indirect approach is followed, where spectral dissimilarity is changed externally via a data 
mapping function. Adding mapping functions shows promise for increasing the optimal achievable 
segmentation quality in similar frameworks in the context of remote sensing image analysis [6].  
Some works have been proposed to reduce the influence of gradient zones based on external  
processing [8,13] in the context of CC. Three mapping functions are tested [6], briefly described 
below. Figure 4.5 illustrates example results by running these functions. In this work three image 
bands (eight-bit quantization) are assumed. 

    
(a) (b) (c) (d) 

Figure 4.5. Example output of the three used mapping functions on an arbitrary test image 
(a). Parameters were assigned random values. The red polyline denotes an example 
element of interest; (b) shows output of the SS function (note the creation of sharp 
gradients); (c) shows output from the transformation matrix, while (d) shows the output 
from the GT function. Note the non-linear stretch of the output from the GT function. 

4.3.2.1. Spectral Split 

Spectral Split (SS) [6] is a simplistic function able to create artificial edges in gradient zones, based 
on the tuning of two parameters. It is given by: 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥 − (𝑥𝑥 − 𝑝𝑝) + 𝑎𝑎𝑝𝑝𝑒𝑒𝑝𝑝(𝑥𝑥 − 𝑝𝑝) × ℎ, 𝑝𝑝𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥 − 𝑝𝑝) ≤ ℎ, 𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 (4) 

where p defines a position in the spectral domain (band specific) and h defines the magnitude of 
spectral change around the given spectral position (p); x remains unchanged if not falling within the 
required bounds (h). The function is useful in scenarios where the boundaries of elements of interest 
are not distinct or span multiple pixels. Sign extracts the sign of the number, with zero given a positive 
sign. 

4.3.2.2. Transformation Matrix 

A transformation matrix (LIN) with three image bands is used as a mapping function.  
Considering three input bands, nine parameters (a–i) define the transformation matrix. A pixel  
(n1–n3/b1–b3) is defined by the point matrix: 

�
𝑝𝑝1
𝑝𝑝2
𝑝𝑝3
� = �

𝑎𝑎 𝑎𝑎 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑒𝑒 ℎ 𝑝𝑝

� �
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� (5) 

The range of the parameters is set to [−0.2, 1], allowing for the enhancement of negative band 
correlations if present and if found useful by a search process. 
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4.3.2.3. Genetic Transform 

A function, developed as a parameterized low-level image processing method for image  
enhancement [58], consists of four parts conducting data stretching (parameters p1–p5) and weighs 
their contribution based on additional weighting parameters (parameters p6–p10). For convenience the 
function is called Genetic Transform (GT). It is written as: 

𝑓𝑓(𝑥𝑥) =
𝑎𝑎𝑝𝑝𝑒𝑒 (1 + 𝑒𝑒𝑝𝑝1−1  × 𝑥𝑥)

𝑝𝑝1
× 𝑝𝑝7 +

(1 + 𝑝𝑝2)𝑥𝑥 − 1
𝑝𝑝2

× 𝑝𝑝8 +
1

1 + ((1 − 𝑥𝑥)
𝑝𝑝3 )𝑝𝑝4

× 𝑝𝑝9

+
1

(1
𝑥𝑥 + 𝑝𝑝6 − 1)𝑝𝑝5

× 𝑝𝑝10 
(6) 

As with the SS function, the GT function may assist in sharpening boundaries in image elements.  
In the case of GT, this is achieved via parameterized non-linear data stretching. 

4.3.3. Attributes 

Six attributes are defined for consideration as additional thresholding criteria in the presented 
method. Table 4.2 summarizes the used attributes and their given ranges. Area, variance, and perimeter 
are simple attributes, conjectured to add some benefit in many instances. The gray level difference 
histogram (CH), defined here with five bins (CH1–CH5), counts the number of instances of gray level 
differences in a segment falling within the given bin constraint. Here a 4-connected pixel design is 
considered. The bin ranges are given in Table 4.2. For example, if a segment contains only two pixels 
and the spectral difference between them is 7 (intensity difference), the second bin (CH2) will have a 
value of 1. The other bins (CH1, CH3, CH4, CH5) will have a value of zero. 

Note the intrinsic link between the gray level difference histogram bins and the local and global 
range parameters of CC. Small values of the local and global range parameters may lead to empty CH 
bins. All attributes are computed incrementally during the execution of CC (if attributes are used). 

Table 4.2. Implemented attributes for consideration in the context of CC segmentation, 
specifically in the CC + Attr and CC + Attr + Map method variants. 

Attribute Range Description 

Area [0..500] Segment area measured in number of pixels 

Standard Deviation [0..255] Segment spectral standard deviation 

Perimeter [0..500] Number of pixel edges forming the perimeter 

Smoothness (SMT) [0..30] Perimeter/sqrt(area) 

Compactness (CMP) [0..30] Perimeter/bounding box edge length 

Gray level difference Histogram,  

five bins (CH1–5) 

[0..500] Bins: CH1:[0..5], CH2:(5..10], 

CH3:(10..15], CH4:(15..20], CH5:(20..255] 

Number of edge weights falling within 

specified bins. Five bins are defined. 

Figure 4.6 illustrates the same image subset as shown in Figure 4.2, with the local range parameter 
set to 50 and the global range parameter to 200, but with additional constraining attributes added for 
illustration. Specifically, Figure 4.6a shows the addition of the area attribute set to 800 in this instance. 
Compare with Figure 4.2d, where the local and global range parameters are the same. Figure 4.6b 
shows the addition of the CH1 bin, set to 300. Intuitively the impact of the constraints may be 
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interpreted as the largest segments possible (hierarchical) under a local range of 50 (or lower), still 
satisfying a global range of 200 in addition to an area criterion of 800 (Figure 4.6a) or a CH1 criterion of 
300 in the case of Figure 4.6b. 

  
(a) (b) 

Figure 4.6. An image subset segmented with the local range parameter set to 50 and the 
global range parameter set to 200. Additional constraining attributes are introduced, 
specifically area, with a value of 800 (a) and CH1 (b) with a value of 300. 

4.4. Data 

Three image analysis tasks or problems were defined for evaluating the performance of the method 
variants (subset of data used in [6]). The aim was to segment structure subtypes accurately. The 
resulting segmentation, of maximal achievable quality, may be used in further processing 
methodologies. For each dataset a characteristic structure type was identified and defined as the 
element of interest. 

Figure 4.7 illustrates subsets of the data and enlargements over elements of interest. Site 1, titled 
Bokolmanyo, depicts a refugee camp with easily identifiable tents as the elements of interest. In 
practice this problem could be approached with a simple single-layer segmentation and classification 
method. Site 2 (Jowhaar) and Site 3 (Hagadera) depict more difficult image analysis problems. The 
Jowhaar problem entails segmenting metal-roofed structures, with variation in roof geometry and 
reflectance angles ensuring a more challenging problem. Similarly the Hagadera problem entails 
segmenting metal-roofed structures, but with much larger variations in reflectance and geometry. A 
range of problem difficulties is thus presented, with a comparative analysis of segment quality the 
focus, rather than the final segmentation accuracies. 

For each problem a number of reference elements were digitized and used as input to the presented 
method variants. Table 4.3 details some metadata of the three datasets used. All imagery consists of 
three bands, fully preprocessed and standardized to 8-bit quantization. The number of reference 
segments used is also given. Two-fold cross-validation is performed in experimentation, thus a random 
selection of half of the reference segments is used to drive the search process. The training and testing 
sets are constantly changed between experimental runs. Preliminary experimentation with varying 
sampling sizes was conducted to find stable results under cross-validated conditions. At least 20 runs 
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per experiment are also advocated (detailed in the next section). This coupled with two-fold cross-
validation in each run ensures a measure of generalizability in results. Note that study area size is not an 
important consideration. Subset images are generated, centered on the provided reference segments (e.g., 
Figures 4.2,4.5,4.6). 

 
(a) 

 
(b) 

 
(c) 

Figure 4.7. The three image analysis tasks defined for evaluating the method variants, 
namely, thematically correctly segmenting tents in the Bokolmanyo problem (a) and metal-
roofed structures in the Jowhaar (b) and Hagadera (c) problems. 

Table 4.3. The datasets, with accompanying metadata, used for evaluating the method 
variants (adapted from [6]). 

Test Site 
Target 

Elements 
Sensor 

Spatial 
Resolution 

Reference 
Segments 

Channels Date Captured 

Bokolmanyo 1 Tents GeoEye-1 0.5 m 28 1, 2, 3 24/8/2011 
Jowhaar 1 Structures GeoEye-1 0.5 m 40 1, 2, 3 26/02/2011 
Hagadera 2 Structures WorldView-2 0.5 m 38 4, 6, 3 07/10/2010 

1 GeoEye, Inc.© 2011, provided by e-GEOS S.p.A., under GSC-DA, all rights reserved.; 2 DigitalGlobe, Inc.© 
2010, provided by EUSI under EC/ESA/GSC-DA, all rights reserved. 

4.5. Experimental Evaluation 

The presented method is firstly analyzed to verify that it constitutes a multidimensional search 
problem with parameter interdependencies measured among all constitute components (Section 4.5.1).  
A range of common metaheuristics is then tested on the method, evaluating the merits of using more 
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complex search methods compared with simpler search strategies (Section 4.5.2). Finally an extensive 
relative comparison is conducted (Section 4.5.3) on the four method variants under a variety of metric 
and problem conditions. The merits of the variants are highlighted via measuring computing costs and 
generating a statistical ranking under cross-validated conditions. 

4.5.1. Parameter Interdependencies 

The parameters of the CC + Attr + Map method variant, specifically using the GT function for 
mapping, are profiled for interdependencies using a statistical parameter interdependency test.  
Without interdependencies among constituents, such a multidimensional problem may be decomposed 
into smaller, independently solvable problems. The test, able to profile the frequency of parameter 
interdependencies [59], is briefly described. 

A given parameter xi is affected by another xj if a change in the ordering of solution finesses is 
observed by independently varying values for xi and xj in arbitrary full parameter sets (a, b). Formally, 
xi is affected by xj if 

𝑓𝑓(𝑎𝑎) ≤ 𝑓𝑓(𝑎𝑎) & 𝑓𝑓(𝑎𝑎′ ) > 𝑓𝑓(𝑎𝑎′ ) 𝑤𝑤𝑝𝑝𝑝𝑝ℎ 

𝑎𝑎 = (… , 𝑥𝑥_𝑝𝑝, … , 𝑥𝑥_𝑗𝑗, … ) 

𝑎𝑎 = (… , 𝑥𝑥_𝑝𝑝′, … , 𝑥𝑥_𝑗𝑗, … ) 

𝑎𝑎′ = (… , 𝑥𝑥_𝑝𝑝, … , 𝑥𝑥_𝑗𝑗′, … ) 

𝑎𝑎′ = (… , 𝑥𝑥_𝑝𝑝′, … , 𝑥𝑥_𝑗𝑗′, … ) 

(7) 

where the function f is the RWJ measure in this implementation. 
This test may be repeated multiple times to generate an indication of the frequency of parameter 

interaction. A table may be generated, with the parameters labeled in the first column denoted as being 
affected by the parameters listed in the first row, if a value above zero is generated. 

The parameter interdependency test is repeated 100 times for each parameter pair, using the  
CC + Attr + Map method variant for all three problems. The RWJ metric was used to judge a change 
in segment quality. Note that the metric can measure notions of over- and under-segmentation. Tables 
4.4–6 report the number of affected cases for all parameters over the allocated 100 runs. For each 
problem having differing characteristics, both the parameters of the CC algorithm are shown with a 
random selection of parameters investigated for the GT mapping function and attribute thresholds. A 
method constituent (vertically listed “Mapping function”, “CC parameters” and “Attributes”) will be 
considered unaffected by another constituent (horizontally listed) if all values within the given sub-
division are zero. 

In all three problems, all parameter constituents are affected by all other constituents. The degree of 
interaction ranges from frequent, e.g., in the case of CC parameters and attribute thresholds affected by 
mapping function parameters, to very infrequent, such as in the case of the CC parameters affected by 
attribute thresholds. Generally, the investigated mapping function parameter affects other parameters 
most frequently. Interaction is present in all cases. This validates the presented method as a singular 
optimization problem. Note that the magnitude of the variation in solution quality is not recorded in 
these tests. Relative solution qualities are investigated in Section 4.5.3. Interestingly, note that the 
global range parameter is commonly affected more by the local range parameter (than vice versa), 
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even though modifying the local range parameter beyond the value of the global range parameter has 
no effect [10]. 
 

Table 4.4. Interdependency test of the method constituents for the Bokolmanyo problem.  
Note that all constituents affect one another. The mapping function affects all parameters 
most frequently. 

Bokolmanyo 
Mapping Function CC Attributes 

GT1 GT2 GT10 Local Global Area Std CH2 

Mapping 
function 

GT1 
 

15 19 2 0 3 0 2 
GT2 36 

 
29 3 0 2 3 2 

GT10 38 12 
 

4 0 2 1 3 

CC 
Local 6 13 11 

 
1 2 0 1 

Global 31 15 24 12 
 

6 0 2 

Attributes 
Area 19 28 22 2 1 

 
0 3 

Std 21 25 32 1 1 11 
 

2 
CH2 13 11 9 1 0 1 0 

 

Table 4.5. Interdependency test of the method constituents for the Jowhaar problem. 

Jowhaar 
Mapping Function CC Attributes 
GT3 GT4 GT9 Local Global Perim Smooth CH1 

Mapping 
function 

GT3 
 

33 20 3 0 1 0 1 
GT4 8 

 
9 4 0 0 1 0 

GT9 19 34 
 

4 2 1 1 1 

CC 
Local 13 16 11 

 
7 0 2 0 

Global 17 18 20 12 
 

10 0 4 

Attributes 
Perm 20 24 18 2 3 

 
1 6 

Smooth 8 3 2 1 0 0 
 

0 
CH1 12 14 16 2 0 5 1 

 

Table 4.6. Interdependency test of the method constituents for the Hagadera problem. 

Hagadera 
Mapping Function CC Attributes 
GT6 GT7 GT8 Local Global CH3 CH4 CH5 

Mapping 
function 

GT6 
 

27 15 3 3 3 1 3 
GT7 29 

 
25 5 1 4 1 2 

GT8 23 33 
 

7 4 1 0 1 

CC 
Local 10 7 9 

 
4 3 1 4 

Global 27 13 20 6 
 

4 0 0 

Attributes 
CH3 6 3 3 0 0 

 
1 4 

CH4 4 3 2 0 0 0 
 

0 
CH5 3 2 0 0 0 1 0 

 

For illustrative purposes, Figure 4.8 shows exhaustive fitness calculations (RWJ metric) for 
arbitrary two-dimensional slices of the parameter space (also called the search surface). Figure 4.8a 
shows the interaction of the local range parameter of the CC algorithm interacting with the B1 
parameter of the spectral split mapping function. Note two local optima. All other parameters were 
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given initial random values and were kept constant during the generation of the search surface. Figure 
4.8b illustrates similarly, with a simpler interaction (single optimal) between thresholds of the CH1 
attribute and the local range parameter of CC. Note that these figures are illustrative of parameter 
interactions and may be vastly different (more complex/less complex) under different external 
parameter conditions. 

4.5.2. Search Surface Complexity 

In Section 4.5.1, it was shown that parameter interactions exist in the presented method.  
Some interactions are frequent in the case of selected constituents. Here we investigate the applicability 
[39] of a range of search methods to traverse the search surfaces of the four method variants. 
Intuitively the CC variant of the method, with a relatively simple interaction between the local and 
global range parameters, would not be a difficult search problem. Simple parameter tuning would be 
feasible in such a scenario using the CC variant of the method, or a simple grid search or random 
parameter search. 

  

(a) (b) 

Figure 4.8. Two-dimensional parameter plots, or search surfaces, demonstrating parameter 
interactions between method constituents: (a) illustrates the interaction of the alpha 
parameter from the CC constituent and that of a mapping function parameter, while (b) 
shows the interaction of alpha with the CH1 attribute. 

The four method variants are run on the Bokolmanyo problem (GT mapping), conjectured to exhibit 
the simplest search surfaces. Four search methods, namely random search (RND), HillClimber (HC), 
standard particle swarm optimization (PSO), and a standard variant of Differential Evolution (DE) are 
investigated (Section 4.2.3). The RWJ metric is used to judge segment quality. The search process is 
granted 2000 iterations. Thus, although the tested search methods have vastly different mechanisms 
(single or population-based, stochastic or deterministic), they are evaluated based on an equal 
computing budget. Each experiment is repeated 20 times. Averages over the 20 runs are quoted, with 
the standard deviations also given. The CC method variant has a two-dimensional parameter domain, 
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the CC + Attr variant 12 dimensions, CC + Map also 12 and the CC + Attr + Map method variant 22. 
Cross-validation was not performed, as search method progress and feasibility were evaluated. 

Table 4.7 lists the optimal achieved metric scores (RWJ) given 2000 search method iterations.  
The shaded cells indicate the search methods achieving the best scores for each method variant. 
Various ties in optimal results among the search methods are noted. Firstly, on examining the CC 
method variant, as expected, no benefit is seen from using more complex search methods. Note that 
even on this simple search surface, the HC method could not find the global optimal routinely. 
Similarly, adding attribute thresholding as additional parameters (CC + Attr) gave similar results 
across the different search methods. Again, HC performed worse than the other methods. In these two 
method variants, RND, PSO, and DE routinely generated the optimal results. Note that initialization of 
the parameters in the search processes was random (as opposed to, for example, distributed hypercube 
sampling). Interestingly, none of the search methods was able to find optimal values on the edge of the 
search domain when attributes were introduced (owing to random initialization). 

Table 4.7. Performance of the four search methods on the four method variants. In the 
simpler CC method variants (CC and CC + Attr), no benefit is noted from using more 
advanced search methods. In the case of the higher dimensional method variants (CC + 
Map and CC + Attr + Map), using an advanced search method becomes necessary. 

 CC CC + Attr CC + Map CC + Attr + Map 
RND 0.429 ± 0.000 0.448 ± 0.000 0.186 ± 0.012 0.193 ± 0.015 
HC 0.442 ± 0.009 0.535 ± 0.144 0.507 ± 0.083 0.538 ± 0.159 
PSO 0.429 ± 0.000 0.448 ± 0.000 0.167 ± 0.012 0.163 ± 0.008 
DE 0.429 ± 0.000 0.448 ± 0.000 0.161 ± 0.003 0.163 ± 0.003 

Considering the CC + Map and CC + Attr + Map variants of the method, the more complex search 
methods (PSO, DE) performed substantially better (statistically significantly different, Student’s t-test 
with a 95% confidence interval) than the RND and especially the HC search method. A difference in 
0.030 in the case of the RWJ metric when results approach their optimum is in a practical sense very 
noticeable. This suggests that under the higher dimensional problem conditions, with more 
complexities introduced by a mapping function, stochastic population-based search strategies (or 
others) are needed. Note the slight decrease in standard deviation in the most complex method 
variants. Also, as generally documented [60], the generic variant of DE performed slightly better than 
the generic variant of PSO. Further results are presented exclusively with the DE method. 

Figure 4.9 shows the search progress profiles over the allocated 2000 iterations (averaged over 20 
runs) for the CC (Figure 4.9a), CC + Attr (Figure 4.9b), CC + Map (Figure 4.9c), and CC + Attr + Map 
(Figure 4.9d) method variants. Note that in the simpler method variants (CC and CC + Attr), the optimal 
results are achieved within 100 method iterations. The more complex method variants (CC + Map and CC + 
Attr + Map) need substantially more search iterations to achieve optimal or near-optimal results. Figure 
4.9c,d also shows that under the more complex problem formulations, PSO and DE provide better 
results relatively early on in the search process, suggesting their use even under constrained processing 
conditions. These plots reveal that method termination may be suggested at around 1000 iterations in 
these method formulations, or an alternative termination condition may be encoded based on 
derivatives observed between 500 and 1000 iterations. 
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(a) (b) 

  
(c) (d) 

Figure 4.9. Search method profiles for the four method variants, namely CC (a), CC + Attr 
(b), CC + Map (c), and CC + Attr + Map (d). Note the increased performance of DE and 
PSO when considering the CC + Map and CC + Attr + Map method variants. 

4.5.3. Method Variant Performances 

The four presented method variants are evaluated, relative to one another, based on maximal 
achieved metric scores under cross-validated conditions. Profiling such relative performances in 
general may give an indication of the merits of the constituents in such a framework. Computing times 
are also contrasted, as well as convergence behavior, which are important considerations to reduce 
method processing times. For each problem (Bokolmanyo, Jowhaar, Hagadera), the four method 
variants are run using all three detailed empirical discrepancy metrics. Each experiment is repeated 20 
times, with averages and standard deviations reported. For each site a random mapping function was 
selected (SS, LIN, or GT). In addition, the best results obtained during the 20 runs are also reported. 
Thus for each method variant, nine differentiated segmentation tasks (problem type, metric 
characteristic) are evaluated with over 50 million individual segment evaluations conducted. 

Tables 4.8–10 list the achieved metric scores for the problems under different metric and method 
variant conditions. Note that method variants may be contrasted based on a given metric and not via 
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different metric values. On examining Table 4.8, depicting the Bokolmanyo problem, it is clear that 
the more elaborate method variants employing a mapping function (LIN in this case) and a mapping 
function plus attributes generated superior results compared with the CC and CC + Attr variants. 
Interestingly, under cross-validated conditions, the addition of constraining attributes (CC + Attr) created 
an overfitting scenario, resulting in worse performances compared with not employing constraining 
attributes. 

The performances of CC + LIN and CC + Attr + LIN are similar, with the given metric dictating the 
superior method. Under the RBSB metric condition the CC + LIN method variant displays extremely 
sporadic results. This suggests that the search surfaces generated under this condition contain 
numerous discontinuities, creating difficulties for the DE search method. This may be due to the 
formulation, or nature, of RBSB. It is reference segment centric. In contrast, considering the CC + Attr 
method variant, the RBSB metric proved robust and similar to the CC variant in terms of optimal 
results. 

Table 4.8. Method performance on the Bokolmanyo problem. Note the improved results 
with the CC + LIN and CC + Attr + LIN method variants under all metric conditions. 

  CC CC + Attr CC + LIN CC + Attr + LIN 

RWJ 
Avg 0.465 ± 0.000 0.520 ± 0.035 0.239 ± 0.020 0.235 ± 0.026 
Min 0.465 0.476 0.211 0.200 

RBSB 
Avg 0.299 ± 0.000 0.308 ± 0.009 0.262 ± 0.235 0.185 ± 0.034 
Min 0.299 0.301 0.136 0.144 

PD_OCE 
Avg 0.538 ± 0.009 0.556 ± 0.030 0.233 ± 0.016 0.244 ± 0.026 
Min 0.526 0.514 0.199 0.205 

The Jowhaar problem (Table 4.9) displays a slightly different general trend. Under all metric 
conditions the mapping function method variant (CC + SS) proved superior to both the attribute (CC + 
Attr) and combined mapping function and attribute (CC + Attr + SS) method variants. Under cross-
validated conditions, no benefit was seen from employing attributes, commonly leading to worse 
results. Note that generally the absolute results were poorer compared with the easier Bokolmanyo 
problem. 

Table 4.9. Method performance on the Jowhaar problem. The method variant employing a 
data mapping function (CC + SS) performed the best under all metric conditions. 

  CC CC + Attr CC + SS CC + Attr + SS 

RWJ 
Avg 0.551 ± 0.003 0.784 ± 0.001 0.411 ± 0.009 0.757 ± 0.013 
Min 0.548 0.783 0.392 0.739 

RBSB 
Avg 0.622 ± 0.000 0.652 ± 0.003 0.418 ± 0.058 0.616 ± 0.023 
Min 0.622 0.649 0.348 0.581 

PD_OCE 
Avg 0.684 ± 0.002 0.825 ± 0.006 0.549 ± 0.032 0.807 ± 0.021 
Min 0.683 0.816 0.506 0.769 

The Hagadera problem (Table 4.10), considered the most difficult problem, exhibits curious results 
not corroborating trends observed in the previous two problems. Under different metric conditions, the 
three method variants (CC + Attr, CC + GT, and CC + Attr + GT) all achieved the top performance. 
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CC + GT was superior under the RWJ metric condition, CC + Attr under the RBSB condition, and CC 
+ Attr + GT under the PD_OCE condition. 

Table 4.10. Method performances on the Hagadera problem. The top performing method 
variant is metric dependent. 

  CC CC + Attr CC + GT CC + Attr + GT 

RWJ 
Avg 0.614 ± 0.000 0.631 ± 0.008 0.492 ± 0.013 0.509 ± 0.012 
Min 0.614 0.619 0.468 0.494 

RBSB 
Avg 0.737 ± 0.000 0.511 ± 0.014 1.633 ± 1.061 0.522 ± 0.045 
Min 0.737 0.486 0.526 0.460 

PD_OCE 
Avg 0.705 ± 0.001 0.684 ± 0.005 0.617 ± 0.023 0.616 ± 0.028 
Min 0.704 0.678 0.579 0.553 

Figure 4.10 shows some optimal results obtained for various problem runs depicted in Tables 4.8–
10. Each sub-figure shows a given reference segment, delineated with a red polyline. Resulting 
segments for the best performing parameter sets are shown with white polylines. The RWJ metric 
scores for the specific segment are also quoted. The given metric scores are specific to the red 
delineated reference segments shown (randomly chosen) and not the averaged and cross-validated 
results generated during experimentation. Figure 4.10a–c shows local optimal results for the CC 
method variant. Figure 4.10d–f presents the results under the CC + Attr method variant, Figure 4.10g–i 
for the CC + Map method variant and Figure 4.10j–l for the CC + Attr + Map variant. Note the same 
results generated for the Jowhaar problem under CC and CC + Attr method conditions (Figure 
4.10b,e), with constraining attributes not affecting segment quality over the given reference segment. 

Generally, based on observing Tables 4.8–10, the introduction of mapping functions provides more 
robust improvements under more conditions compared with adding attributes. In some cases a 
combination of attributes and a mapping function proved most useful. Table 4.11 lists the average 
computing times needed for 2000 method evaluations, contrasting the performances of the CC + Map 
and CC + Attr method variants. Computing attributes requires substantially more computing time 
(Intel® Xeon® E5-2643 3.5 GHz processor with single-core processing). Attribute calculations were 
done incrementally in the CC framework, which is more efficient than calculating attributes 
independently for each new level of the local range parameter. The optimal achieved parameter values 
are also reported. Similar to related work [6], near optimal parameter value combinations exist owing 
to segmentation algorithm and mapping function characteristics. 

Following on from Table 4.11, Figure 4.11 shows the averaged fitness profiles for the various 
problems and corresponding metrics, prior to cross-validation. Specifically, note the slightly slower 
start of mapping function method variants compared with attribute variants; however, they ultimately 
lead to better results (and in the first two problems start off better). In terms of search method 
progression, some variation exists based on the difficulty of the problem. Generally all variants 
converged more slowly in the Hagadera problem (“difficult”) compared with the Bokolmanyo 
problem. Note the variations in optimal results compared with cross-validated values (Tables 4.8–10), 
specifically considering the RBSB metric with its compact formulation. The figure also highlights the 
fact that the more complex method variants obtain superior results relatively quickly in the search 
processes—useful information if method execution times need to be short. 
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Finally, and most significantly, the results reported in Tables 4.8–10 are augmented with a 
Friedman rank test [61] to give a generalized and discrete indication of the usefulness of the method 
variants.  
The Friedman rank test is a simple non-parametric test ranking multiple methods (e.g., CC, CC + Map, 
etc.) over multiple problems/data sets. The rank test was run on the four method variants considering 
the various problems and metric conditions (36 in total, cross-validated). A Nemenyi post hoc test was 
also conducted to test whether critical differences exist. Figure 4.12 illustrates this result, with the 
confidence interval set to 95% and a critical difference of 0.349 (ranking) generated. Note that the 
figure shows results under cross-validated conditions. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 4.10. Cont. 
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(j) (k) (l) 

Figure 4.10. Exemplar optimal segmentation results focused on a random reference 
segment. The rows depict the CC, CC + Attr, CC + Map, and CC + Attr + Map method 
variants respectively (in order). The columns denote the three problems, Bokolmanyo, 
Jowhaar, and Hagadera (in order). (a) RWJ: 0.574; (b) RWJ: 0.524; (c) RWJ: 0.787; (d) 
RWJ:0.683; (e) RWJ: 0.524; (f) RWJ: 0.806; (g) RWJ: 0.104; (h) RWJ: 0.506; (i) RWJ: 
0.787; (j) RWJ: 0.063; (k) RWJ: 0.437; (l) RWJ: 0.549. 

 

Table 4.11. Average computing times for experimental runs and resulting method 
parameters. Note the increased computing time of method variants employing attributes. 

Problem 
Method 

Variant 
Time Alpha WGlobal Area Std Perimeter Smoothness Compactness 

Bokolmanyo 
CC + 

Map 

2062.304 

± 248.996 

187.600 

± 68.646 

53.600 ± 

15.601 
NA NA NA NA NA 

 
CC + 

Attr 

3083.551 

± 237.328 

173.300 

± 66.331 

196.000 ± 

44.838 

247.500 ± 

142.417 

50.442 ± 

58.470 

369.900 ± 

196.794 

21.483 ± 

7.688 

19.803 ± 

7.439 

Jowhaar 
CC + 

Map 

2182.659 

± 193.999 

165.900 

± 82.538 

155.200 ± 

19.136 
NA NA NA NA NA 

 

CC + 

Attr 

4136.116 

± 498.270 

98.900 ± 

52.297 

203.500 ± 

43.775 

392.000 ± 

85.249 

133.289 

± 60.647 

620.500 ± 

241.420 

18.379 ± 

6.910 

22.466 ± 

4.331 

Hagadera 
CC + 

Map 

2168.177 

± 226.159 

101.700 

± 65.052 

148.300 ± 

29.803 
NA NA NA NA NA 

 

CC + 

Attr 

5409.293 

± 352.444 

187.400 

± 68.704 

240.300 ± 

21.525 

342.100 ± 

81.266 

162.601 

± 86.782 

574.700 ± 

271.998 

23.573 ± 

7.351 

19.940 ± 

6.113 
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Figure 4.11. Search method profiles for the different problems under different metric 
conditions. Note that for the simpler Bokolmanyo problem near-optimal results are 
achieved relatively early on in the search process. In the more complex problems, the 
methods need substantially more iterations in finding the achievable optimal parameter set. 

On examining Figure 4.12, the CC + Map variant of the method (using various mapping functions) 
ranked first, followed by the most complex method variant (CC + Attr + Map). Under cross-validated 
conditions, adding attributes proves detrimental. The investigated problems are not exhaustive.  
The variants are all statistically significantly different from one another. This figure reports a general 
observation under extensive evaluations (50 million segment evaluations). Under a more succinct 
selection of attributes and problems, attributes may well be more useful. The figure suggests simple 
data mapping functions should be a worthwhile consideration in method design within this general 
framework. Mapping functions may be considered (indirect means of changing connectivity type), but 
other more direct means of defining connectivity (parameterizable) may also prove useful. This is in 
addition to such a variant requiring less computing time, compared with computing additional 
attributes. 
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Figure 4.12. Friedman rank test with a Nemenyi post hoc test conducted on results from 
Tables 4.8–10. Confidence interval is set to 95%. A Critical Difference (CD) of 0.349 is 
generated (ranking). All method variants deliver statistically significant different results. 
Generally speaking, the CC + Map method variant was found most useful. 

4.6. Conclusions 

In this work a general method in the context of sample supervised segment generation was 
examined. Such general methods aim to generate thematically accurate image segments, easing further 
processing and increasing final classification accuracies. The method incorporates a graph-based 
segmentation method, with constraining attributes and data mapping functions providing additional 
flexibility in the nature of the generated segments. These additional constituents to the method were 
profiled for their relative utility in enhancing the quality of the generated segments. It was found that 
constraining attributes, conjectured to be useful, did not add value to segment quality. Data mapping 
functions proved more useful in this regard, generating better quality segments consistently. Other 
constituents could also be added to such a method, but other formulations of defining connectivity in 
such an approach could be most beneficial. Various other approaches to changing connectivity could 
be considered as opposed to mapping functions, including analyzing scene-wide connectivity 
properties, considering hypo/hyper connectivity definitions, and defining connectedness as part of the 
optimization problem. 

A few experimental considerations should be noted with such a method. Various processes in such 
a general approach may be stochastic, not only the given metaheuristic. In this particular instance the 
segmentation algorithm generates unique or repeatable results. This might not always be the case. 
Adding numerous attributes, without a priori known usefulness, should be avoided as additional 
search landscape dimensionality increases problem difficulty. Future work could profile a range of 
spectral and geometric attributes for their usefulness in various problems (land-cover element 
specific). Using various segment-sampling sizes could also provide additional insight into method 
generalizability to unseen problems. 

A method variant, incorporating attribute selection as part of the optimization problem, could also 
be considered. This would entail a combined combinatorial and real valued optimization problem.  
The utilized metrics also need careful consideration, as various metrics will have different convergence 
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characteristics, as shown in this work. The nature of correlations among metric scores and the ease of 
subsequent processes or classification results are also open to research. Note that the presented 
method, inherently hierarchical, functions on a singular segmentation level and attempts to find a level 
appropriate to the given problem or elements of interest in the scene. Hierarchical aspects were not 
considered. 

The proposed method and results add to the discussion on supervised methods for segment 
generation in a remote sensing context. Applications such as rapid mapping or emergency response 
mapping may benefit from such approaches. Another application may be targeted land-cover element 
identification, incorporating single-class classification algorithms. User-driven image analysis 
approaches, found within the context of Geographic Object Based-Image Analysis (GEOBIA), might 
benefit from such sample supervised segment generation methods. How methods such as the one presented 
here, based on modular image segmentation, may efficiently synergize with more complete workflows 
[62], including classification processes [54,63] or larger automated image analysis methods, should be a 
worthwhile investigation. 
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Abstract 

Quality segment generation is a well-known challenge and research objective within 
Geographic Object-based Image Analysis (GEOBIA). Although methodological avenues 
within GEOBIA are diverse, segmentation commonly plays a central role in most 
approaches, influencing and being influenced by surrounding processes. A general 
approach using supervised quality measures, specifically user provided reference 
segments, suggest casting the parameters of a given segmentation algorithm as a 
multidimensional search problem. In such a sample supervised segment generation 
approach, spatial metrics observing the user provided reference segments may drive the 
search process. The search is commonly performed by metaheuristics. A novel sample 
supervised segment generation approach is presented in this work, where the spectral 
content of provided reference segments is queried. A one-class classification process using 
spectral information from inside the provided reference segments is used to generate a 
probability image, which in turn is employed to direct a hybridization of the original input 
imagery. Segmentation is performed on such a hybrid image. These processes are 
adjustable, interdependent and form a part of the search problem. Results are presented 
detailing the performances of four method variants compared to the generic sample 
supervised segment generation approach, under various conditions in terms of resultant 
segment quality, required computing time and search process characteristics. Multiple 
metrics, metaheuristics and segmentation algorithms are tested with this approach. Using 
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the spectral data contained within user provided reference segments to tailor the output 
generally improves the results in the investigated problem contexts, but at the expense of 
additional required computing time. 

Keywords: geographic object-based image analysis; segmentation; classification;  
sample supervised; spatial metrics; metaheuristics 

 

5.1. Introduction 

Remotely sensed satellite imagery has unique characteristics and derived information products 
compared to imagery encountered in many other image analysis disciplines. Various sub-elements in 
such imagery may need to be recognized and their attributes quantified. Land-cover mapping is  
a common task in this context, where it is attempted to generate a partial or full description of a given 
area from Earth observation imagery, with an emphasis on element geometric and thematic accuracies. 
Geographic Object-Based Image Analysis (GEOBIA) has emerged as a viable avenue of approaches, 
or paradigm, to tackle such remote sensing image analysis tasks [1–4] due to the common  
spectral-textural-geometric and thematic correlations of elements of interest in satellite imagery [5–7]. 

Incorporating a segmentation algorithm, which is central in many GEOBIA approaches, either for 
semantic object segmentation and description [8], or for only allowing for the generation of richer 
attributes for classification, have been shown to be efficient in many real world applications [2].  
This is partly due to the h-res phenomenon [9] encountered commonly when concerned with Very 
High Resolution (VHR) optical imagery, where the spatial resolution of captured imagery is finer than 
the geometry of the elements of interest and pixel-based discriminative methods are limited to produce 
adequate results (due to the so called salt-and-pepper effect [10]). Also, such fidelity in resolution may 
be needed to identify elements, but intra element spectral variability may additionally cause problems 
in this process [11]. Segmentation algorithms allowing for spatial aggregation in addition to observing 
spectral characteristics have been shown to be efficient in working towards identifying elements [7,11–14]. 
Based on the characteristics of the desired information products and the nature of the data, the 
availability of commercial and freeware GEOBIA software [2,15–17] and the extent of  
the literature [1,2,4], it is shown that GEOBIA is a promising paradigm [1]. 

Although thematically accurate segments are commonly aimed for in a GEOBIA workflow, 
adequate segmentation is problematic to attain for single or multiclass elements using only a single 
pass of a given segmentation algorithm. This may be due to the complexity of the scene, especially 
when thematic and spectral correlations start to diverge, and limitations of the given segmentation 
algorithm. Various general approaches have been proposed to address the challenge of thematically 
accurate image segmentation and classification (semantic segmentation), including advocating rule-set 
or expert system’s approaches within GEOBIA [1,14], the development of new domain specific 
segmentation algorithms [18], multi-scale image analysis [6,19,20], using context information or 
spatial relationships among segments [14,21,22], and hybridizing or interleaving classification and 
segmentation processes [23–25]. Another general approach addressing the problem of segmentation 
within GEOBIA casts the creation of thematically accurate image segments as a search or optimization 



110 
 
problem [26–29]. In such an approach the parameters of a given segmentation algorithm is 
automatically tuned based on the provision of a limited amount of user provided reference segments. 
The geometric aspects of provided reference segments are matched with generated segments in  
the iterative search process via spatial metrics. 

In this work a novel variant of such a sample supervised segment generation approach is presented 
and quantitatively evaluated. The initial concept was presented in abstract from in [30]. An enlarged 
search space is defined to include pixel-based classification processes. Derived probability images are 
used to direct a change in the original input imagery, such that the given segmentation algorithm may 
perform better on the given problem. The proposed method is compared with the generic formulation 
of sample supervised segment generation and results are demonstrated via the task of accurately 
segmenting structures in towns, villages and refugee camps on VHR optical remote sensing data.  
This contribution thus falls within the context of enlarged search spaces first presented in [29], but 
proposes a methodology that uses spectral content contained within reference segments as opposed to 
adding data transformation or mapping functions. 

Section 5.2 gives an overview of sample supervised segment generation and reviews related work.  
In Section 5.3 a new variant of sample supervised segment generation is presented, incorporating 
classification in the segment generation process. In Section 5.4 the data used is briefly described, with  
the comparative experimental methodologies outlined in Section 5.5. In Section 5.6 results are 
presented and discussed. Prospects and limitations are highlighted in Section 5.7. 

5.2. Background and Related Work 

Sample supervised segment generation, or more generally sample supervised image processing/ 
analysis, denotes the process of automatically tuning the parameters of a given segmentation algorithm 
or constructing image processing operators for segment generation based on the provision of exemplar 
output segments. A user typically needs to digitize or provide examples of desired segmentation results. 
Such an approach has attracted research attention in the imaging disciplines in general [26,28,31–35] and 
also more specifically in the context of remote sensing image analysis [27,29,36]. It is a feasible 
strategy if a scene contains numerous “similar” elements that are of interest, common in many 
mapping tasks. Unsupervised strategies, not requiring reference segments but using scene wide image 
statistics, are also pursued [19]. It should be noted that the uses of efficient search methods are diverse in 
the imaging disciplines, with attribute selection and feature creation other common applications [37,38]. 

Figure 5.1 [39] illustrates the generic formulation of such an approach. A user provides a selection 
of reference segments or objects, typically digitized or extracted with other tools [40]. An iterative 
search process is invoked, where the parameter space of a given segmentation algorithm is searched.  
At iterations of the search process a specific parameter set is passed onto the segmentation algorithm 
from the optimizer. The tuned segmentation algorithm is executed on the image, typically subsets of 
the image covering areas around the provided reference segments. Empirical discrepancy, or spatial 
metrics [41] are employed to match the generated segments to that of the user provided reference 
segments. This process is commonly referred to as the fitness evaluation. The optimizer uses  
the quality score generated by the metrics to direct the next iteration of the search. The method 
terminates when a certain number of search iterations have passed or a certain quality threshold has 
been reached, although various other stopping criteria may be considered. The parameter set resulting 
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in the best metric score is given as the output. Subsequently, the entire scene may be segmented with 
the segmentation algorithm tuned with the output parameter set. 

Figure 5.1. Architecture of the generic formulation of sample supervised segment 
generation [39]. 

 

A sample supervised segment generation method typically advocates an interactive, user driven 
image analysis process. Segmentation is, generally computationally expensive, resulting in 
computationally expensive fitness evaluations. Searching the parameter space efficiently was a major 
driver for the development of this method [26]. Metaheuristics, which are stochastic population based 
search methods, are well suited and studied in the context of this general approach [26,29,42,43], 
commonly leading to higher quality fitness scores in less search time compared to more general search 
strategies. Such a general approach may also be used to compare segmentation algorithms for a given 
task, or purely to test the general feasibility of a given algorithm for a given task. Also, this approach 
may find use alongside other, more encompassing, image analysis strategies. It could be used to work 
towards a final product in complex scene scenarios or used alongside traditional GEOBIA approaches 
such as rule set development [14]. 

Research on this general method typically aims for generating better quality results in less time. 
Specific aspects investigated include the evaluation of the performances of different search  
methods [29,42–44], the applicability of various empirical discrepancy metrics (fitness functions) [29,36], 
the performances of various segmentation algorithms in such an approach [29,42,45–47] and the 
extension of the concept to more modular image processing methods [24,45–50]. Uncertainties remain 
surrounding the generalizability of such a method, its sampling size requirements and whether strong 
correlations exist between classification results and segmentation [27,29]. Research and freeware 
software in this vein are available [29,42,51]. Having some a priori knowledge on the capability of the 
segmentation algorithm seems necessary [27]. 

The search landscape may also be extended to include processes surrounding the core segmentation 
that may lead to better quality segments or classification results [29,45,48]. A search landscape defines 
the n-dimensional surface of discrepancy metric results for all parameter value combinations, where  
n is the number of parameters in the method. Additional processes may tailor the data to allow a given 
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segmentation algorithm to perform better, for example by adding extra data transformation functions [29], 
or by automatically performing post segmentation processes to further improve results. Such processes 
may be interdependent [52] with segment generation and should subsequently be optimized simultaneously 
or interdependently with the segmentation algorithm parameters. 

5.3. Classifier Directed Data Hybridization 

5.3.1. Exploiting Spectral Data Contained within Provided Reference Segments for Segment 
Generation 

Reference segment geometric properties are most commonly queried to drive the search process in 
sample supervised segment generation approaches [26–28]. Such reference segments also contain or 
encapsulate spectral data, which is implicitly provided. Figure 5.2 illustrates the two basic properties 
or aspects derived from provided reference segments. The question is raised and explored how the 
spectral data contained within the provided reference segments (Figure 5.2. Arrow B) may contribute 
to generating more accurate image segments (Figure 5.2. Arrow A) via data modification processes  
(Figure 5.2. Arrow C). 

Figure 5.2. The rationale behind the proposed method. Segment geometry is commonly 
provided via digitizing and used to drive a parameter search process (Arrow A) for 
segment generation. Reference segment spectral content (Arrow B), which is implicitly 
provided, is queried to influence a data transformation (Arrow C) affecting 
segment generation. 

 

It is suggested that pixel based classification methods, although having their limitations compared 
to object-based image analysis approaches [1], provide useful information in clustering thematic 
elements in imagery in many instances. Classification in this context is used to assist in segmentation 
and not for thematic element identification. It is proposed to interleave classification and segmentation 
processes via an expanded search landscape in the context of sample supervised segment generation. 
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This proposition is inspired by methods that interleave classification and segmentation for thematic 
element identification purposes [23,53–55] and methods defining expanded search landscapes in 
sample supervised segment generation [29,45]. The spatial/spectral aggregation of segmentation is 
complimented with the discriminative power of a classification process. Classification is used to tailor the 
data, so that the given segmentation algorithm performs better. One-class classifiers or novelty detectors 
having strong discriminative power such as a one-class Support Vector Machine (SVM) [56]/support 
vector domain descriptor [57] and others [58], may be employed to generate a preliminary classification 
or probability image (with additional processes, described below) of pixel membership based on the 
spectral content encapsulated within provided reference segments. Such an initial classification may 
provide useful information in describing thematic and spectral similarities that may assist in 
segmentation. On the other hand, it is possible that such information may be detrimental to subsequent 
segmentation processes, a scenario that may be found in the context of VHR optical data. An example 
could be accurately segmenting all cars in a parking lot, with the large variation in spectral content 
causing problems for such a method. Many method variants are possible based on this basic idea. A 
specific formulation is presented below. 

5.3.2. Method Overview 

Figure 5.3 (source: illustrated abstract, [30]) illustrates the architecture of the proposed method 
variant. As with the generic formulation of such an approach (Figure 5.1), a user provides a set of 
reference segments as input (multiple reference segments). In this variant, the spectral data of the 
provided reference segments are also collected. This variant requires the same amount of user 
interaction, and from a user’s perspective requires no additional operations compared to the 
generic formulation. 

Figure 5.3. Architecture of the variant of sample supervised segment generation 
incorporating classifier directed data hybridization [30]. 
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The optimization loop contains three sub-components controlled by three real-valued parameter sets. 
Firstly the provided spectral data are used in a synthetic sample generation and classification process to 
generate a probability image, detailed in Section 5.3.3. In this implementation this sub-component is 
controlled with four real valued parameters. Secondly, the generated probability image is fused or 
hybridized with the original input image. Four strategies are investigated, detailed in Section 5.3.4, 
including only using the probability image for segmentation purposes. This sub-component is controlled 
by a variable number of parameters, depending on the implementation details (between zero and four). In 
the third sub-component in the search process, the hybridized image is segmented with a given 
segmentation algorithm (algorithms detailed in Section 5.3.5). The segmentation results are evaluated 
with spatial metrics against the user provided reference segments (detailed in Section 5.3.6), with the 
evaluation result passed on to the optimizer (optimizers detailed in Section 5.3.6), which subsequently 
initiates a new iteration of the search process. In this implementation the method terminates when 2000 
search iterations have passed, which was found a sufficient number of runs in preliminary 
experimentation and in related work [29,43]. Other termination conditions may be considered. 

Figure 5.4 illustrates an example encoding of a search landscape defined in the method. The 
optimizer considers probability sampling and classification parameters for probability image 
generation, image hybridization process control parameters and segmentation algorithm parameters. 
This results in search landscape dimensions ranging from six to eleven, depending on implementation 
details. Integer/discrete parameters are converted to real. Example parameter encodings are also 
illustrated for each sub-component (detailed in following sections). Parameter domain 
interdependencies are demonstrated in the results section, necessitating the creation of such enlarged 
search spaces. 

Figure 5.4. An example parameter set, forming the search landscape with interdependent 
real-valued parameter domains [30]. 

 

The method was implemented as a graphical user interface driven application programmed in C++, 
making use of various open source libraries (in acknowledgements). Examining the progress of  
the automatic parameter tuning process and manually overriding proceedings are possible. Due to  
the envisaged usage scenario of such an approach, the method is embedded in an exemplary larger 
workflow containing basic scene wide segmentation and one-class classification functionality. 

5.3.3. Search Landscape: Sampling/Classification Sub-Component 

The sampling and classification sub-component entails the parameterization of the process of 
probability image generation. This can be implemented in various ways, with varying number of 
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parameters and resultant search landscape characteristics. Parameter controlled variation in output is 
conjectured be most useful. This process is implemented here as follows: 

A one-class SVM [56] with a Radial Basis Function (RBF) kernel is run on the spectral samples 
(normalized) collected from within all provided reference segments. Figure 5.5a illustrates a subset of  
a three-band VHR optical image where the aim would be to accurately segment all bright sink roofed 
structures. The sloped roofs appear spectrally diverse due to the different light reflectance angles.  
The red polyline in Figure 5.5a illustrates one of the digitized reference segments or objects provided 
by a user. This classification process is controlled by two real valued parameters (nu and gamma, see 
[56] for details). 

Figure 5.5. Image processing conducted to derive a probability image. (a) Illustrates a 
subset with a delineated reference segment; (b) the masking and synthetic sampling 
procedure and (c) the generated probability image. 

 

This initial classification is used as a mask to prevent the automatic selection or querying of pixels, 
representing a synthetic secondary class. Figure 5.5b illustrates blue shaded pixels, which constitute  
the classification result of the one-class classification process that acts as a mask. The red pixels 
represent samples taken from a linked list of random samples (generated only once). The red samples 
match the quantity of pixels found within the reference segments. As the nature of the mask changes 
(via tuning the parameters of the one-class SVM), some samples selected for the synthetic secondary 
class may be masked out and new samples are placed, taken from samples in the linked list. In other 
words, the parameters of the one-class SVM control the pixel sampling (red pixels) of a synthetic 
secondary class via the creation of a mask (blue pixels). 

Subsequently the two sample groups with identical number of pixels are used in a two-class SVM [59] 
classification process to generate a probability image, illustrated in Figure 5.5c. The two controlling 
parameters (C and gamma) are not as sensitive or do not result in significant changes in results 
compared to the effect of the masking/sampling process. Thus, four parameters control the nature of 
the probability image, with an optional additional parameter controlling the weight of the interaction in 
the subsequent process. These parameters encompass the probability image sub-component as 
illustrated in Figure 5.3. The parameter range for nu is set to [0, 0.2] and for C and gamma to [0, 100]. 
Optionally, additional parameters may control the sampling of a synthetic secondary class to create more 
diversity in the generated probability output. It should be noted that the quality or accuracy of the 
generated probability imagery is not measured or quantified. Various other implementations are possible. 
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5.3.4. Search Landscape: Hybridization Sub-Component 

Within the image hybridization sub-component the original input image is modified, guided or 
directed by the classification results of the probability image. The search process can control the nature 
and degree of the interaction. This allows for useful aspects to be used from both the imagery.  
After image segments are generated, the original image should be queried for further image processing 
and classification processes and not the hybridized image. Three variants of image hybridization are 
presented and tested. In addition, the probability image itself may be considered for segmentation. Figure 
5.6 illustrates arbitrary results generated by the three variants detailed below. Other variants are 
possible. 

Figure 5.6. The three variants of data hybridization investigated. (a) Illustrates a hybrid 
image generated via the (a) band replacement strategy (Section 5.3.4.1); the (b) move to 
average strategy (Section 5.3.4.2) and (c) the move to central positions strategy (Section 
5.3.4.3). 

 

5.3.4.1. Hybrid:EB (Exchange Band) 

The simple Hybrid:EB (Exchange Band) hybridization strategy replaces band x of the input image 
with the generated probability image (Figure 5.6a). For experimental conformity all used imagery in 
this work has three bands, with band two exchanged for the probability image. Simply adding  
the probability image to the image stack is also possible. 

5.3.4.2. Hybrid:MA (Move to Average) 

The Hybrid:MA (Move to Average) strategy (Figure 5.6b) determines the average spectral value 
contained in all reference segments. Pixels in the original image (I) are moved towards this position 
based on the following equation: 

𝐻𝐻𝐻𝐻𝑎𝑎𝛼𝛼𝑝𝑝𝑑𝑑:𝑀𝑀𝐴𝐴 = 𝐼𝐼 − 𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼 − 𝐴𝐴𝐴𝐴𝑒𝑒) × 𝑀𝑀𝑎𝑎𝑒𝑒 × 𝑃𝑃𝛼𝛼𝑝𝑝𝑎𝑎 − 𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼 − 𝐴𝐴𝐴𝐴𝑒𝑒) (1) 

where Prob denotes the probability image and Avg the average spectal value, Mag is a user defined 
value influencing the magnitude of the move (set to two in all experiments) and abs the absolute value.  
An additional weighting parameter, which forms part of the optimization problem influences  
the intensities within Prob. Hybrid:MA is thus also a weighted function within the optimization 
problem. This strategy also allows for pixels to be shifted away from the calculated spectral average. 
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Simply designating the average spectral value of the reference segments as the target spectral position 
to move pixels towards may be problematic in various problem instances. 
 

5.3.4.3. Hybrid:CP (Central Positions) 

With the Hybrid:CP (Central Positions) hybridization strategy, pixels in the original image are 
moved towards a parameter controlled new spectral value. The distance of this move (in percentage) is 
equal to the intensities in the probability image. For each band in the image a parameter is added, thus 
in this implementation the Hybrid:CP strategy adds an additional three parameters to the optimization 
problem. When concerned with 8-bit imagery, the parameter range is set to [0, 255]. The intensity of 
the move is also regulated by a weighting parameter, as with the Hybrid:MA strategy. Hybrid:CP is 
written as: 

𝐻𝐻𝐻𝐻𝑎𝑎𝛼𝛼𝑝𝑝𝑑𝑑:𝑂𝑂𝑃𝑃 = 𝐼𝐼 − (𝐼𝐼 − 𝑂𝑂𝑃𝑃) × 𝑃𝑃𝛼𝛼𝑝𝑝𝑎𝑎 (2) 

where I indicates the original input image, CP the parameter controlled spectral position and Prob the 
probability image as a percentage (when concerned with 8-bit data it would be Prob/255).  
Figure 5.6c illustrates an arbitrary hybridized image generated with this strategy. This strategy allows 
for more flexibility in the hybridization, by allowing the optimizer to define the position where to pixel 
spectral values should be shifted (at the expense of added search landscape dimensionalities). 

Figure 5.7. Segmented subsets, generated with the MS algorithm using the (a) original 
image, and a (b) Hybrid:CP image and segments generated with SLIC using  
a (c) probability image. 

 

5.3.5. Search Landscape: Segmentation Sub-Component 

The hybridized image is passed on to a given segmentation algorithm (Figure 5.3), where  
the optimizer also search the parameter space of said algorithm, due to parameter domain 
interdependencies [29,60]. In this work two segmentation algorithms are tested, namely 
Multiresolution Segmentation (MS) [12] and Simple Linear Iterative Clustering (SLIC) [61]. The MS 
algorithm adds an additional three parameters to the search landscape, with a sensitive “scale” 
parameter majorly responsible for the relative sizes of segments (see [12] for a full formulation). Two 
other parameters control the influence (Color/Shape) and definition (Compactness/Smoothness) of 
shape in segment generation. The MS algorithm has been extensively used in the context of 
GEOBIA [1,2,19,27,46]. Figure 5.7 illustrates hand tuned results of the MS algorithm run on the 
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original input image (Figure 5.7a) and on the Hybrid:CP image (Figure 5.7b) and the SLIC algorithm 
run on the probability image (Figure 5.7c). 

SLIC, considered a superpixel algorithm, is commonly used in part-based models and non-thematic 
segmentation tasks (e.g., for purely allowing the extraction of rich attribute sets) [61]. SLIC adds two 
parameters to the search landscape. Similar to the MS algorithm, SLIC has a “scale” parameter 
controlling the relative size of generated segments [61]. Although not as efficient as the MS segmentation 
algorithm for creating thematically accurate segments in a remote sensing context [29], SLIC is 
computationally efficient allowing for more interactive segment generation in manual tuning processes. 

5.3.6. Metrics and Optimizers 

In each iteration of the method, after the image segmentation process, the generated segments are 
quantitatively compared with the user provided reference segments (Figure 5.3). Four spatial empirical 
discrepancy metrics [41] are utilized in experimentation in this work to prevent bias based on  
the details of any given implementation (segmentation is an ill posed problem [62] due to the variation 
in possible solutions). Table 5.1 summarizes the used spatial metrics, with their formulations given using 
set theory notation. The Reference Bounded Segments Booster (RBSB) [27] compares area offsets 
between the reference (R) and a generated segment (S). The Larger Segments Booster (LSB) [63] performs 
similarly, but considers all segments (Sh) having a majority overlap with the reference segment and holds a 
penalization factor in the form of counting border (b) pixels intersecting the reference segment. 

The Partial and Directed Object-Level Consistency Error (PD_OCE) [29,64] and the Reference 
Weighted Jaccard (RWJ) [29] metrics quantifies quality based on all generated segments intersecting 
the reference segment, but have a difference based on the importance (area overlap) of generated 
segments to the problem. The optimal result for all metrics is zero, with the effective range being [0, 1] 
(with few exceptions). The symbol n denotes the number of generated segments intersecting the given 
reference segment, while i and j are iterators running through these segments. 

Table 5.1. The four spatial empirical discrepancy metrics used for segment evaluation, written using 
set theory notation. 

Metric Formulation Reference 

RBSB 
|𝑅𝑅 ∪ 𝑆𝑆| − |𝑅𝑅 ∩ 𝑆𝑆|

|𝑅𝑅|  [27] 

LSB 
|𝑅𝑅 ∪ 𝑆𝑆ℎ| − |𝑅𝑅 ∩ 𝑆𝑆ℎ| + 𝑎𝑎

|𝑅𝑅|  [63] 

PD_OCE �
|𝑅𝑅 ∩ 𝑆𝑆𝑖𝑖|
|𝑅𝑅 ∪ 𝑆𝑆𝑖𝑖|

×
|𝑆𝑆𝑖𝑖|

∑ �𝑆𝑆𝑗𝑗�𝑛𝑛
𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 [64] 

RWJ �
|𝑅𝑅 ∩ 𝑆𝑆𝑖𝑖|
|𝑅𝑅 ∪ 𝑆𝑆𝑖𝑖|

×
|𝑅𝑅 ∩ 𝑆𝑆𝑖𝑖|

|𝑅𝑅|

𝑛𝑛

𝑖𝑖=1

 [29] 

Regarding the optimizers, the “DE/rand/1/bin” variant of the Differential Evolution (DE) [65] 
metaheuristic is used in this work, based on preliminary experimentation [66] evaluating performances 
and other published results [29,43] (30 Agents, F = 0.75, CR = 0.3, random positions for initialization). 
For evaluative purposes, Particle Swarm Optimization (PSO) [67] (30 Agents, Inertia Weight = 0.7,  
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Best Own = 1.5, Best Swarm = 1.5), a Hill Climber (HC) (D = 30) and random sampling (RND) search 
are also considered [68] in some experiments. 

 

5.4. Data 

The proposed approach is demonstrated and evaluated by generating segments on three VHR 
optical images. The images depict towns and refugee camps in central and east Africa. The images all 
contain a single thematic class-of-interest with the elements having varying degrees of thematic and 
spectral similarities, thus presenting the method with a range of problems in terms of difficulty.  
The aim is to generate a single segment layer, thematically accurate with respect to the land cover 
elements of interest. Practically, if segment results are adequate, they may be used as is. Otherwise, it 
may be considered as an initial segmentation, where additional image processing may be needed  
(e.g., [14]). 

The datasets are named after the settlement of interest in the image. The imagery was fully  
pre-processed (orthorectified, pansharpened), stretched to 8-bit quantization and subsets were extracted 
over parts of the settlements. For each site twenty elements are digitized, used as the reference 
segments. Table 5.2 lists the metadata and some usage considerations of the three datasets. 

Table 5.2. Metadata of the datasets used. 

Test Site Target Elements Sensor Spatial Resolution Reference Segments Channels Date Captured 
Bokolmanyo 1 Tents GeoEye-1 0.5 m 20 1, 2, 3 2011/08/24 

Jowhaar 1 Structures GeoEye-1 1 m * 20 1, 2, 3 2011/02/26 
Hagadera 2 Structures WorldView-2 0.75 m * 20 4, 6, 3 2010/10/07 

* Resampled from a 0.5 m spatial resolution. 1 © GeoEye, Inc. Herndon, VA, USA, 2011, provided by  
e-GEOS S.p.A. under GSC-DA, all rights reserved. 2 © DigitalGlobe, Inc. Longmont, CO, USA, 2010, 
provided by EUSI under EC/ESA/GSC-DA, all rights reserved. 

Figure 5.8. The datasets used for method evaluation, namely (a) Bokolmanyo; (b) Jowhaar 
and (c) Hagadera. The blue polygons in the enlarged subsets represent digitized 
reference segments. 
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Figure 5.8 shows the three image datasets, or problem instances, along with an enlargement over  
a small area illustrating the characteristics of the elements of interest. The Bokolmanyo site (a) 
constitutes an easier problem, where the elements of interest are nylon tents in a refugee camp.  
A thematic segmentation using the SLIC algorithm would be the aim using this image. The other two 
datasets, Jowhaar (b) and Hagadera (c), contain more divergence in spectral and thematic correlations 
of the elements of interest. The MS algorithm is used on these datasets. The aim on these two datasets 
would be to correctly segment all corrugated iron/steel roofed buildings. 

5.5. Experimental Design 

The described method (Figure 5.3) variants are evaluated based on performances compared to  
the generic formulation (Figure 5.1) of sample supervised segment generation. Various behavioral 
characteristics of the method are also quantified, related to the search progression, the feasibility of 
using different search methods and parameter domain interdependencies. Thus, a comparative 
experimentalism [66,69] is performed on problem specific datasets. 

Due to uncertainty or randomness in terms of sampling (randomly initiated linked list) and 
classification, metaheuristic progression (initialization, stochastic nature) and segmentation algorithm 
seeding, multiple runs for experiments are advocated. Results are not specific and have some variation. 
None the less, in initial experimentation the variance of distributions of results are similar to other 
work in the context of enlarged search landscapes [29], with statistically significantly different 
(student’s t-test and Friedman rank test with Nemenyi post hoc test) results observed on relatively 
small and large preliminary experimental test sets. 

5.5.1. Segment Quality Comparison and Method Ranking 

The generic formulation of sample supervised segment generation, the proposed variant using 
probability images for segmentation and three variants conducting image hybridization, namely 
Hybrid:EB, Hybrid:MA and Hybrid:CP, are quantitatively compared in terms of resultant segment 
quality. For each test site (Bokolmanyo, Jowhaar and Hagadera) all the method variants are run using 
the 20 provided reference segments and selected segmentation algorithm (SLIC for Bokolmanyo and 
MS for Jowhaar and Hagadera). Experimentation is conducted with the four metrics listed in Table 5.1.  
In total, results are reported with 60 different experimental instances (combinations of methods, 
problem instances and metrics). 

Experimental instances are repeated ten times with the averages, standard deviations and best results 
achieved reported. Each run consists of 2000 search method iterations using the DE metaheuristic, 
evaluating the 20 reference structures and taking the mean as the result. In total 24 million segmentation 
evaluations are performed over the 60 experimental instances. In addition to reporting and discussing the 
tabularized results, a Friedman test is conducted with a Nemenyi post hoc test [70] to rank the methods 
and describe their critical differences under all metric and problem type conditions. This is done to give 
some measure of generalizability [71,72] (commonly done when evaluating multiple classifiers over 
multiple problem instances), although problem instances and experimental variations are not exhaustive. 

5.5.2. Search Process Characteristics 
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The search process is profiled over the three problem instances by recording the fitness traces over 
all method variants. It is investigated if the higher dimensional formulations of method variants have 
any significantly different search profiles. Such search-based methods should terminate as quickly as 
possible (computationally expensive), thus insight in the search progression is beneficial. For each 
problem instance a metric is selected, RWJ for Bokolmanyo, LSB for Jowhaar and PD_OCE for 
Hagadera, and the best metric scores (fitness) are plotted at each of the 2000 method iterations.  
This diversity in experimentation is introduced as a specific metric or segmentation algorithm (search 
landscape) might generate bias for a specific hybridization strategy. 

The fitness profiles are supplemented with a profiling of the required computing time of single 
fitness evaluations or iterations of the search process. This gives an indication, in the investigated 
problem contexts and utilized computer (Intel Xeon E5-2643 3.5 GHz processor with single core 
processing), of the required computing time to achieve optimal or near optimal results. For  
the Bokolmanyo and Jowhaar sites, average required computing time per evaluation is recorded and 
averaged over 100 iterations for all five method variants. Results are plotted against optimal achieved 
metric scores (2000 iterations) of the RWJ metric. 

5.5.3. Parameter Interdependencies 

It is investigated if parameter domain interdependencies exist between the segmentation and 
sampling/data hybridization components of the, probability, Hybrid:EB, Hybrid:MA and Hybrid:CP 
method variants. The utilized segmentation algorithms observe spectral aspects as merging criteria 
(strongly). Any process performing a modification of the spectral characteristics of the data on which 
the segmentation algorithms run, will inherently influence the optimal values of the segmentation 
algorithms’ parameters. Such interdependency requires the simultaneous optimization of data 
modification and segmentation algorithm parameters, thus leading to optimization problems with 
enlarged search spaces as opposed to separately solvable problems. 

The optimally achieved segmentation algorithm parameters, sampling and classification parameters and 
the probability weighting parameter are recorded for experimental runs (2000 search iterations, averaged 
over ten runs) using the five method variants on the three problem instances considering the RWJ metric. 
The resultant sensitive “scale” parameters of the SLIC and MS segmentation algorithms, considering the 
proposed method variants, are specifically compared to the resultant parameters considering the generic 
variant of the method. A student’s t-test is performed to determine if differences are present. Three select 
two dimensional search surface combinations are also plotted (exhaustive fitness calculations) to visually 
check for, and demonstrate parameter interdependencies, specifically how the MS scale parameter interact 
with other parameters of the Hybrid:CP method variant in the Jowhaar problem instance. 

5.5.4. Metaheuristic Viability 

Finally the value of using metaheuristics, as opposed to simpler search strategies, is investigated. 
Simpler search strategies are easier to implement and requires less tuning and would be preferred if 
metaheuristics provide little performance benefit. It is also investigated how the problem 
dimensionality (different method variants) affects different search strategies. For one problem instance 
(Hagadera, MS, RWJ, 2000 iterations, averaged over ten runs) each method variant is run using four 
different search methods, namely DE, PSO, HC and RND under identical conditions (Section 5.3.6).  



122 
 
The metaparameters for DE and PSO were hand-tuned (meta-optimization could be considered). 
Fitness traces are plotted to contrast search progress and general performances under these different 
search landscape conditions. Final optimal achieved metric scores are reported. 

5.6. Results and Discussions 

5.6.1. Segment Quality Comparison and Method Ranking 

Tables 5.3–5 lists the results of the metric scores achieved for the three problem instances.  
The averages and standard deviations are listed. The columns depict method variants and the rows the 
utilized metrics. Shaded cells highlight the best performing method variants under each metric condition. 

Table 5.3. Segmentation accuracies achieved in the Bokolmanyo problem instance.  
The shaded cells highlight the results of the best performing hybridization strategy. 

Boko (SLIC)  Generic Probability Hybrid:EB Hybrid:MA Hybrid:CP 

LSB 
Average 0.544 ± 0.007 0.499 ± 0.036 0.518 ± 0.038 0.482 ± 0.032 0.500 ± 0.075 

Best 0.536 0.416 0.480 0.454 0.426 

PD_OCE 
Average 0.718 ± 0.000 0.445 ± 0.094 0.538 ± 0.029 0.358 ± 0.038 0.371 ± 0.038 

Best 0.718 0.367 0.486 0.309 0.318 

RBSB 
Average 0.177 ± 0.008 0.241 ± 0.101 0.189 ± 0.057 0.227 ± 0.044 0.193 ± 0.033 

Best 0.175 0.140 0.145 0.170 0.163 

RWJ 
Average 0.285 ± 0.006 0.192 ± 0.012 0.204 ± 0.019 0.203 ± 0.017 0.192 ± 0.012 

Best 0.280 0.181 0.190 0.183 0.171 

Table 5.4. Segmentation accuracies achieved in the Jowhaar problem instance. The shaded 
cells highlight the results of the best performing hybridization strategy. 

Jowhaar (MS)  Generic Probability Hybrid:EB Hybrid:MA Hybrid:CP 

LSB 
Average 0.371 ± 0.006 0.302 ± 0.008 0.299 ± 0.007 0.313 ± 0.005 0.296 ± 0.014 

Best 0.361 0.295 0.285 0.307 0.281 

PD_OCE 
Average 0.581 ± 0.010 0.413 ± 0.034 0.434 ± 0.024 0.361 ± 0.034 0.315 ± 0.040 

Best 0.558 0.382 0.409 0.301 0.261 

RBSB 
Average 0.187 ± 0.008 0.223 ± 0.091 0.184 ± 0.045 0.207 ± 0.018 0.201 ± 0.030 

Best 0.180 0.118 0.141 0.182 0.170 

RWJ 
Average 0.230 ± 0.004 0.182 ± 0.032 0.175 ± 0.018 0.233 ± 0.037 0.196 ± 0.029 

Best 0.225 0.145 0.138 0.182 0.159 

Table 5.5. Segmentation accuracies achieved in the Hagadera problem instance. The 
shaded cells highlight the results of the best performing hybridization strategy. 

Hagadera (MS)  Generic Probability Hybrid:EB Hybrid:MA Hybrid:CP 

LSB 
Average 0.628 ± 0.005 0.564 ± 0.030 0.549 ± 0.019 0.525 ± 0.034 0.537 ± 0.018 

Best 0.622 0.532 0.513 0.488 0.512 

PD_OCE 
Average 0.692 ± 0.028 0.474 ± 0.009 0.540 ± 0.027 0.464 ± 0.014 0.464 ± 0.017 

Best 0.681 0.464 0.501 0.445 0.427 
RBSB Average 0.371 ± 0.010 0.406 ± 0.022 0.330 ± 0.029 0.340 ± 0.057 0.387 ± 0.079 
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Best 0.350 0.383 0.276 0.274 0.272 

RWJ 
Average 0.437 ± 0.007 0.314 ± 0.019 0.313 ± 0.028 0.339 ± 0.029 0.326 ± 0.026 

Best 0.424 0.284 0.286 0.301 0.293 
 

Firstly, variation is noted in which method variants perform best under different metric conditions, 
justifying an investigation using multiple metrics. The use of a single quality metric would create bias. 
The magnitude of differences also varies, depending on the metric used and the problem instance.  
Very small standard deviations in results are observed when considering the generic formulation of  
the method, with the variants consisting of enlarged search spaces and containing more stochastic 
processes displaying larger variation in optimally achieved results. The intensities of the variations are 
also metric dependent, with the RBSB metric showing the most variation in results. It is conjectured 
that the search surfaces resultant from the RBSB metric (Table 5.1) creates more irregularities/noise, 
due to its simpler formulation that only considers a generated segment with the largest overlap with  
a reference segment. 

Considering Table 5.3, depicting the Bokolmanyo problem instance using the SLIC segmentation 
algorithm, the Hybrid:MA strategy provided the best segment results when considering the LSB and 
PD_OCE metrics. The Hybrid:CP strategy performed best when considering the RWJ metric and  
the generic method variant when considering the RBSB metric. Comparing the generic variant with  
the proposed variants, substantial improvements in quality is observed under LSB, PD_OCE and RWJ 
metric conditions. 

For the Jowhaar problem instance (Table 5.4) using the MS segmentation algorithm, the Hybrid:CP 
(LSB and PD_OCE) and Hybrid:EB (RBSB and RWJ) strategies provided the best results. Again, 
significant improvements in results are achieved compared to the generic formulation of the method, 
with results with the RBSB metric the exception. Figure 5.9 illustrates segmentation results obtained, 
focused on a single reference structure chosen randomly, under the RWJ metric condition. Note that 
results are averaged over all provided reference segments, and that the illustrated RWJ scores are 
segment specific. 

Similarly on the Hagadera test site (Table 5.5), constituting the most difficult problem,  
the Hybrid:EB, Hybrid:MA and Hybrid:CP method variants produced the best results. Results in this 
problem instance was generally worse than on the other two datasets, strongly suggesting the use of 
additional image processing to further process segments. Notwithstanding, significant improvements in 
results from the hybrid method variants are still useful (much closer to correct). Generally speaking, 
the proposed method variants have less specific results (more uncertainty) due to the addition of more 
free parameters and classification processes, but still perform much better than the generic variant in 
many instances. 

Figure 5.10 illustrates a Nemenyi post hoc test conducted after a Friedman test, ranking  
the performances of the five investigated method variants based on the 12 experiments (three problem 
instances and four metrics) conducted with each. The Hybrid:CP strategy performed the best, followed 
by the other hybridization strategies. The generic formulation of the method (Original Image) is ranked 
the lowest. A critical difference exist between the Hybrid:CP and the generic method. If the RBSB 
metric (problematic) is omitted from the test, illustrated in Figure 5.11, all method variants perform 
better with a critical difference compared to the generic method. Thus, even with the variation 
introduced by the metaheuristic and classification, the methods are still useful. The Hybrid:CP strategy 
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is still ranked first. Critical differences are not present among proposed method variants, suggesting  
a strong dependence on problem conditions and the nature of the metric and the optimal hybridization 
strategy. Interestingly, segmenting with the probability image is ranked better than the Hybrid:EB 
strategy. This could be different if a different band was replaced or if the probability image was merely 
added to the image stack. 

Figure 5.9. Segmentation results achieved with the Jowhaar problem instance (MS) using 
the RWJ metric. The red polyline delineate one of the twenty reference segments  
(a) provided by a user; (b) Shows results with the generic formulation; (c) using  
the probability image and the (d) Hybrid:EB; (e) Hybrid:MA and (f) Hybrid:CP strategies. 
RWJ metric scores for this specific structure are also given. 

 
 

Figure 5.10. Nemenyi post hoc test performed after a Friedman test, ranking the different 
methods over all metric and problem instances. Horizontal lines indicate the Critical 
Differences (CD). 
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Figure 5.11.The Nemenyi post hoc test, with the RBSB metric omitted. Horizontal lines 
indicate the Critical Differences (CD). 

 

5.6.2. Search Process Characteristics 

Figures 5.12–14 illustrate the fitness traces over the three problem instances (averaged over ten 
runs), specifically, Figure 5.12 show the fitness traces for the Bokolmanyo problem instance using the 
RWJ metric, Figure 5.13 the fitness traces for the Jowhaar problem instance using the LSB metric and 
Figure 5.14 the fitness traces for the Hagadera problem instance with the PD_OCE metric. 

In all of the problem instances the proposed method variants obtain better results very early on in 
the search process compared to the generic variant of the method. This can be attributed to the nature 
of the probability image, which in many cases immediately provides improved results irrespective of 
how the parameters of the segmentation algorithm are tuned or how the hybridization parameters 
are tuned. 

Observing Figure 5.12, the low dimensional generic variant of the method (only two dimensions of 
the parameters of the SLIC segmentation algorithm), obtains its best fitness extremely early on in  
the search process, at around 200 fitness evaluations. All other method variants already provide better 
fitness at this mark, with optimal results achieved near the 1000 iteration mark. Thus, the simpler, lower 
dimensional method variants have no initial advantage over the more elaborate method variants, 
suggesting no penalties in terms of search iterations. In this specific instance, only the probability 
image variant lags slightly behind the generic variant. 

Figures 5.13 and 5.14 (MS segmentation) have similar profiles, with the proposed method variants 
outperforming the generic variant in terms of fitness throughout the search process. Interestingly, all 
four variants have very similar fitness profiles, with the exception of the Hybrid:MA strategy on  
the Hagadera problem instance. These results suggest the proposed method variants obtain better 
results faster, even though their search landscape dimensionalities are higher. Under these experimental 
conditions, 1000 search iterations seem sufficient for the methods to obtain their optimal results, which 
parallels with results reported elsewhere [29,43], even though search landscapes may have 
different characteristics. 
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Figure 5.12. Fitness traces for the Bokolmanyo problem instance. 

 

Figure 5.13. Fitness traces for the Jowhaar problem instance. 

 

Figure 5.14. Fitness traces for the Hagadera problem instance. 

 

Figures 5.15 and 5.16 illustrate the search iteration execution times for the Bokolmanyo (Figure 5.15) 
and Jowhaar (Figure 5.16) problem instances. A single search method evaluation instance (fitness 
evaluation) encompasses segmenting 20 image subsets (around the reference segments) and comparing the 
generated segments with that of the reference segment using a given metric. With the proposed method 
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variants, sampling, classification and image hybridization processes are added. Results are averaged over 
100 runs. 

Figure 5.15. Search iteration execution time profiling for the Bokolmanyo problem 
instance. 

 

The original variant of the method takes around 0.5 s to complete a single evaluation in both 
problem instances. In the context of the Bokolmanyo problem instance the proposed method variants 
needs about three times longer to execute. The majority of the time is taken by the masking process 
(computational profiling), specifically the libSVM [73] predict function and to a lesser extent  
the two-class probability image classification process. As the number of support vectors increase,  
so do the required computing time to determine the label of a new pixel under consideration. 

Figure 5.16. Search iteration execution time profiling for the Jowhaar problem instance. 

 
 

Figure 5.16 shows a similar characteristic, but with lengthier execution times and more variation 
depending on the method variant used. Such variation can be explained by the nature of the probability 
image that was found most useful, having varying numbers of support vectors (and thus increasing  
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the time required to predict pixel values). Alternative classifiers, which predict faster, may be 
considered to alleviate the increase in required computing times. 

5.6.3. Parameter Interdependencies 

Tables 5.6–8 list the average parameter values obtained for the three problem instances. The 
columns list the segmentation algorithm and probability image generation parameters. “S nu” and “S 
gamma” are the one-class SVM parameters and “C C” and “C Gamma” the two-class SVM 
parameters.  
The rows delineate the method variant under consideration. The shaded cells indicate scale parameters 
achieved under proposed method variant conditions, which differ from the resultant scale parameter 
under the generic method variant condition (student’s t-test with a 95% confidence interval). In all but 
one of the problem instances, with both the SLIC and MS segmentation algorithms, the proposed 
method variants have statistically significantly different optimal scale parameters compared to  
the generic method variant. This suggest an influence of probability and hybridization (where 
applicable) processes on the optimal scale parameter within the given segmentation algorithm. 

In the case of the SLIC algorithm (Table 5.6), very specific optimal scale parameters are generated.  
In the case of the MS algorithm (Tables 5.7 and 5.8), more diversity is present, with differences 
(optimal values and standard deviations) attributed to the natures of the different method variants. All 
the other parameters illustrate extreme variation in optimal results obtained, suggesting multiple 
combinations of parameters can deliver optimal or near optimal results (within the capability of the 
method—thus multiple “near global optima” in search landscape terms). This corroborates the 
importance of the scale parameters with these two segmentation algorithms. The probability image is 
very beneficial in most cases, with the weighting parameter having relatively high values in most 
instances. 

Table 5.6. Parameters generated for the Bokolmanyo problem instance. 

SLIC/RWJ Scale Compactness S Nu S Gamma C C C Gamma Weight 

Original 9.500 ± 0.745 20.710 ± 3.653 NA NA NA NA NA 

Probability 8.100 ± 1.449 22.360 ± 2.723 0.077 ± 0.086 64.400 ± 34.004 0.002 ± 0.000 48.200 ± 36.715 NA 

Hybrid:EB 9.150 ± 0.530 19.180 ± 4.193 0.099 ± 0.077 27.600 ± 38.295 9.800 ± 30.990 47.800 ± 40.524 NA 

Hybrid:MA 8.100 ± 2.196 19.120 ± 4.994 0.079 ± 0.090 43.800 ± 37.434 26.600 ± 37.441 47.800 ± 27.848 0.730 ± 0.239 

Hybrid:CP 8.700 ± 1.457 23.290 ± 2.388 0.065 ± 0.086 48.800 ± 35.916 39.600 ± 39.764 52.600 ± 33.586 0.664 ± 0.151 

Table 5.7. Parameters generated for the Hagadera problem instance. 

MS/RWJ Scale Colour Compt S Nu S Gamma C C C Gamma Weight 

Original 
17.430  
± 8.200 

0.132  
± 0.110 

0.514  
± 0.389 

NA NA NA NA NA 

Probability 
5.990  

± 1.211 
0.074  

± 0.081 
0.481  

± 0.302 
0.060  

± 0.079 
40.400  

± 43.090 
34.600  

± 40.189 
29.400  

± 37.131 
NA 

Hybrid:EB 
8.300  

± 9.334 
0.046  

± 0.136 
0.219  

± 0.259 
0.107  

± 0.082 
55.000  

± 25.910 
25.400  

± 39.934 
37.400  

± 43.950 
NA 
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Hybrid:MA 
9.070  

± 10.640 
0.068  

± 0.171 
0.263  

± 0.253 
0.127  

± 0.087 
59.000  

± 35.380 
22.600  

± 28.316 
49.600  

± 34.329 
0.772  

± 0.180 

Hybrid:CP 
5.880  

± 1.623 
0.036  

± 0.050 
0.442  

± 0.333 
0.072  

± 0.078 
65.200  

± 43.627 
28.200  

± 43.782 
60.600  

± 39.090 
0.906  

± 0.161 

Table 5.8. Parameters generated for the Jowhaar problem instance. 

MS/RWJ Scale Colour Compt S Nu S Gamma C C C Gamma Weight 

Original 
15.890  
± 3.646 

0.054  
± 0.023 

0.692  
± 0.245 

NA NA NA NA NA 

Probability 
21.317  
± 3.507 

0.146  
± 0.112 

0.736  
± 0.225 

0.081  
± 0.091 

22.000  
± 26.743 

40.667  
± 30.820 

51.667  
± 23.304 

NA 

Hybrid:EB 
17.571  
± 8.253 

0.049  
± 0.045 

0.602  
± 0.379 

0.096  
± 0.101 

57.143  
± 46.056 

76.286  
± 12.880 

46.571  
± 35.132 

NA 

Hybrid:MA 
27.943  
± 7.056 

0.385  
± 0.245 

0.762  
± 0.366 

0.113  
± 0.084 

50.571  
± 40.078 

60.000  
± 31.305 

44.571  
± 38.587 

0.911  
± 0.046 

Hybrid:CP 
33.600  

± 11.055 
0.423  

± 0.293 
0.747  

± 0.360 
0.118  

± 0.090 
42.286  

± 33.950 
53.429  

± 28.230 
20.857  

± 32.308 
0.937  

± 0.068 

Figures 5.17–19 illustrate two dimensional search surface slices obtained with the Jowhaar problem 
instance using the Hybrid:CP method variant. For each parameter combination the fitness over  
20 reference segments were calculated and plotted. The metric used was RWJ and the segmentation 
algorithm was MS. The scale parameter is contrasted with three other parameters, namely the second 
Central Position parameter (CP2) of the Hybrid:CP variant (Figure 5.17), the C parameter of  
the two-class SVM (Figure 5.18) and the probability weighting parameter (Figure 5.19). All other 
parameters were given initial random values that did not change during the experiment. The depicted 
search surfaces for these parameter pairings may be completely different under alternative random 
parameter settings, specifically under alternative “Color/Shape” parameter settings. 

Figure 5.17. Search landscape slice with the Scale and CP2 parameter of the Hybrid:CP 
method variant. 
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Figures 5.17 and 5.19 visually illustrate parameter interdependencies, as expected, of the Scale and 
CP2 and Scale and Weight parameters, respectively. The bulge in Figure 5.17 may suggest that 
attempting to set the CP parameter to 125 (a spectral position) a greater range of scale parameters will 
result in a merging of the reference segment area with its surroundings. In contrast, Figure 5.18 shows 
very little influence of the C parameter, a very insensitive parameter in these formulations, on the scale 
parameter of the segmentation algorithm. Interestingly, and explainable, Figure 5.19 shows a narrower 
range of scale parameter values applicable as the influence of the probability image in hybridization 
increases. 

Figure 5.18. Search landscape slice with the Scale and two-class SVM C parameter of  
the Hybrid:CP method variant. 

 

Figure 5.19. Search landscape slice with the Scale and probability weighting parameter of 
the Hybrid:CP method variant. 

 

5.6.4. Metaheuristic Viability 

Figure 5.20 shows fitness traces generated for the Hagadera test site with the five investigated method 
variants, using four different search methods, namely DE, PSO, HD and RND. The dimensionality of the 
search problem in the generic method variant is three (Figure 5.20a), seven in the case of using the 
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probability image (Figure 5.20b) to segment and with the Hybrid:EB (Figure 5.20c) variant, eight when 
considering the Hybrid:MA (Figure 5.20d) variant and eleven with the Hybrid:CP (Figure 5.20e) 
method variant. 

Figure 5.20. Fitness traces using different search methods for the Hagadera problem 
instance. Each subfigure shows results using a different method variant. 

 

Table 5.9. RWJ metric scores using the four different search strategies in the Hagadera problem 
instance. The shaded cells highlight the results of the best performing search method. 

MS/RWJ Original Probability Hybrid:EB Hybrid:MA Hybrid:CP 
DE 0.437 ± 0.007 0.314 ± 0.019 0.313 ± 0.028 0.339 ± 0.029 0.326 ± 0.026 

PSO 0.440 ± 0.016 0.327 ± 0.041 0.328 ± 0.029 0.367 ± 0.047 0.338 ± 0.042 
HC 0.470 ± 0.013 0.372 ± 0.012 0.345 ± 0.011 0.391 ± 0.018 0.400 ± 0.020 

RND 0.446 ± 0.006 0.399 ± 0.033 0.383 ± 0.015 0.398 ± 0.027 0.406 ± 0.027 

In all instances the DE metaheuristic produced the best resulting segment quality, followed closely 
by the PSO metaheuristic. DE converges more slowly than PSO, a known characteristic [74].  
More importantly, large differences exist between the simpler HC and RND strategies and the DE and 
PSO strategies on the higher dimensional problems. In the original formulation of the method,  
little benefit is seen from using the more advanced search strategies. On the larger search landscapes of 
the proposed method variants more advanced search strategies are certainly required. Table 5.9 lists  
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the optimal metric scores achieved in these experimental runs, with the best results per method variant 
highlighted with shaded cells, reflecting the results illustrated in Figure 5.20. 

5.7. Conclusions 

A major driver behind the more elaborate methods encountered in the context of VHR optical 
image analysis is the divergence of the spectral and thematic correlations. Such correlations are 
stronger in lower resolution imagery and problem contexts. A novel method in the context of sample 
supervised segment generation was presented, where a classification process attempts to tailor the data 
such that closer thematic and spectral correlations exist. The given segmentation algorithm may thus 
perform better on the given problem. The method entails the creation of an enlarged search landscape, 
with added parameters controlling probability image generation and data hybridization method 
components. These components are tunable and do not deliver static results on their own. Their 
interaction is also tunable in some variants. Throughout the process, the aim is still quality segment 
generation for a specific element type and classification accuracy assessment is not conducted. 

Four method variants were compared with the generic formulation of sample supervised segment 
generation in terms of resultant segment quality, illustrating the usefulness of such a method.  
The magnitude of improvements is dependent on the problem, metric, search method and method 
variant under consideration. In the current method formulation, a substantial amount of extra 
computing time is required, majorly due to the internal details of the used classifier (SVM). It should be 
noted that this impact is more pronounced during the training phase. The use of metaheuristics and  
the definition of enlarged search spaces were also justified. Although the proposed method variants 
improve results substantially in many problem instances, “perfect” metric scores were not achieved, 
suggesting that, as with the generic method formulation, additional image processing may be needed to 
obtain thematically accurate segments. Such segments may subsequently be classified for map 
production or information extraction. 

Uncertainties exist with a sample supervised segment generation approach in general and  
the variants presented here in particular. In general, uncertainty remains if a given problem is feasible, 
and a method needs to be run to verify its applicability, which takes time. Expert knowledge on  
the characteristics of the used segmentation algorithm may help, but with the variants proposed here 
unintuitive, but correct or feasible results may also be generated. Some spectral and thematic 
correlation needs to exist for the elements of interest, not explicitly quantified or investigated in this 
study. Initial experimentation on synthetic datasets suggest that elements of interest may constitute up 
to three “regions” in the spectral domain, with more resulting in a significant drop in the usefulness of 
the generated probability image. Having elements of interest consist of six unique spectral regions 
(red, blue, green, yellow, cyan, and magenta) on synthetic data generated an almost completely 
monotone probability image (one-class SVM, RBF kernel). Nonetheless, if not found useful or even if 
detrimental, the probability image is simply not used (controlled via the weighting parameter). 
Quantifying the usefulness of such an approach on spectrally diversifying elements of interest would 
be a topic for future research. 

The generalizability of such approaches under different sampling conditions should also be 
investigated [29]. As a preliminary experiment in this work, sixteen method variants were tested under 
cross-validated and non-cross-validated sampling conditions (20–28 reference samples), all performing 
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better than the generic formulation of the method. For operational use, on such large sample sets  
cross-validation would not be necessary. This could change with a sharp decrease in the number of 
samples used, observed in [29]. Indicators of required sampling sizes would be useful and is planned 
for future work. In addition, a variant of this method is possible that could require a user to provide 
samples of the “other” class, removing the parameterized process of generating synthetic “other” class 
samples. This would require additional user interaction outside of the required class of interest. 

The accuracy and convergence speed of the methods may be improved by performing  
meta-optimization, using metaheuristics with self-adapting meta-parameters or pursuing the state of  
the art in evolutionary computation. Additionally, most aspects of such methods could be designed to 
run in a parallel framework, especially the computationally expensive fitness evaluations. Sample 
supervised segment generation may well be integrated with more traditional GEOBIA approaches, such as 
rule set development, necessitating near real-time method executions. It would also be of interest to 
compare such an approach based on classifier directed transforms with a strategy that suggest the addition 
of low-level image processing to modify the data, or so called data transformation functions [29]. Such 
transformation functions do not have the same computing overhead as some classification processes, but 
on the other hand they may not be able to achieve the same level of quality as classifier based 
transforms. Alternative classification algorithms could also be tested with such an approach. 

Finally, it should be noted that the method, and its variants presented here have an explicit 
implementation how sampling and classification is done, e.g., Figure 5.5. Various other encodings of 
sample collection, probability image generation and image hybridization are possible. A simple 
extension of the proposed method could see the sampling of the synthetic secondary class (Figure 5.5b) 
grouped by underlying spectral content, with parameters controlling sub-selections used in 
classification. This would create more variation in the characteristics of probability image outputs. 
Also, the image hybridization strategies could be elaborated upon to include thresholds of probability 
values, to use neighborhood properties or spectral aspects or even to use parameter controlled band 
selection strategies. Additionally, more segmentation algorithms could be tested with this method. 

Search landscape characteristics should always be kept in mind, as noise or too much randomization 
introduced by parameters controlling elaborate processes may create more “difficult” search 
landscapes. Figures 5.17–19 illustrate smooth or, conjectured, easily searchable landscapes. Work on 
metaheuristic performances on various search landscapes may prove useful in this regard [75,76]. 
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6.1. A Methodological Avenue within Geographic Sample Supervised Segment Generation 

This work considered the challenge of creating thematically accurate image segments in a remote 
sensing context. One methodological philosophy casts the generation of segments as a 
multidimensional search problem, referred to as sample supervised segment generation. This approach 
assists in generating more accurate image segments as well as increasing the autonomy of image 
analysis processes. The generic variant of the approach is severely limited in its ability to generate 
quality segments. 

In this work, a general extension to geographic sample supervised segment generation was 
proposed. Adding additional fitness landscape constituents to such a general method was suggested. 
These constituents may encompass various data modification processes, image processing processes 
and decision-based operators functioning on segments. Such constituents may be interdependent with a 
given segmentation algorithm. Such method variants consisting of expanded fitness landscapes may 
generate superior segment results while requiring the same amount of user interaction. A 
computational overhead penalty may be involved, ranging from insignificant to impracticable, 
depending on the method variant details. 

Three method variants, based on the concept of expanded fitness landscapes, were proposed, 
implemented and evaluated to demonstrate the general utility of such expanded method designs. The 
first proposed variant considered the addition of a range of computationally inexpensive data mapping 
functions as additional constituents. On a range of problem instances and under various conditions 
(including generalizability – cross-validation), most proposed variants performed better than the 
generic method variant, vastly so in select instances. Even though the mapping functions were very 
basic, the general results were encouraging, suggesting further research to refine such methods. 

Secondly, a method variant was proposed that incorporates an attribute decision criterion 
constituent. A rich set of attributes may finely tailor segments, implemented here as thresholdable 
attributes in the context of connected component graph-based segmentation. Data mapping functions 
were also introduced alongside the attributes and core segmentation algorithm parameters. The method 
as a whole was analysed and the specific constituents were also scrutinised. Interestingly, in many 
cases attributes were found to be detrimental under cross-validated conditions – suggesting an 
overfitting problem. This result suggests that adding any constituents and expecting an immediate 
improvement is not feasible. 

Finally another novel method variant was proposed that collected reference segment spectral data. 
The collected data were utilised for classification, generating a probability image. The generated 
probability image was used in various ways to map the data to a new domain. Sample collection, 
classifier tuning and a data hybridisation strategy forms the basic “tuneable” components/parameters in 
such a design. A few method variants were proposed based on this principle, with very promising 
results. A computational impact is observed, owing to the classification components, suggesting 
refinement with faster classifiers. 

These three method variants and accompanying papers individually present various contributions 
and details. Collectively, they substantiate the argument for expanded fitness landscapes within 
geographic sample supervised segment generation. In two papers, a Friedman rank test, with a 
Nemenyi post-hoc test, was performed [1,2], which evaluates multiple methods under multiple 
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conditions/datasets supporting this argument. Although, generally speaking, these methods show 
promise, they are proof-of-concept and not refined to deliver maximum achievable segment quality. 
Many other method designs may be pursued where data mapping functions or classification processes 
may be defined, improving on results in terms of quality, generalizability and process efficiency. 

The improved performance in segment quality may suggest a greater uptake of these methods 
within GEOBIA workflows and systems. In its most simple form, such methods may simply be used as 
tools to select parameters within traditional rule-set development efforts. More elaborately, they may 
be used in semi-automated mapping systems, for example, in the context of rapid or emergency 
response mapping (with classification included). A user may be required simply to select a selection of 
elements of interest such as damaged buildings, certain vehicle types, flooded areas or refugee tents. 
Users should not have to concern themselves with minute method construction efforts that may be 
labour intensive, time consuming and subject to error. Nonetheless, details should be available for 
scrutiny and modification. 

 

6.2. Additional Remarks on the Method Variants 

A few additional comments/suggestions on the method variants are given. 

6.2.1. Data Mapping Function Variants 

The four mapping functions explored in this work are basic [3]. Finding a single good mapping 
function would be fruitful. Such a function should not increase fitness landscape dimensionality 
substantially (less than 20 parameters) and should be adaptable to a range of elements that would 
typically be of interest in an image. The selection of a promising mapping function may also be done 
via a statistical ranking (and statistical significance testing) under various problem conditions, as done 
with the other two papers [1,2]. Note that the characteristics of the accompanying segmentation 
algorithm should be considered intently when designing a mapping function. 

 
Although the nature of mapping functions may be extremely diverse, the following aspects could be 

very useful: 
• Multi-band synergies or information (such as in the transformation matrix) 
• Pixel neighbourhood properties (detection of gradients/transition areas) 
• Searchable/constructible map algebra 

6.2.2. Attribute Thresholding Variants 

A major problem with the constrained connectivity segmentation algorithm is the presence of single 
pixel segments/connected components in gradient zones. Within [2] this was not properly addressed. 
Incorporating a tuneable filter within sample supervised segment generation method variants in this 
context may be fruitful. Defining a dissimilarity measure as part of the search problem could be 
interesting. 
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6.2.3. Classifier Based Data Mapping Variants 

The method variants presented in [1] contain basic mechanisms for selecting pixel samples or for 
generating the probability imagery. A constituent may be defined where pixel samples are collected 
more elaborately – for the class of interest or for the other class (thus for one- or two-class 
classification). Spectral groupings may be defined as a searchable parameter and the tuning of 
classifier parameters may even be removed from the search space (e.g. SVM). A fitness landscape in 
this context may then be depicted as: 

[Sample membership][Classifier parameters][Integration][Segment algorithm parameters] 
 

6.3. Suggestions for Future Research 

The general sample supervised segment generation approach may be improved in various ways, not 
necessarily related to expanded fitness landscapes. Suggestions for future research are presented to 
improve upon this general method. These suggestions include identifying method shortcomings or 
uncertainties encountered during this work, and initial thoughts on how they may be addressed. 
Potential avenues for continued research related to expanded fitness landscapes are also highlighted. 

6.3.1. Metric Fitness Landscape Characteristics 

A given metric should not merely be able to define accurately the best quality segments. The nature 
or topology of the fitness landscape should be taken into account. A metric should have a very good 
correlation, throughout its value range, with quality. Discontinuities or sporadic/erratic fitness 
landscapes may cause difficulty for the given search method, even for population-based derivative-free 
variants. During the course of this work, one of the used metrics, the Reference Bounded Segments 
Booster (RBSB) [4], displayed erratic behaviour in a few select instances where results did not agree 
with common sense or loosely with the other metrics. This is simply due to its more compact 
formulation (compared with the others, e.g. [3,5]), not having a rich description for various over- and 
under-segmentation scenarios. 

Secondly, regions within the fitness landscape may be considered instead of specific points. The 
lowest (or highest) value in the fitness landscape may be situated near a steep rise (or decline). This 
may have an implication for generalizability. Under slightly different data or method conditions, such 
a scenario may lead to the generation of bad results. This scenario and potential solutions have been 
researched within the machine learning community for classifier free parameter tuning, e.g. [6]. 
Various processes could be considered to ensure better generalizability. A simple approach could be to 
analyse the neighbourhood of the best performing parameter set and make slight adjustments, if 
needed. 

6.3.2. Metrics Sensitive to Post-processes 

Metrics may also be defined more elaborately as opposed to simply observing area overlap and 
over/under-segmentation. Various aspects may be encoded into a metric, either weighted or as a multi-
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objective optimisation problem. Examples include edge-offsets, segment spectral content and 
neighbourhood characteristics. 

A metric could also consider the potential difficulty of post-processing that would be needed to 
arrive at a final result. For example, common over-segmentation may not necessarily be extremely 
detrimental if some simple algorithm may merge segments afterwards. Segments may possibly be 
merged based on their geometry or spectral content. An algorithm could analyse segment properties 
and derive a score based on similarities or dissimilarities of said segments. Well-defined post-
processing algorithms may be related to these scores, suggesting a user may easily fix the problem 
(e.g. rule-sets). Over-segmentation may thus be awarded a smaller penalty than under-segmentation. 
This may be useful in instances where the target elements of interest have substantially different sizes, 
causing problems for a scale–space constraint or size constraint segmentation algorithm such as 
Multiresolution Segmentation (MS). Note that such processes may add a substantial additional 
computational impact to fitness evaluation. 

6.3.3. Unsupervised Metrics 

This research focused on supervised metrics or empirical discrepancy methods. Alternatively, 
empirical goodness methods may also be considered [7,8] in sample supervised segment generation 
(untested in remote sensing, to my knowledge). Predefined knowledge on image spectral properties or 
geometry could be used to define what would be considered good segments. A potential major 
advantage is the unsupervised nature of such an approach. A major disadvantage is that the system will 
not be aware if it is truly correct – it has no knowledge of the characteristics of elements of interest in a 
new image. Divergence from simple spectral and thematic correlations (common in VHR optical data) 
could be problematic. Nonetheless, it would be interesting and profitable to investigate in the context 
of remote sensing. Current unsupervised methods within remote sensing consider spectral content 
variance throughout a multi-scale image segmentation approach [9,10]. 

6.3.4. The influence of Sampling Size 

Within this work and similar works, the effect of sample size on sample supervised segment 
generation has not been investigated. Primarily the insight that could be gained from such an 
investigation is the minimum number of reference segments that would be needed to ensure a certain 
level of generalizability of the method. Digitising reference segments is labour intensive and should be 
minimised. Preliminary tests were conducted on sample sizes ranging from 5 to 50. With fewer than 7 
to 10 samples, method variants involving data mapping did not generalise well (two-fold cross-
validation). Methodology from classification may be borrowed for such an investigation, for example 
the authors of [11] investigate the changing classifier accuracies for SVMs with differentiating 
sampling sizes (remote sensing – crop classification – SVMs require considerably fewer training 
samples than classical parametric classifiers). 

6.3.5. Incorporate Easy Segment Delineation Tools 

Another extension that could be made to such a general method is the use of easy feature 
delineation tools, e.g. [12,13] instead of digitising. This would greatly ease the use of such methods. 
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Sample supervised segment generation methods, mainly using area-offset metrics, may be sensitive to 
boundary offsets from manual or automated reference segment extraction. In addition, elements of 
interest may not have boundaries having strong gradients. These considerations suggest that easy 
segment delineation tools could be beneficial, but that the impact of quality reference segment 
delineation should enjoy further investigation. 

6.3.6. Tailored Search Methods 

In this work, a selection of standard metaheuristics was employed [14-16], empirically tuned. An 
initial attempt at metaheuristic meta-optimisation was made (successful – for a conference paper [17]), 
but the computational costs could not be accommodated for all work. For simpler fitness landscapes, 
the exact metaheuristic or its meta-optimisation might not be a major consideration [3,18], but for 
more complex expanded fitness landscape variants it might need careful examination. The no-free- 
lunch theorem is also valid in the context of search/optimisation [19]. A possible approach to increase 
the quality of results and reduce required computing costs in the context of these methods, might be to 
consider the creation of a set of benchmark methods and problems and test a range of metaheuristics. 
Alternatively, variants of metaheuristics with self-adapting metaparameters or hyperheuristics may be 
considered. 

6.3.7. Correlation Between Metrics and Classifier Accuracy 

A very interesting consideration is the relation, or correlation, between segment quality and final 
classification accuracies. Does optimal segment quality, in terms of elaborate balances between over- 
and under-segmentation, relate to optimal classification results? It is conjectured that under conditions 
of rich attributes (various histograms, fast texture measures [20], etc.) and a well-constructed and 
tuned one-class SVM [21,22] (or other modern non-linear novelty detector) over-segmentation might 
be considered a lesser problem than under-segmentation. This could suggest that the simple 
conjectured correlation in this work and elsewhere does not generally hold. If such a sample 
supervised segment generation method is embedded in a larger method, also conducting classification, 
metrics should be compensated for this possibility. 

6.3.8. A Comparison with Finer Grained Image Analysis Methods 

Early on in this work it was mentioned that sample supervised segment generation is considered a 
tuning process and that construction processes conducting image analysis exist, e.g. [23-27]. It would 
be fruitful to compare such approaches in the context of quality segment generation in a remote 
sensing context (possible via classical mathematical morphology, cellular automata or genetic 
programming). Major aspects of interest would be the quality of final results, sampling size 
requirements, how methods generalise to unseen data, and very importantly, the required computing 
times. 

6.3.9. Classification Accuracy as Fitness Function 

Finally, the suggestion is made to consider fitness evaluation at the classification level and not 
necessarily at the segment generation level. If a specific target element is of interest, a novelty detector 
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may be employed for classification (e.g. one-class SVM [21]). A combined sample supervised segment 
generation and novelty detection system has been demonstrated in [28], although not as a single fitness 
landscape. Various novelty detector quality measures may be considered for the fitness function that 
defines the fitness landscape, including the F-score or geometric means [22]. 

Segment quality may be removed or may form part of a weighted/multi-objective evaluation 
system. In the context of expanded fitness landscapes, attribute selection, attribute generation and 
classification algorithm parameter tuning may be added as constituents. Some aspects are unclear 
about such a potential design. Hopefully though, this suggestion provides some food for thought. 
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ABSTRACT: 

 

The generation of thematically accurate image segments or delineating land-cover elements is a 
common objective and challenge in Geographic Object Based Image Analysis (GEOBIA). A core 
notion to the applicability of segmentation algorithms for partitioning these land-cover elements is that 
said elements typically have some spectral or other homogeneity criteria that allow successful 
segmentation, to varying degrees. One approach that addresses this challenge models the 
parameterised segmentation process as a search problem. The search method is provided with a 
reference of optimal desired output. This idea is extended in this work by suggesting the encoding of 
spectral space transformations as additional variables to such a search problem. The automatic 
exploration and transformation of the spectral domain can allow for a closer correlation between 
thematic and spectral similarity of the land-cover elements of interest, thus aiding the segmentation 
process. Two simple spectral transformation methods functioning in conjunction with two scale-space 
constraint image segmentation algorithms are presented to illustrate this concept. A statistically 
significant improvement in segmentation results can be obtained consistently in acceptable time with 
this approach with off-the-shelf meta-heuristics for our test areas. It is also shown with the algorithms 
used in this study that the segmentation algorithm parameters (heuristic domain) are dependent on the 
spectral transformation parameters (spectral domain) to achieve optimal results. This necessitates 
simultaneous optimisation of these two domains. 
 

INTRODUCTION 

Image segmentation is a ubiquitous paradigm in scientific disciplines that are concerned with 
information extraction from imagery. In the discipline of remote sensing, thematically accurate 
segments, or geographic objects, are typically the desired end result of a segmentation process. The 
semi-automation of generating these geographic-objects (single or multi-scale) holds value in domains 
concerned with monitoring or emergency response mapping, where user interaction is required to be 
non-exhaustive and turnover times short. In such a context the emphasis falls on user assisted 
information extraction rather than full autonomy of the information extraction process or using 
extensive pre-developed solutions.1 

1 Corresponding author 
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One school of thought moderates the process of semi-automated object or geographic-object 
generation to an optimisation problem (Bhanu et al., 1995; Pignalberi et al., 2003; Feitosa et al., 2006; 
Fredrich & Feitosa, 2008; Derivaux et al., 2010). The search space of all possible results, or segment 
sets, is traversed to find a solution that most closely matches a small reference set provided by a user. 
Empirical discrepancy metrics (Zhang, 1996), especially area based accuracy metrics (Pignalberi et al. 
2003; Fredrich & Feitosa, 2008; Feitosa et al., 2010), are commonly employed to judge the 
resemblance of any segment set and the reference set. It is assumed that if the given segmentation 
algorithm and parameter(s) are adequate for segmenting the reference; it will be adequate for 
previously unseen examples. 

The search space of such an approach usually consists of the real or discrete valued parameters of 
the segmentation algorithm employed. Due to the potentially complex and large search spaces, coupled 
with the computationally expensive nature of image segmentation, stochastic population based search 
methods are preferred. No guarantees can be made that the optimal solution can be found or if a 
quality solution even exists for the given scenario. Results remain dependent on the inherent suitability 
of the segmentation algorithm to the problem. To our knowledge, thus far only the segmentation 
algorithm parameters, or the Heuristic Domain (HD), are considered variables to such a method. 

Another line of research considers the effects different colour or spectral space representations of 
the input data have on the performances of image processing tasks. Examples include measuring the 
effects different colour space representations have on image segmentation (Busin, Vandenbroucke & 
Macaire, 2008; Kwok, Ha & Fang, 2009), automatic iterative colour space selection for a given 
segmentation problem (Busin et al., 2004) and the application and derivation of illumination invariant 
colour spaces (Chong, Gortler & Zickler, 2008; Shan, Yan & Wang, 2007). 

The concept of modelling example driven segmentation as a search problem is extended by 
suggesting the addition of simple measures of Spectral Domain (SD) transformation within the search 
function. Inspired by the abovementioned work on colour space transformations and concepts of low-
mid-high level image processing cue integration (Kumar, Torr & Zisserman, 2010), it is suggested that 
low-level (image transformation) and mid-level (image segmentation) image processing steps are 
combined and optimised simultaneously. Typically, any analysis, refinement or classification will be 
done on original untransformed spectral data, although bounded by segment borders derived with the 
help of additional image processing steps. 

Closer correlations between spectral and thematic similarity can be found if the data is allowed to 
be transformed, assisting the segmentation algorithm on the user defined problem. It is also briefly 
shown here that these two domains are interdependent and needs to be optimised simultaneously in our 
experiments. 

It is not uncommon for users to use expert knowledge of the problem at hand in defining optimal 
input to a segmentation problem, for example segmenting with a vegetation index band (EVI, NDVI) 
if concerned with a vegetation application. It is suggested that the user can be unburdened with this 
task if examples of desired output are available. 

In section 2 of this paper the method for simultaneously optimising the spectral and heuristic 
domains is presented, along with some details on the search algorithms, segmentation algorithms, 
fitness functions and spectral transformation functions implemented. Section 3 describes the study area 
and test data used. Quantitative comparisons of the proposed extension to the original method are 
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presented in Section 4. Conclusions on the characteristics of the method and suggestions for future 
work are presented in Section 5. 

 

OPTIMISING ALGORITHM AND SPECTRAL TRANSFORMATION PARAMETERS 

Combined heuristic and spectral domain search 

The proposed method to simultaneously optimise the heuristic domain (segmentation algorithm 
parameters) and the spectral domain (transformed image input used in segmentation) is illustrated in 
Figure 1 (hereafter called HD + SD search). HD + SD search consists of a core optimisation layer 
giving and receiving input from a fitness score generation layer, which in turn receives input from a 
simple image input layer. 

 

Figure 1. Method for simultaneously optimising the spectral and heuristic domains in 
semi-supervised segment generation (SD + HD search). 

 
As input, the method accepts a multi-band image and a Boolean raster of the same dimensions, 

delineating reference segments of desired outputs. Small subsets of the satellite image, centred on the 
coordinates (areas of interest) of the user defined reference segments, are extracted and used for all 
subsequent processing. Subsetting saves computing time by avoiding repeated segmentation of 
unnecessary areas. 

The core of the method consists of an iterative optimisation/search algorithm taking as input a 
single value, called the fitness score. Optimisers employed are presented in section 2.2. As output the 
optimisation algorithm produces multidimensional real and/or discrete valued sets depicting spectral 
transformation parameters (SD) and segmentation algorithm parameters (HD). The dimensionality of 
the overall problem depends on the used segmentation algorithm and spectral transformation method. 
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During iterations of the optimisation algorithm the fitness score generation layer is invoked and 
provided with SD and HD parameter sets provided by the optimisation layer. The SD parameters are 
used as input to a transformation function that changes the spectral space representation of the imagery 
subsets, resulting in new transformed subsets. Two simple transformation functions are employed and 
described in section 2.3. These transformed subsets are used as input to a segmentation algorithm 
tuned with the HD parameters provided by the optimisation layer. Two segmentation algorithms are 
tested with this approach and are described in section 2.4. The resulting generated segments are 
evaluated against the reference segments (taken from the input layer) with the aid of area based 
empirical discrepancy metrics (described in section 2.5.), producing the fitness score. Subsequently the 
fitness score is returned to the optimisation layer, invoking a new iteration of the optimisation 
algorithm. 

The SD + HD method terminates after a certain number of iterations of the search algorithm have 
been performed. The output of the SD + HD search is an interdependent spectral transformation 
parameter set and segmentation algorithm parameter set that was found most suited to the problem (as 
judged by the fitness function). 

Optimisers 

Two common stochastic population based meta-heuristic optimisers were implemented and tested 
in this study, namely the Differential Evolution (DE) (Storn & Prince, 1995) algorithm and the Particle 
Swarm Optimisation (PSO) (Kennedy & Eberhart, 1995) algorithm. Multi-objective meta-optimisation 
(Pederson & Chipperfield, 2009) was performed on both algorithms to tune their controlling 
parameters. Figure 2 illustrates typical fitness curves observed with these two algorithms for our 
example problems. For all our experiments it was found that between 600 and 1000 iterations were 
sufficient to achieve near optimal solution fitness. The DE strategy provided slightly better final fitness 
scores compared to a standard PSO strategy and was subsequently used for all further experimentation. 

 

 

Figure 2. A typical example of fitness traces generated with the meta-optimised DE and 
PSO algorithms on HD + SD search problems. 
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Spectral transformation functions 

Two transformation methods are implemented, namely a transformation matrix and a simple 
histogram modification function. All used images have three spectral bands. The transformation matrix 
converts the original three band spectral space (b1, b2, b3) to a new space (n1, n2, n3) with the 
following equation: 

 

�
n1
n2
n3
� = �

a  b  c
d  e  f
g  h  i

� × �
b1
b2
b3
� 

 
Where variables a through i define the transformation matrix and have numerical bounds of [-0.2, 

1] in our tests. 
The histogram modification function, called spectral split, consists of four variables. Three 

variables define positions (p1, p2, p3) within the histograms of the three separate bands (range of [0, 
255]), while the fourth (h) defines the magnitude with which pixels around these points in the 
histogram are modified. If a pixel value in band x satisfies any of the following two conditional 
statements it is changed accordingly: 

 
If valuex < px and valuex > px - h then valuex = valuex - (h - px - valuex). 
If valuex > px and valuex < px + h then valuex = valuex + (h - valuex - px). 
 
These two point based image transformation functions only modify spectral values based on their 

own values and either some variables (in the case of spectral split) or variables and spectral values of 
other bands (in the case of the transformation matrix). Using spectral split adds an additional four 
variables to the optimisation problem, while using the transformation matrix adds an additional nine. 

Segmentation algorithms 

The HD + SD search method is tested with two segmentation algorithms, namely the Simple Linear 
Iterative Clustering (SLIC) (Radhakrishna et al., 2010) algorithm and a region merging segmentation 
algorithm variant, called Multiresolution Segmentation (MS) (Baatz & Schäpe, 2000). As the name 
suggests SLIC is an iterative clustering segmentation algorithm (K-means) combining the spectral and 
spatial properties/dimensions of an image into a single Euclidian space. Regions or segments are 
clustered in an unsupervised manner in this combined spectral/spatial space. The SLIC algorithm holds 
two parameters, one called “Scale” controlling relative segment size and “M”; controlling segment 
compactness. SLIC was developed for generating superpixels to be used in a parts-based information 
extraction paradigm. It is used with some liberty here in a thematic segmentation context due to 
algorithm elegancy/simplicity and speed efficiency. 

The MS region merging algorithm has three main parameters entitled „Scale“, „Colour“ and 
„Compactness“. Additional parameters control the contributions (weights) that the different image 
input bands have in influencing segment merging. Interestingly, this simple form of band weighting 
constitutes a low-level image processing or modification task; encoded within the actual segmentation 
algorithm. For simplicity bands are not weighted in this work. 
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Concerns could be raised regarding the practical feasibility (computing time) of modelling semi-

supervised segmentation as a search problem. It can be noted that in our experiments with the SD + 
HD search method using SLIC as the segmentation algorithm the search process typically finished 
after 1-2 minutes while the MS algorithm took 4-5 minutes (standard desktop computer with no 
algorithm multithreading or code optimisations, using very high resolution (VHR) imagery and 
numerous reference segments). 

Empirical discrepancy metrics 

Two area-based empirical discrepancy metrics are implemented and tested with the HD + SD 
search method, namely the Larger Segments Booster (LSB) (Fredrich & Feitosa, 2008) and a modified 
version of the Object-level Consistency Error (OCE) (Polak et al., 2009). Both these metrics can 
compensate for over- and under-segmentation. Both use measures of false positives and false negatives 
to quantify the percentage of overlap; however they strongly differ in their implementations of 
handling over-segmentation. 

The LSB metric compensates for over-segmentation by counting the number of pixels intersecting 
the reference segment and using this value as a penalisation factor. The OCE metric handles false 
positives and false negatives per individual segment that has some overlap with the reference segment. 
With OCE, over-segmentation is penalised via the summation of individual segment overlap results; 
weighted by the percentage cover of said overlap with the reference segment (see Polak et al., 2009 for 
a full formulation). Both metrics have a numerical range of [0, 1] with a value of 1 indicating no match 
and a value of 0 indicating a perfect match with the reference segments. 

 

TEST AREA AND DATA 

The viability and characteristics of the proposed method is demonstrated via the task of identifying 
habitable structures in Internally Displaced Persons (IDP) camps in East Africa. Relief agencies need 
accurate estimations of the number and sizes of habitable structures in these camps to model 
population size. GeoEye-1 and QuickBird imagery subsets (5 ha – 50 ha) of three IDP camps, in 
Kenya, Somalia and Ethiopia were selected, for simplicity referred to by their hosting countries.2 
Land-cover mapping and structure counting of these settlements are routinely performed to provide 
relief agencies with updated maps and information. 

The three sites display different structure characteristics (see Figure 3). The Ethiopia site mainly 
consists of easily identifiable white tents or huts draped with white tent nylon. The land-cover 
elements of interest thus display strong within element spectral homogeneity and are also relatively 
homogeneous in the scale-space. One could practically use a single-scale segmentation approach for 
this site. The other two sites (Kenya and Somalia) display different structural and spectral 
characteristics and variation in structure size, constituting a more difficult problem. In practise a multi-
class and multi-scale approach would be suggested for these sites. To demonstrate the SD + HD search 

2 EO data provided by the ESA managed GSC-DA, funded under ESA – EC Agreement on the Implementation of the Space Component of Global 
Monitoring for Environment and Security (GMES). 
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method, it is attempted to segment all structures using a single segmentation layer and thematic class. 
For each site between ten and twenty reference structures were digitised, to be used as reference 
segments input. 

 

RESULTS AND DISCUSSION 

Heuristic domain search versus combined heuristic and spectral domain search 

The HD + SD search method is quantitatively compared with the variant of semi-supervised 
segmentation not performing any spectral space transformations. For each test site (Ethiopia, Kenya 
and Somalia) the search methodology is tested by performing no spectral space transformations, using 
spectral split and the transformation matrix; on both segmentation algorithms implemented. 
Experiments for each problem scenario were repeated for 25 runs to obtain a measure of the standard 
deviation of the results. Table 1 lists the mean metric fitness scores and standard deviations obtained 
using the OCE metric, while Table 2 lists the same using the LSB metric. 

 

 

Table 1. OCE metric scores comparison of the HD + SD search approach versus a HD 
only approach. 

 

 

Table 2. LSB metric scores comparison of the HD + SD search approach versus a HD only 
approach. 

Tables 1 and 2 illustrate marked improvement in average metric scores when employing spectral 
domain transformation functions within the search method.  In all examples the simple transformation 
matrix approach produced the best results. In our experiments using a meta-optimised DE search 

OCE No transformation Spectral split Transformation matrix

Ethiopia SLIC 0,47 ±0,00 0,44 ±0,02 0,37 ±0,01

MS 0,35 ±0,01 0,32 ±0,02 0,28 ±0,03

Kenya SLIC 0,80 ±0,00 0,78 ±0,01 0,71 ±0,02

MS 0,77 ±0,01 0,75 ±0,01 0,69 ±0,02

Somalia SLIC 0,80 ±0,01 0,78 ±0,01 0,73 ±0,02

MS 0,76 ±0,00 0,76 ±0,01 0,67 ±0,02

LSB No transformation Spectral split Transformation matrix

Ethiopia SLIC 0,48 ±0,00 0,47 ±0,01 0,45 ±0,01

MS 0,44 ±0,01 0,41 ±0,01 0,41 ±0,02

Kenya SLIC 0,83 ±0,00 0,79 ±0,01 0,68 ±0,02

MS 0,79 ±0,01 0,77 ±0,02 0,68 ±0,02

Somalia SLIC 0,91 ±0,00 0,87 ±0,01 0,76 ±0,02

MS 0,84 ±0,02 0,82 ±0,02 0,70 ±0,01
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algorithm very small standard deviations in obtained results are observed; potentially an indication that 
optimal results for these scenarios are reached, bearing in mind segmentation algorithm and spectral 
transformation function capabilities. Such a methodology can also be used to compare different 
segmentation algorithms for a given application and in selecting a proper spectral transformation 
function. 

The distributions of the HD versus HD + SD search results are all statistically significant with a 1% 
confidence interval (student’s t-test). The results achieved with the best combination of segmentation 
algorithms and spectral transformation functions are typed in bold. 

Figure 3 shows the best performing segmentations achieved (small subsets) using SLIC for all three 
sites using the HD only search strategy (3(a), 3(d), 3(g)) compared with that of a HD + SD search 
using spectral split (3(b), 3(e), 3(h)) and a transformation matrix (3(c), 3(f), 3(i)). 

 

 

Figure 3. Best performing segmentation results for the Ethiopia (a-c), Kenya (d-f) and 
Somalia (g-i) test sites. 
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A luminance-chrominance space as base input 

The above experiment is repeated by using a luminance-chrominance colour space as the basic 
input to the HD and HD + SD search methods. One dimension of the CIELAB luminance-chrominance 
colour space (L) used here defines brightness while the other two dimensions (A and B) define the 
colour components. Using the CIELAB colour space as base representation is compared with the 
original red, green and blue (RGB) colour space to illustrate the potential of using more elaborately 
transformed colour spaces; although selected in a non-automated manner in this example. Table 3 lists 
the results for the Kenya test site using the OCE metric as fitness function. 
 
 

 

Table 3. OCE metric scores comparing RGB and CLIELAB colour spaces as base input to 
the HD and HD + SD search methods. 

 
For this specific problem the use of a luminance-chrominance colour space improved the results, 

irrespective of the spectral transformation method used. A substantial improvement in results is 
observed comparing the use of the original RGB colour space (No transformation) with the CIELAB 
space using the spectral transformation matrix. 

Comparison of heuristic domain parameter values using different spectral domain transformation 
techniques 

The dependence of the HD parameters on the used SD method and parameters is illustrated in 
Tables 4 and 5. Table 4 lists the average parameter values of the SLIC algorithm obtained (best results) 
for the three test sites while Table 5 lists the same for the MS algorithm. 

 

 

Table 4. Average SLIC parameters obtained using the HD and HD + SD search methods. 

 

Kenya No transformation Spectral split Transformation matrix

SLIC RGB 0,80 ±0,00 0,78 ±0,01 0,71 ±0,02

CIELAB 0,77 ±0,00 0,76 ±0,01 0,68 ±0,02

MS RGB 0,77 ±0,01 0,75 ±0,01 0,69 ±0,02

CIELAB 0,74 ±0,01 0,71 ±0,01 0,62 ±0,03

SLIC No transformation Spectral split Transformation matrix

Ethiopia Scale 6,00 ±0,00 6,24 ±0,59 5,96 ±0,20

M 33,40 ±0,75 31,04 ±9,24 28,20 ±6,75

Kenya Scale 7,16 ±0,54 7,48 ±1,55 7,40 ±2,10

M 32,64 ±5,47 29,12 ±7,36 33,92 ±5,15

Somalia Scale 5,00 ±0,00 5,48 ±0,75 5,64 ±0,48

M 31,76 ±6,84 29,60 ±7,87 28,96 ±7,30
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Table 5. Average MS parameters obtained using the HD and HD + SD search methods. 

 
The standard deviation of the Scale parameter of the SLIC algorithm (Table 4) is low with a slight 

difference in mean values when comparing different SD transformation techniques. In contrast, the M 
parameter displayed large deviation in optimal results, suggesting the Scale parameter to be of greater 
importance to the problem. Figure 4 illustrates this notion by plotting fitness results obtained by 
segmenting a test area with all combinations of Scale and M parameters (no SD transformations). 

 

 

Figure 4. Fitness plot of the SLIC parameters for an arbitrary problem. 

In contrast to the SLIC algorithm parameters, the MS parameters showed marked differences (Table 
5) in optimal HD parameters obtained using different SD transformation techniques, suggesting 
stronger parameter interdependence for this algorithm. These results illustrate the influence of the SD 
parameters on the optimal HD parameters. The amount of influence that the SD parameters have on 
optimal HD parameters depends on the nature of the segmentation algorithm under consideration. 

MS No transformation Spectral split Transformation matrix

Ethiopia Scale 12,88 ±0,52 16,68 ±7,49 8,52 ±4,30

Colour 0,10 ±0,00 0,27 ±0,28 0,32 ±0,31

Compactness 0,97 ±0,07 0,75 ±0,29 0,71 ±0,25

Kenya Scale 14,72 ±2,20 11,68 ±2,62 7,32 ±1,64

Colour 0,11 ±0,01 0,11 ±0,01 0,15 ±0,11

Compactness 0,77 ±0,10 0,83 ±0,19 0,72 ±0,22

Somalia Scale 8,48 ±0,70 9,28 ±1,64 6,04 ±1,71

Colour 0,10 ±0,01 0,11 ±0,02 0,19 ±0,17

Compactness 0,90 ±0,06 0,88 ±0,13 0,84 ±0,17
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CONCLUSION 

In this study a general methodology that combines the search for effective spectral transformation 
function parameters and segmentation algorithm parameters in a single search problem was presented 
and tested. The method was compared with a simpler variant where no input data modification is 
performed, and was shown to improve results measured via area based empirical discrepancy metrics. 
It should be noted that the capabilities and performances of the employed meta-heuristics, 
segmentation algorithms, spectral transformation methods and fitness functions should be carefully 
considered in such an approach. Specific algorithms might perform poorly on certain problems. 

Investigating this methodology with segmentation algorithms less constraint in the scale space is 
called for. Encoding more complex spectral transformation techniques, briefly demonstrated in section 
4.2 by using a static luminance-chrominance colour space as base input, might prove useful. 
Transformation functions that modify spectral values based on neighbourhood properties, or so called 
neighbourhood operators, could also potentially aid in generating better segments. Efficiency in 
generalizability of such an approach will constitute future research, specifically investigating the 
performances of candidate low-level transformation techniques on commonly used segmentation 
algorithms and mapping problems. 
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ABSTRACT 

 

Image analysis techniques based on mathematical morphology principles such as attribute filters 
and constrained connectivity shows promise for specific remote sensing applications; such as the 
identification or delineation of urban structures in VHR optical data. This could be attributed to the 
flexibility of these techniques to employ a range of morphological and spectral attributes, with 
controlling values, in segmenting imagery. In this work a sample supervised image analysis approach 
is investigated whereby the controlling values of attributes, and in the case of constrained connectivity, 
the controlling parameters, are modeled as a multidimensional search problem. The search landscape is 
defined via a spatial accuracy metric observing both over and under segmentation. This method is 
extended with the addition of data transformations, allowing for higher segmentation accuracies. 
Preliminary results are given comparing accuracies of this approach and a traditional segmentation 
method, comparing different data transformation functions and presenting some search method 
profiling. 

 

Index Terms— Image Analysis, Mathematical Morphology, Optimization, Spatial Metrics 
 

1. Introduction 

Sample supervised image analysis entails the automatic construction or tuning of image processing 
algorithms for a problem given a subset or selection of the desired output [1,2,3]. The desired output 
could be a pre-classified, segmented or digitized area, commonly referred to as the reference. Accuracy 
measures, typically various metrics based on spatial and/or spectral properties [4], are used to measure 
the quality of any produced solution to the provided reference. In the context of this general approach 
finding suitable image processing to duplicate the reference can be modeled as a search problem. The 
search landscape consists of the multidimensional parameter space of the image processing algorithms 
employed [1,3]. 

This general methodology was transferred to a remote sensing image analysis context [5] where the 
parameter space of a commonly employed segmentation algorithm is searched. Recent work also 
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extended this concept by encoding additional data transformations [6] or homogeneity predicates [7] to 
the segmentation algorithm parameter space. 

In this work this general approach is extended to and profiled in the domain of image segmentation 
approaches (single-scale) based on mathematical morphology concepts. Constrained Connectivity 
(CC) [8,9] is a hierarchical image simplification/segmentation technique having alpha-connected 
components [8] as atomic units as opposed to image grey levels [10]. As with attribute filters, a wide 
range of morphological and spectral attributes can be encoded into this method as decision predicates, 
although at the expense of additional computing time. A multidimensional search landscape is 
modeled consisting of the two parameters of the CC algorithm in addition to five spectral and 
morphological attributes. A selection of data transformation functions is also encoded into the model, 
illustrating the usefulness of additional transformations to achieve increased segmentation accuracies. 

2. Constrained connectivity in sample supervised segment generation 

Figure 1 illustrates the sample supervised method for segment generation with the CC algorithm, 
additional attributes and an extra data transformation function. The method takes as input an image 
with a selection of reference segments provided by an image analyst. 

 

Figure 1. Sample supervised method for segment generation with the CC algorithm, 
additional attributes and a data transformation function. 

A stochastic population based real-valued search method, in our case the Differential Evolution 
meta-heuristic (DE) [11], is used to search the combined CC algorithm parameter, attribute and data 
transformation space. Table 1 illustrates an example encoding of an eleven dimensional modeled 
search space along with the numerical bounds of the parameters (integer values converted to real). 
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Table 1. An example modeled search space. 

Component Parameter/Attribute Value range 
Spectral split function [6] Band 1 position 0 – 255 

Band 2 position 0 – 255 
Band 3 position 0 – 255 

Height 0 – 255 
CC parameters Alpha 1 – 255 

Wglobal 1 – 255 
Attributes Area 1 – 500 

Standard deviation 0 – 50 
Perimeter 4 – 1000 

Smoothness 1 – 30 
Compactness 1 – 30 

 

At iterations of the search algorithm loop the image (subsets for efficiency) is first filtered with a 
region growing algorithm to remove outliers and then transformed according to a data transformation 
function, in this example the spectral split function [6]. This transformed image is segmented with the 
automatically tuned CC algorithm, with the automatically thresholded attributes as additional criteria. 
The Object-level Consistency Error (OCE) spatial metric [12] is used to evaluate the similarity of the 
generated segments with that of the reference. The OCE metric value range is [0 - 1] with zero 
indicating a perfect match. The metric observes both over and under segmentation. After a given 
number of search iterations the method terminates with the parameter set and resulting segments 
producing the best results given as output. 

 

3. PRELIMINARY RESULTS 

3.1. Data and sampling criteria 

 
Figure 2 shows the three preprocessed very high spatial resolution optical imagery test sites used in 

this study, depicting various refugee camps in East Africa. The aim is to automatically correctly 
segment, with a single segment layer, the structures following the sample supervised image analysis 
approach described above. Practically, relief agencies would like to know the number of structures and 
also their sizes for population modeling purposes. For each site between ten and twenty representative 
structures are digitized and provided as reference segments to the method. To obtain a measure of 
generalizability of the performance of the method, segmentation results are averaged over all provided 
reference structures for a given image. The Ethiopia site (Figure 2(a)) constitutes a relatively easy 
problem with the features of interest being white nylon draped tents having very similar spatial and 
spectral characteristics. The Kenya (Figure 2(b)) and Somalia (Figure 2(c)) sites provide more spatially 
and spectrally heterogeneous elements of interest. 
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Figure 2. Three test sites depicting refugee camps in (a) Ethiopia, (b) Kenya and (c) 
Somalia. 

3.2. Segmentation accuracies 

A comparative experiment measuring segmentation accuracies was conducted with the sample 
supervised method, and search space as depicted in Table 1, functioning in four different ways: Only 
optimizing the two parameters of the CC algorithm (CC), optimizing the CC parameters and the 
attribute thresholds (CC + Attributes), optimizing the CC parameters and the transformation function 
parameters (CC + Transforms) and finally allowing the method to optimize CC parameters, attributes 
and transformation parameters (CC + Attr + Trans). Table 2 lists the achieved OCE metric scores for 
each test site investigated.  For a baseline comparison the same experiment is repeated using the 
Multiresolution Segmentation (MS) region merging algorithm [13]. 

Table 2. OCE metric scores for the three test sites using the CC algorithm with added 
attributes and a data transformation function. 

OCE metrics scores CC CC + 
Attributes 

CC + 
Transforms 

CC + 
Attr + 
Trans 

MS 
algorithm 

Ethiopia 0.291 0.258 0.262 0.250 0.350 
Kenya 0.774 0.748 0.762 0.698 0.770 
Somalia 0.841 0.791 0.836 0.743 0.760 

 
The most flexible variant, the CC algorithm with extra encoded attributes and a data transformation 

function produced the best results. In this test the addition of a selection of attributes proved more 
beneficial than adding the simple data transformation function. The CC + Attr + Trans variant of the 
method display competitive results with the popular MS algorithm. Figure 3 illustrates the behavior of 
the CC (OCE: 0.81), CC + Transforms (OCE: 0.73) and CC + Att + Trans (OCE: 0.71) variants of the 
method trained on a single structure of interest. The compactness attribute was needed to separate the 
bright bottom quadrant of the reference structure with the generally bright neighboring structure 
(Figure 3(d)). 

(a) (b) (c) 
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Figure 3. Segmentation results for a reference structure (red/in bold) in the Somalia site. 
The original image is shown (a), best results of the CC method (b), CC + Transforms 
method (c) and CC + Attr + Trans method (d). 

3.3. Data transformation function parameters as additional variables to the search landscape 

 
Table 3 illustrates different achieved OCE metric scores using a selection of image enhancement or 

data transformation functions. The genetic contrast enhancement [14] method modifies an image based 
on four parameters; which modify pixels based on both local and global properties. The ten parameters 
genetic transform [15] method employs four polynomial functions and accompanying weighting 
parameters to stretch and/or compress certain spectral ranges within the image. The linear transform 
method enhances the importance of certain bands or correlations in an image [6]. 

Table 3. Comparison of the performances of three different data transformation functions. 

OCE metrics 
scores 

CC + Attr CC + Attr  + 
Genetic contrast 

 CC + Attr + 
Genetic transform 

CC + Attr + 
Linear transform 

Ethiopia 0.258 0.222 0.242 0.237 
Kenya 0.748 0.713 0.792 0.774 
Somalia 0.791 0.777 0.766 0.765 

 
These results illustrate the potential usefulness of added data mapping or transformation functions in 

such a general method. The mechanism whereby it functions is to allow data modification so that the 
given homogeneity predicates (spectral and/or morphological) of the segmentation method can perform 
better on the given problem; as defined by the multiple reference segments. 

Employing two of the transformation functions on the Kenya test site listed in Table 3 resulted in a 
worse OCE score. This suggests that candidate data transformation methods should be carefully 
considered and evaluated in such an implementation as degradation in results might be possible. This 
could happen due to agents being trapped in local optima in a rugged search landscape or due to the 
general ineffectiveness of a transformation method for the given problem. 
 

(a) (b) 

(c) (d) 



165 
 
3.4. Search landscape characteristics and search problem difficulty 

 
Figure 4 illustrates the relation of the central Wglobal parameter of the CC + Attr + Trans method 

with one of the lesser important parameters of the spectral split function in terms of OCE metric 
scores. The accuracies displayed are the average over 20 reference structures. All other parameters 
were assigned random constant values. Typically as one increases the Wglobal parameter, larger 
segments will result. A narrow range (15-20) of Wglobal values will give good results, bordered by 
values that will either under or over segment the features of interest. The Band 2 position parameter 
has some minor influence on the results. The figure illustrates some minor multimodality of the search 
landscape (parameter interdependence) with only two parameters of eleven being altered. 

 

Figure 4. Two dimensions of the search landscape plotted in terms of OCE scores with the 
CC + Attr + Trans variant of the method. 

A main drawback of the general methodology described here is the large computational costs of the 
fitness evaluations. Rugged search surfaces, numerous local minima and the high dimensionality of the 
search landscape might cause problems for some search methods, such as those based on calculating 
derivatives. All previous experiments were conducted with the DE search method given 50 agents and 
1300 fitness evaluations. Table four profiles three search methods in terms of maximum achieved OCE 
scores for the CC + Attr + Trans variant of the method (Table 1 search space, Somalia test site) given a 
fixed number of allowed fitness landscape evaluations. 

Table 4. Maximum fitness scores achieved by different search methods given a fixed 
number of fitness evaluations for the Somalia test site. Results are averaged over five 
consecutive runs. 

OCE metric scores Random search Simulated 
annealing 

Differential 
evolution 
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500 iterations 0.786±0.004 0.785±0.003 0.784±0.002 
1000 iterations 0.779±0.004 0.782±0.002 0.781±0.002 
1500 iterations 0.779±0.004 0.779±0.001 0.777±0.004 

 
The population based metaheuristic (DE) provided the best OCE scores under all iteration 

constraints, suggesting the single agent simulated annealing method is being trapped in local minima. 
This suggests careful consideration of the employed search method. 

4. Conclusions 

The modeling of CC with the ability to accommodate extra decision attributes, or potentially other 
mathematical morphology approaches such as attribute filters or attribute profiles, in a sample supervised 
image analysis context shows promise. Profiling of the processing time and achieved accuracies of the 
different variants of the method with other common segmentation algorithms is planned. A major 
concern is the computational costs of such approaches, as sample supervised image analysis generally 
advocates near real time interactive systems. 

An investigation into the appropriateness of using specific attributes in terms of computing costs, 
under efficient implementations [10], and achieved accuracies might be insightful. Some attributes might 
be more beneficial for common remote sensing image analysis applications. It might be interesting to 
contrast the relative usefulness of parameter controlled data transforms with computationally expensive 
descriptive attributes (also considering search landscape dimensionality). 
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Abstract: The creation of adequate image segments based on given reference segments is a method 
receiving some attention in certain academic fields concerned with image analysis, including 
Geographic Object Based Image Analysis (GEOBIA). Typically such a method involves using an 
efficient search algorithm to traverse the parameter space of the given segmentation algorithm. Spatial 
metrics comparing generated and reference segments are normally used to direct the search process. 

An extension to this general approach is investigated in this contribution where user generated 
reference segments are used in two distinct ways in the search process. Both the spectral and geometric 
aspects of the reference segments are queried and used within in the iterative optimization loop. A one-
class classification process using spectral information from inside the provided reference segments is 
used to generate a probability image, which in turn is employed to direct a modification of the original 
input imagery. Segmentation is performed on such a modified image. Initial results employing the 
proposed method are presented, comparing it to the standard search centric sample supervised segment 
generation approach in terms of segmentation quality. 
 

Keywords: Image Segmentation, Classification, Data Transformation, Segmentation Metrics 

Introduction 

Search centric sample supervised segment generation denotes a general approach for the creation of 
image segments, to be used in further image analysis, based on the use of efficient search algorithms 
and segmentation quality measures (Bhanu et al., 1995; Freddrich and Feitosa, 2008). Such an 
approach shows promise in the discipline of GEOBIA, especially in the context of rule set approaches 
to image analysis that typically involve a substantial amount of parameter tuning. 

A new variant of search centric sample supervised segment generation is presented that suggests the 
use of additional processes in the optimization loop to generate improved segmentation results. The 
contribution lies in suggesting the use of spectral information contained inside the user provided 
reference segments to tailor (transform) the data for the given problem. Process interdependencies are 
acknowledged (Fourie and Schoepfer, 2014), suggesting the creation of enlarged search spaces. From a 
user perspective, such an approach requires no additional steps compared to the standard variant of 
sample supervised segment generation; it is simply suggested to use more of the information that a 
user provides. 

Method 

Fig. 1 illustrates the proposed approach to segmentation algorithm parameter tuning. Firstly, the 
spectral data contained within the given reference segments are collected and used in a classification 
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process. The resulting pixel probability image is integrated, in select ways, with the original input 
image to create a new modified image. This modified image is used as input to the given segmentation 
algorithm. Secondly, as with many of the variants of this general method, the spatial properties of the 
reference segments are compared to that of the generated segments to calculate a measure of quality. 
The core idea is that an initial pixel probability classification is used to tailor the data in such a way 
that the given segmentation algorithm could perform better on the given problem. This process differs 
from an unsupervised data transformation (Fourie and Schoepfer, 2014) as data samples are used to 
direct a change. 

The proposed method has three aspects, or parameter domains that need consideration: The 
generation of the probability image (choice of classifier, parameters, sampling), integrating the 
probability and input images (strategy, parameters) and the tuning of the segmentation algorithm. A 
variant of this approach is demonstrated using a one-class (for masking) and a two-class (for 
classification) Support Vector Machine (SVM) to generate a probability image. The probability image 
is used to modify the original input image by moving the spectral values of the image to the average of 
reference segments based on the probabilities in the probability image. Various other integration 
strategies are also possible. This modified image is segmented with a segmentation algorithm (Baatz 
and Schäpe, 2000). Segment results are compared with the reference segments using the Reference 
Bounded Segments Booster (RBSB) (Freddrich and Feitosa, 2008) and the Reference Weighted 
Jaccard (RWJ) (Fourie and Schoepfer, 2014) metrics. 

 

 

Figure 1: The architecture of the sample supervised search centric segmentation 
generation approach incorporating the use of the spectral data from the reference segments. 
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Fig. 2 illustrates the utilized data (GeoEye-1, 0.5m spatial resolution resampled to 1m in the 
processing system, channels 1,2,3) (© GeoEye, Inc. 2011, provided by e-GEOS S.p.A. under GSC-
DA, all rights reserved). The aim could be the identification of permanent structures. 17 Reference 
segments were digitized and used as input to the method, illustrated with the blue polygons in Fig. 2. 

 

 

Figure 2: Utilised test dataset consisting of 17 reference segments. The aim could be to 
identify and characterize buildings. 

Results and discussion 

Table 1 lists the achieved metric scores (averaged over five runs) of a few variants of the proposed 
method tasked with segmenting buildings. The method was run by only tuning segmentation algorithm 
parameters, by tuning the generation of probabilities and segmenting on a probability image and with 
two strategies that generate modified imagery by combining the probability imagery with the original 
input imagery (details to be given in future work). The Differential Evolution metaheuristic was used. 
Lower metric scores signify better results. 

Table 1: RBSB and RWJ metric scores for two variants of the proposed approach, as well 
as the standard variant and a variant including unsupervised data transformations. 

 Parameter 
Tuning 

Probability Tuning 
+ Parameter Tuning 

Probability Tuning 
+ Exchange band 2 
+ Parameter Tuning 

Probability Tuning 
+ Move to Average 
+ Parameter Tuning 

RWJ 0.27 0.22 0.19 0.18 
RBSB 0.26 0.21 0.19 0.20 

 
The variants conducting some form of probability- and original image hybridisation delivered the 

best results as measured by the RWJ and RBSB metrics. Even segmenting on a probability image 
(adding four dimensions to the search landscape) is useful, compared to only tuning segmentation 
algorithm parameters. No extra processes from the user’s perspective are needed with this strategy 
compared to the Parameter Tuning strategy. Additional computing time is required though for the 
added intermediary steps. Fig. 3 illustrates such intermediary steps (Fig. 3(b-e)) performed on the 
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original input data (Fig. 3(a)) before segmentation is performed. Fig. 3(f) illustrates the best 
segmentation results obtained with the Probability Tuning + Move to Average + Parameter Tuning 
method variant. 

 

a.  b.  c.  

d.  e.  f.  

Figure 3: Illustration of intermediary processes of the proposed method. (a) Shows the 
original image (subset) and reference segment delineated with a red polyline, (b) a masking 
and sample gathering process (one-class SVM), (c) probability image (two-class SVM), (d) 
modified image by exchanging bands, (e) modified image by moving to average values and 
finally, (f) segment results with the best performing variant (Move to Average). 

Conclusion 

A search centric sample supervised segment generation method was demonstrated that modifies 
data in a supervised fashion to allow stronger spectral and thematic correlations. This assists the given 
segmentation algorithm on the given information extraction problem. Initial experimentation suggests 
merit of such an approach to improve results in situations where segmentation could be considered 
feasible a priori, but on difficult problems more elaborate image analysis strategies would be needed. 
Various variants of this approach are considered for further research, including using highly modular 
segmentation methods. 

Acknowledgements 

This work has been conducted under the GIONET project funded by the European Commission, 
Marie Curie Programme, Initial Training Networks, Grant Agreement number PIT-GA-2010-264509. 

References 

Baatz M., Schäpe A., 2000, Multiresolution segmentation: an optimization approach for high quality 
multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung, Strobl 
J., Blaschke T., Griesebner G. (editors), Karlsruhe, Germany, Wichmann Verlag. 



172 
 
Bhanu B., Lee S., Ming J., 1995, Adaptive image segmentation using a genetic algorithm. Systems, 

Man and Cybernetics, IEEE Transactions on, Volume 25, Issue 2: 1543-1567. 
Fourie C., Schoepfer E., 2014, Data transformation functions for expanded search spaces in geographic 

sample supervised segment generation. Remote Sensing, Submitted. 
Freddrich C.M.B., Feitosa R.Q., 2008, Automatic adaptation of segmentation parameters applied to 

non-homogeneous object detection. Proceedings Geographic Object-based Image Analysis 
(GEOBIA 2008) Conference, Calgary, Canada. 

 
  



173 
 

APPENDIX B – SOFTWARE OVERVIEW 

Introduction 

During this work experimental software was developed. It is not commercial grade software and 
was initially developed only to run experiments for the various chapters. The experiments presented in 
this work may be duplicated with the software without any programming knowledge. With some 
programming knowledge, the methods may be extended/elaborated upon or integrated in various other 
programs or research endeavours. For each presented method variant a separate program was created. 
The code will be made available upon request (via google drive - email to: 
fourie.christoff@gmail.com). If found useful, please cite the applicable article. 

Other works are also available conducting automated segmentation algorithm parameter tuning. The 
Segmentation Parameter Tuner (SPT) (P. Achanccaray, V. Ayma, L. Jimenez, S. Garcia, P. Happ, R. 
Feitosa and A. Plaza, A free software tool for automatic tuning of segmentation parameters, South-
Eastern European Journal of Earth Observation and Geomatics, 3, 707-712, (2014)) functions with the 
generic method variant and includes a substantial selection of segmentation algorithms, metrics and 
search methods. The Geographic Object Novelty Detector (Geo-ND) (Fourie, C. A one class object 
based system for sparse geographic feature identification. Stellenbosch University, Stellenbosch, 2011) 
also conducts basic parameter tuning and includes supervised classification mechanisms (also 
optimized with metaheuristics). 

 
 

Architecture 

The programs were developed in C++, specifically in the Microsoft Visual C++ IDE (and Microsoft 
C++ compiler). Various open source libraries were used. The backend or base for image processing is 
OpenCV. Terralib is used for some processing, but primitive datatypes remain OpenCV Mat. Qt is 
used for the GUI and rendering windows. Mat datatypes are converted to Qt datatypes during 
rendering phases within the software. Other utilised C++ libraries include SwarmOps, LibSVM, Shark 
and various other bits. 

Figure 1 illustrates the general layout of the software. It consists of two windows. A main 
processing window, in this instance entitled “Expanded search spaces” and a secondary window giving 
an overview of the loaded image, namely “Image overview”. The image overview window also shows 
rectangles around reference segments that a user provided. Digitising may be done in any image 
processing software. The red rectangle denotes the currently selected reference segment. It is displayed 
in greater detail in the main program window (“Expanded search spaces”). 

 

mailto:fourie.christoff@gmail.com
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Figure 1: General GUI layout of the presented software. The software consists of two 
windows, one presenting controls and giving a preview of results on a given subset 
(changeable) and a window giving an overview of the entire image loaded. 

User Guide 

The software takes as input two imagery of exactly the same size. An image need to be loaded (3-
band, 8-bit, TIFF) by clicking “File” and “Load image”. A mask also needs to be loaded representing 
the reference segments provided by an analyst. The mask file needs to be one band, 8-bit, TIFF. A 
value greater than one implies a pixel as part of a reference segment (default is 255). All over values 
should be 0. Figure 2 gives an example (synthetic image), with the image on the left denoting the 
image of interest and the image on the right denoting a mask of reference segments – in this instance 
the four “structures”. 
 

 

Figure 2: An example of an image of interest and the accompanying mask for the 
reference segments. 
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After two images have been loaded the “Preprocess” button should be pressed (Figure 1). Various 
data management tasks are conducted. The box in the bottom left corner, the status or report box, will 
report on these processes and inform the user when pre-procesing is complete. The software is then 
primed for manual, automatic or combined operation. 

Figure 3 illustrates the main program window in more detail. Controls are grouped by bounding 
boxes. On the left there is a set of controls to select and tune a given segmentation algorithm. There is 
also a dropdown box to change the used metric. Below the image are controls to change which 
reference segment is displayed. On the right are controls to select and tune a given data mapping 
function. Under “Search controls” one may set the used metaheuristic and start the automatic fitness 
landscape search process (progress bar will indicate progress). Under “Metric score” one may select 
local or global optimisation and define the magnitude of cross-validation. A “Repeat #” box allows 
setting the number of experimental runs that need to be conducted. All results are presented in separate 
text files generated within the same folder as the executable. Settings are encoded within the text 
filenames, e.g.: 

“Results_GeneticTransform_RWJ_BS_DE.txt” 
“FitnessTrace__LinearTransform_RWJ_BS_DE_16.txt” 
 

 

Figure 4: The main program window in more detail. 
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Note that a user may interactively page through different reference segments and manually change 
parameters before or after an automatic search process. During the automatic search process the 
controls are unresponsive (program crash). Figure 5 shows the same window with the Genetic 
Transform mapping function selected. It is very interesting to alternatively tune the mapping function 
parameters and the segmentation algorithm parameters, noticing their interplay. The “Subset” metric 
score will update interactively, reflecting segment quality on the central reference segment as one 
alters the various parameters of the mapping function or segmentation algorithm. 

 

 

Figure 5: A mapping function selected with its parameters manually tuned. 

The above figures represent the program developed for Chapter 3, where additional data mapping 
functions are considered as part of the fitness landscape. Figure 6 illustrates the program variant 
developed for graph based segmentation and attribute tuning. It is similar to the one developed for data 
mapping functions. In this variant the mapping function parameters may not be tuned manually (from 
inside the code it may), but are displayed in the textbox on the right. The bounding box on the left 
indicate the parameters of the CC segmentation algorithm, along with the thresholdable attributes. 
Disabling attributes increases the execution speed of the segmentation algorithm. 

The final variant of the software includes classification processes for segmentation. During the 
development a very simple extension was made to allow rudimentary image classification (just for 
illustration of a more complete process – albeit extremely simple). Figure 7 illustrates the main 
window of the variant incorporating classifier directed data modification. Note that in this program 
variant there are three preview windows illustrating results of intermediary steps. The first window 
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illustrates pixel sampling, the second window probability classification and the third window 
segmentation results on hybridized imagery. The small window on the left illustrates the entire image 
under consideration. 

 

 

Figure 6: The program variant considering CC segmentation with additional attributes and 
mapping functions. 

 

Figure 7: The program variant considering classifier directed data modification. 
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The accompanying overview window for this method variant has been reworked to include one-
class SVM classification. Figure 8 shows this modification. After optimal segmentation parameters 
have been achieved, an analyst may perform a full classification in this window. On the left (Figure 8) 
are basic controls to segment the entire image, alter display properties and manually tune one-class 
SVM parameters. 

 

 

Figure 8: The overview window for the method variant incorporating classification in 
segmentation. As an additional exercise image classification was incorporated with this 
variant, implemented in this overview window. 

Additional segment samples for classification may be selected on the image if the “Display 
segments” or “Display mean” options are ticked (left clicking). Figure 9 illustrates a basic example of 
using this tool to quickly find refugee tents. Two minutes of manual work was needed to select 
samples and tune parameters (it may be automated easily in the context of novelty detection). 
Alternatively, segments and mean spectral values may also be shown on the image (Figure 10). 
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Figure 9: Example classification results from the classification tool used to find refugee 
tents. 

 

Figure 10: Example classification results also showing mean segment spectral values and 
segment borders. Note this is the same image as shown in the introductory chapter – no 
segment optimisation was conducted. 
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APPENDIX C – PARAMETER STANDARD DEVIATIONS 

In some results considering the Multiresolution Segmentation (MS) algorithm, parameter values are 
generated with very high standard deviations. This is due to the nature of the MS algorithm (see 
Appendix D). A range of parameter values were able to achieve the same segmentation results. The 
table below shows 23 runs for one of the many experiments conducted in Chapter 3. Two outliers were 
removed for illustrating correlations in this appendix. The results present segments generated for the 
Bokolmanyo dataset, with the RWJ metric. No data transformation/mapping was conducted. 

 

Table 1: RWJ metric score values and generated MS algorithm parameters for an arbitrary 
problem from Chapter 3. 

Run RWJ score Scale Colour/Shape Compactness/Smoothness 
1 0.294834 20.4 0.259614 1 
2 0.280538 19 0.220534 0.780158 
3 0.275059 6.4 0.0210688 0.1182772 
4 0.276862 16.2 0.1363706 0.967018 
5 0.294833 20.4 0.259248 1 
6 0.301159 5 0 0.0509974 
7 0.285905 12 0.0740898 0.54747 
8 0.298802 14.8 0.1133496 0.780804 
9 0.286091 20.4 0.259752 1 

10 0.290989 13.4 0.0923572 0.693924 
11 0.299751 20.4 0.257462 0.989552 
12 0.26828 16.2 0.1365268 0.966024 
13 0.283697 13.4 0.0927534 0.624126 
14 0.285663 16.2 0.1357366 0.961508 
15 0.267932 13.4 0.0933846 0.702832 
16 0.279395 5 0 0.0491972 
17 0.295836 13.4 0.089889 0.676408 
18 0.294894 5 0 0.050198 
19 0.275157 5 0 0.0486048 
20 0.291018 12 0.0731132 0.536958 
21 0.283697 13.4 0.0931406 0.625978 
22 0.298007 5 0 0.0489822 
23 0.289508 5 0 0.0494242 

Average: 0.29 ±0.01 12.67 ±5.71 0.10 ±0.09 0.58 ±0.38 
 

Note the very precise RWJ values (±0.01), with some variation in the three parameters of the MS 
algorithm. This is not a problem; it just means that if multiple runs are conducted that parameter 
averages may not be used. Simply, one may identify significant clusters in such a scenario and use 
those values or derive values based on correlations present within the results, illustrated with the three 
figures below (based on the above table). Such a strong correlation may not always be present, though. 
SLIC and CC segmentation did not display this behaviour under simple conditions. Note that adding 
additional fitness landscape constituents may exacerbate this consideration. 
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Figure 1: Correlation plots of the three parameters of MS for the results from the table 
above. Suitable parameters may be derived by identifying commonly generated parameter 
sets (clusters – red ellipsoids) or by using information derived from the correlation (not 
necessarily present in all problems). 
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APPENDIX D – ALGORITHM DETAILS 

Appendix D.1: Differential Evolution 

The Differential Evolution (DE) metaheuristic is used throughout this dissertation as the main 
optimisation method. Initial experimentation in this work was conducted with a new variant of cuckoo 
search [1], programmed from scratch. It was outperformed by both classical DE and classical PSO 
(SwarmOps library [2]) on some test problems in the context of this work and relegated to merely 
illustrating fitness landscapes (Chapter 1). DE had the overall best performances and was thus 
subsequently used. 

DE is one of the classical and very well performing variants of continuous space population based 
metaheuristics. The body of literature on DE is rich, with the seminal paper [3] enjoying around 9500 
citations at the time of writing this manuscript. See [4] for a recent review on research in the context of 
DE. Here the classical ‘DE/rand/1/’ variant of DE is employed. As with most metaheuristics, a 
population of agents are defined (NP denote the number of agents), undergoing mutations in 
generations (G). An agent, X, for a specific generation may thus be denoted as: 

 
 

𝑋𝑋𝑖𝑖,𝐺𝐺  , 𝑝𝑝 = 1,2, … ,𝑁𝑁𝑃𝑃 
 

where i denote entries in the solution space (solution vector or parameters to a method). During the 
execution of DE an agent (X) may be replaced by a trail agent (U) if the fitness of the trail agent is 
lower (or higher) than the agent under observation. A trail agent is generated (crossover) by selecting 
solution vector elements from either the agent under observation or a mutant agent (V) via: 

 

𝑈𝑈𝑗𝑗 =  �
𝑉𝑉𝑗𝑗  𝑝𝑝𝑓𝑓 (𝛼𝛼𝑎𝑎𝑝𝑝𝑑𝑑 ≤ 𝑂𝑂𝑅𝑅)𝑝𝑝𝛼𝛼  𝑗𝑗 = 𝛼𝛼𝑝𝑝𝑎𝑎𝛼𝛼

  𝑋𝑋𝑖𝑖 𝑝𝑝𝑓𝑓 (𝛼𝛼𝑎𝑎𝑝𝑝𝑑𝑑 > 𝑂𝑂𝑅𝑅)𝑎𝑎𝑝𝑝𝑑𝑑 𝑗𝑗 ≠ 𝛼𝛼𝑝𝑝𝑎𝑎𝛼𝛼
 

 
Where rand is a random number in the range [0..1] and rnbr a randomly chosen solution vector 

element guaranteed to be modified. CR is the crossover constant and is a user defined variable ([0..1]). 
 
V, the mutant agent, is calculated as follows: 
 

𝑉𝑉 = 𝑋𝑋𝑎𝑎 + 𝐹𝐹 × (𝑋𝑋𝑏𝑏 − 𝑋𝑋𝑐𝑐) 
 

Where Xa−c are three random agents selected from the current generation (hence the name 
“Differential Evolution”). F is another user defined parameter ([0..2]) influencing the trade-off 
between exploitation (small F) and exploration (large F). The review article [4] provides excellent 
insight into why DE is effective and so popular. 
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Appendix D.2: Multiresolution Segmentation 

Multiresolution Segmentation (MS) [5] is arguably the best known segmentation algorithm within 
the GEOBIA community. This may be due to its good general performance in the context of VHR 
optical data. It is the main segmentation algorithm advocated in the most prominent commercial 
software available in the field. This may attribute to its popularity (something that should be noted – 
the exact formulation in said software remains unclear). Here a variant is used, found within the 
excellent Terralib library. The description here is a reflection of the formulation given in [5].  

Multiresolution segmentation is a region merging algorithm; meaning pixels are merged forming 
segments, with these segments merged and so on until certain threshold conditions are reached 
preventing segment growth. Critical in this process is the degree of fitting, or the similarity of a 
potential merge of two segments. For MS it is defined, considering only mean spectral content, as: 

 

ℎ = ��
𝑓𝑓1 − 𝑓𝑓2
𝜎𝜎 �

2

 

 
where f1 and f2 are the mean spectral values of candidate segments. σ is a normalisation factor, 

namely the standard deviation of spectral values of all segments. Two segments are evaluated for a 
possible merge by calculating the change in the degree of fitting, given as: 

 

ℎ𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 = ℎ𝑚𝑚 −
ℎ1 +  ℎ2

2
 

 
Where hm is the degree of fitting after a virtual merge and h1 and h2 the degree of fitting of the 

segments before the virtual merge. Object size is added as an additional measure to hdiff resulting in: 
 

ℎ𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 = (𝑝𝑝1 +  𝑝𝑝2)ℎ𝑚𝑚 − (𝑝𝑝1ℎ1 + 𝑝𝑝2ℎ2) 
 

where n are the object sizes of the respective segments under consideration. Two additional 
geometric heterogeneity measures are added, namely compactness and smoothness. Others may be 
considered also [6]. Compactness is defined as: 

 

ℎ𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑎𝑎𝑐𝑐𝑐𝑐 =  
𝑎𝑎
√𝑝𝑝

 

 
where l is segment boundary length. Smoothness is defined as: 
 

ℎ𝑠𝑠𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐ℎ =  
𝑎𝑎
𝑎𝑎

 
 

where b denote the perimeter of the segment bounding box. The three heterogeneity measures are 
combined in a weighted fashion in the segmentation algorithm – constituting the parameters that need 
to be tuned. The Scale parameter defines relative segment sizes (hdiff). The Shape/Colour parameter is 
a weighting factor determining the importance of the Scale parameter versus the two geometric 
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heterogeneity measures (range [0..1]). The Compactness/Smoothness parameter is a similar weighting 
parameter determining the importance between the two geometric heterogeneity criteria (again, other 
geometric criteria may be considered [6]). 

Various strategies may be used to decide on the merging of segments. Here (in the Terralib 
implementation) a variant is employed using “best fitting”, namely a segment is merged with a 
neighbour resulting in the best fit. A dither matrix is used to identify segments and ensures a 
distributed/ordered treatment. Alternatively, local or global mutual best fitting may be considered 
(slower – not considered in this work). Although MS is generally well received, see [7] for some 
interesting remarks about its limitations. 
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Appendix D.3: Simple Linear Iterative Clustering 

The Simple Linear Iterative Clustering (SLIC) algorithm [8,9] is considered a superpixel 
segmentation algorithm. Superpixel algorithms are typically much faster and simpler than algorithms 
traditionally found within remote sensing. They are not intended for semantic image segmentation, just 
to generate objects for the sake of having a richer attribute or feature set. 

By default SLIC clusters pixels using a distance measure in the five-dimensional space consisting of 
a pixel colour vector in the CIELAB colour space and a pixel x and y position. In this work (remote 
sensing) three image input bands were always used, not necessarily in the RGB colour space. A 
conversion to CIELAB colour space was not conducted and SLIC was used with the default available 
bands (and x,y positions). 

SLIC may be considered a special case of k-means clustering. Seed points are defined with a dither 
matrix. The algorithm defines windows around seed points, approximate to desired segment size (S) 
(double the distance of seed point spacing, 2S x 2S). Each pixel in a window (i) is assigned to a seed 
point with the lowest distance measure (j). The distance measure, D, may be written as: 

 

𝑑𝑑𝑐𝑐 = ��𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑖𝑖�
2 + �𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑖𝑖�

2 + �𝑐𝑐𝑗𝑗 − 𝑐𝑐𝑖𝑖�
2
 

𝑑𝑑𝑠𝑠 = ��𝑥𝑥𝑗𝑗 − 𝐻𝐻𝑖𝑖�
2 + �𝐻𝐻𝑗𝑗 − 𝐻𝐻𝑖𝑖�

2
 

𝑃𝑃 = �𝑑𝑑𝑐𝑐
2 + �

𝑑𝑑𝑠𝑠
𝑆𝑆 �

2

𝑚𝑚2 

 
Where m is a user defined weighting parameter defining the trade-off between spectral and spatial 

distance measures. a,b and c are colour space values. After an initial pass of the algorithm a new seed 
point is calculated for all segments. All segments are then re-evaluated for membership to new seed 
points. This process is repeated ten times, found sufficient by the authors in [8], resulting in the final 
segments. 
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