6 research outputs found

    Extraction and characterisation of pectin from dragon fruit (hylocereus polyrhizus) peels

    Get PDF
    Pectins are complex carbohydrate molecules that are used in numerous food applications as a gelling agent, thickener, stabiliser, and emulsifier. Dragon fruit (Hylocereus polyrhizus) is one of the tropical fruits that belong to the cactus family, Cactaceae. Since the peels of dragon fruit are often discarded as waste, it would be an advantage to convert it into a value-added product such as pectin. The objective of this study was to investigate the extraction of pectin from dragon fruit peels under different extraction time using hot water extraction method. The dragon fruit peels were extracted using distilled water at 80 °C with different extraction time of 20, 40, 60 and 80 min. The extracted pectin was characterised by its yield, moisture and ash content, degree of esterification and antioxidant activity. Determination of moisture and ash content was conducted using AOAC standard method. The determination of the degree of esterification of pectin was performed using Fourier Transform Infrared Spectroscopy (FTIR). DPPH assay was used to determine the antioxidant activity of the pectin extract. Based on the result, the yield of pectin decreases (20.34 to 16.20 %) with the increase of extraction time, moisture contents were between 4 to 6 % while ash contents were between 7 to 10 %. Pectin from dragon fruit peels was determined as low methoxyl pectin and has high percentage of antioxidant activity with low value of inhibition concentration (IC50) (0.0063 to 0.0080 mg/mL). 60 min extraction sample exhibits the highest antioxidant activity (81.91 % at 40 μg/mL), followed by 80 min extraction (81.68 % at 40 μg/mL), 40 min extraction (81.38 % at 40 μg/mL) and 20 min extraction (81.31 % at 40 μg/mL)

    Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization

    Get PDF
    Hyperspectral remote sensing images contain hundreds of data channels. Due to the high dimensionality of the hyperspectral data, it is difficult to design accurate and efficient image segmentation algorithms for such imagery. In this paper, a new multilevel thresholding method is introduced for the segmentation of hyperspectral and multispectral images. The new method is based on fractional-order Darwinian particle swarm optimization (FODPSO) which exploits the many swarms of test solutions that may exist at any time. In addition, the concept of fractional derivative is used to control the convergence rate of particles. In this paper, the so-called Otsu problem is solved for each channel of the multispectral and hyperspectral data. Therefore, the problem of n-level thresholding is reduced to an optimization problem in order to search for the thresholds that maximize the between-class variance. Experimental results are favorable for the FODPSO when compared to other bioinspired methods for multilevel segmentation of multispectral and hyperspectral images. The FODPSO presents a statistically significant improvement in terms of both CPU time and fitness value, i.e., the approach is able to find the optimal set of thresholds with a larger between-class variance in less computational time than the other approaches. In addition, a new classification approach based on support vector machine (SVM) and FODPSO is introduced in this paper. Results confirm that the new segmentation method is able to improve upon results obtained with the standard SVM in terms of classification accuracies.Sponsored by: IEEE Geoscience and Remote Sensing SocietyRitrýnt tímaritPeer reviewedPre prin

    Segmentation of Human Muscles of Mastication from Magnetic Resonance Images

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Surface composites and functionalisation : enhancement of aluminium alloy 7075-T651 via friction stir processing

    Get PDF
    Abstract: This research work is aimed at modifying and enhancing the properties of aluminium alloy 7075- T651 through the friction stir processing (FSP) technique, in order to improve the mechanical, electrochemical, structural, tribological as well as the metallurgical properties which include micro- and macro- structural analysis through XRD and Image processing of grain size and grain flow patterns determination, by reinforcing the parent metal. The surface modification of the parent metal has been made possible in the past via different techniques,such as laser surfacing, electronbeam welding and thermal spraying; but in recent years, the friction stir processing (FSP) technology has been adopted to cater for the complex methods of surface enhancement. FSP is well-renowned for its short route of fabrication, densification, grain refinement, homogenization of the precipitates of composite substances, nugget zone homogeneity. These have led to the efficient surface enhancement, significant and remarkable improvement in hardness, ductility, strength, increased fatigue life, as well as formability within which the bulk properties are still intact. The use of FSP in the fabrication of metal matrix composites (MMCs), especially aluminium matrix composites (AMCs) and aluminium hybrid composites (AHCs) were dealt with in this study...Ph.D. (Mechanical Engineering

    Manipulation of global chromatin architecture in the human cell nucleus and critical assessment of current model views

    Get PDF
    In spite of strong evidence that the mammalian cell nucleus is a highly organized organelle, a consensus on basic principles of global nuclear architecture has not so far been achieved. The existence of major architectural features such as an organized interchromatin compartment and higher order organization of chromatin postulated by some of the models is questioned or even refused by the others. This study was set up to test predictions of the various model views after manipulating nuclear architecture by applying the induced formation of hypercondensed chromatin (HCC). This method leads to massive but completely reversible conformational changes of chromatin arrangements in living cell nuclei, but does not affect the cells survivability. Nuclear functions like transcription, replication and cell cycling were immediately stalled when HCC formation was induced, but were rapidly recovered upon recovery of normal chromatin configurations. The emerging pattern of HCC revealed a 3D network of interconnected chromosome territories. The surface of the emerging HCC bundles was the site of preceding activity like RNA transcription or DNA replication, which confirmed the existence of a distinct topological arrangement of functional processes with respect to the architecture of chromatin. This arrangement could further be demonstrated by analyzing the topography of defined chromatin modifications, showing that active chromatin is preferentially located at the HCC bundle surfaces, whereas inactive chromatin regions are preferentially found in the HCC bundle interior. The emerging patterns of HCC were further strikingly similar in consecutively repeated cycles of HCC formation and recovery, demonstrating a non-random but pre-existing and defined chromatin and interchromatin topography. All results of this study were obtained using confocal laser scanning microscopy. A protocol for deconvolution of confocal images was established to enhance confocal image quality to an extent sufficient for subsequent image analysis. In contribution to the present model views this study demonstrates: [1] That most chromatin exists in the form of higher-order sub-compartments ('~1 Mb chromatin domains') above the level of extended 30 nm fibers and [2] That an interchromatin compartment exists as a dynamic, structurally distinct nuclear compartment, which is functionally linked with the chromatin compartment. An updated chromosome territory-interchromatin compartment model on the basis of the gained results is presented at the end of this thesis together with an attempt to provide a comprehensive view linking ultrastructural with light microscopic insights
    corecore