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Summary 

 

With rapid advances in medical imaging technology, the use of magnetic resonance 

(MR) and computer tomography (CT) image data for maxillofacial surgery has 

become increasingly common. CT data permit clinicians to study the jaws while MR 

data allow clinicians to study and quantify the human masticatory muscles which are 

of interest as they directly affect one’s ability to chew effectively and efficiently. 

Despite their importance, it has been observed that many currently available pre-

surgical facial models do not provide information such as the actual shape, size and 

location of the human masticatory muscles.  

 

Segmentation is an essential step in image processing and analysis. Before 

quantification can be carried out, segmentation of the targeted object has to be 

performed.  Furthermore, numerous segmentations would have to be done before 

accurate statistical models can be built. A common practice by clinicians is to 

manually segment all the image slices in the MR datasets before carrying out 

quantification and analysis of the human masticatory muscles. However this is a highly 

time-consuming and inefficient process.   

 

The main focus of this thesis is to present methods for segmenting the human 

masticatory muscles from MR images. Segmenting them is a challenging task due to 

the close proximity between the muscles and their surrounding soft tissue, as well as 

the complicated structure of the muscles. Hence we studied 2D followed by 3D 

segmentation techniques for the masticatory muscles. 



 viii

 

An improved watershed segmentation algorithm with unsupervised clustering was first 

introduced to address the drawbacks of the conventional watershed algorithm. The 

improved watershed segmentation algorithm addresses the over-segmentation problem 

posed by the conventional algorithm by performing thresholding on the gradient 

magnitude image and post-segmentation merging to merge the initial partitions formed 

by the watershed transform. The use of GVF snake was also studied in a proposed 

model-based method which comprises of a process to provide good initializations to 

the GVF snake automatically, while in another proposed method, adaptive morphology 

was introduced to preserve the muscle structure. The proposed methods were 

implemented and the consistencies between segmentation results and ground truth 

were checked. 

 

In a 3D MR dataset, there are image slices where no clear boundary exists between the 

muscle and the surrounding tissue. As such, we will need to make use of the 

neighbouring slices which provide additional information. Dominant slices which 

together best capture the shape and area features of the muscles were determined and 

patient-specific muscles models were built using them. 2D segmentations of the 

muscles are carried out only on the dominant slices before shape-based interpolation is 

used to build the patient-specific models. The segmentation results were validated 

against ground truth provided by an expert radiologist who has more than 15 years of 

clinical experience. Quantifications of the segmented muscles volume were also 

carried out. 
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Chapter 1 

Introduction 

 

1.1 Introduction 

This thesis presents methods for segmenting the human masticatory muscles from 

magnetic resonance (MR) images of the human head. In general, maxillofacial 

surgeries are carried out to provide patients a better quality of life by correcting facial 

anatomic abnormalities. Maxillofacial surgery combines orthodontic treatment with 

surgery of the jaw to correct or establish a stable, functional balance between the teeth, 

jaws, and facial structures. The facial bones commonly corrected during maxillofacial 

surgeries are the mandible (lower jaw) and maxilla (upper jaw). The muscles of 

interest are the masticatory muscles, which include the masseter, lateral and medial 

pterygoids, as well as the temporalis.  

 

The masticatory muscles [1] directly affect one’s ability to chew. The large masseter 

muscle is the strongest jaw muscle and acts to raise the jaw and clench the teeth. The 

masseter's broad origin and insertion allow it to apply chewing force over a broad area. 

When the masseter muscle is functioning, its fibers shorten and help to shift 

the mandible upwards during the chewing cycle. When the masseter muscle contracts, 

it elevates the mandible, closing the mouth. The pterygoid muscles, used in various 

combinations, can elevate, depress, or protract the mandible, or slide it from side to 

side. At the base of the skull, a part of the sphenoid bone (which houses the sinuses) 

are the pterygoid plates. The pterygoid muscles are attached to them. The lateral 
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pterygoid muscle originates on the lateral side of the lateral pterygoid plate. The 

inferior head pulls the condyle forward and helps protrude and depress the mandible 

while the superior head of the lateral pterygoid functions primarily in the biting action. 

Unlike the lateral pterygoid, the medial pterygoid originates on the medial side of the 

medial pterygoid plate, and it provides the slight lateral shift of the mandible during 

chewing. When the medial pterygoid contracts, the mandible is elevated and the mouth 

is closed. Other than the masseter and the pterygoids, human masticatory muscles also 

comprise the temporalis muscle.  This muscle has a very wide origin from the entire 

temporal fossa and the fascia covering the muscle. Its fibers insert into the coronoid 

process of the mandible. When the entire muscle contracts, the overall action pulls up 

on the coronoid process, which results in the mandible being elevated and the mouth 

closed.  

 

Traditional pre-surgical planning for maxillofacial surgeries was carried out using 

profile tracings (Figure 1.1(a)), photographs and lateral cephalograms (Figure 1.1(b)). 

These records are 2D in nature and do not allow clinicians to visualize the human 

masticatory muscles. With rapid advances in medical imaging technology in recent 

years, the use of 3D maxillofacial image data has become increasingly common. 

Computed tomography (CT) and magnetic resonance (MR) data are currently available 

to aid clinicians in their pre-surgical planning. CT and MR data are volumetric data, 

and comprise a stack of 2D sequential images. The main advantage which volumetric 

data has over surface data is that it delivers internal information of an object and 

allows clinicians to perform 3D analysis. For example, a CT data set which comprises 

a series of 2D cross-sectional images of the head will provide clinicians with 

information on the jaws of the patient. 
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(a) 

 

 

(b) 

 

Figure 1.1: (a) Cephalometric tracings, (b) Lateral cephalogram of patient. 

 

Along with the availability of volumetric data, clinicians are now able to visualize the 

facial bones and human masticatory muscles in 3D during pre-surgical planning. They 

are also able to carry out quantifications such as measurements of the volume and 
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surface area. Manual contour tracing, which can be a time-consuming process, is 

carried out by clinicians before quantifications are done. To aid clinicians in their 

diagnosis of patients and surgical planning, computerized systems are designed to 

facilitate the analysis of 3D data and pre-surgical simulations. 

 

In the following sections of this chapter, examples on current facial models and 

description of their drawbacks are provided. A description on the contributions of the 

work presented in this thesis is also provided.  

 

1.2 Previous work on pre-surgical planning 

Early research work on facial models was based on geometric deformations using 

parametric surfaces and aimed primarily at facial animation. Physically based 

simulation paradigms were then adopted to model the physical properties of the elastic 

materials more accurately. Physically based facial models have been known to provide 

more realistic face models and better accuracy than pure geometric models because 

they express the human face as an elaborate biomechanical system. The use of such 

physically based models has made it possible to synthesize more natural facial models 

from dynamics or kinetics evaluation.  

 

Example of an early work on physically based facial model is one which combines, 

unifies, and extends various methods from geometric modeling, finite element 

analysis, and image processing to render highly realistic models [2]. Facial surface and 

soft tissue data are extracted from CT scans of individuals. After which, a finite 

element model of the facial surface and soft tissue is provided, which is based on 
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triangular finite elements. Another physically based facial model can be found in [3] 

which present a prototype of a facial surgery simulation system for surgical planning 

and the prediction of facial deformation. Similar to [2], the head model consists of soft 

tissue and the skull, constructed from the 3D CT patient data. The skull layers are 

segmented from 3D CT data by thresholding. The skin layer is a wire-frame model 

which is regarded as an elastic body. The soft tissue is modelled using nonlinear 

springs, which are attached from the skull layer to the skin surface.  

 

More realistic physically based facial models have been proposed more recently. A 

biomechanical model of the human face, which comes with a multi-layer structure, 

incorporating a physically based approximation to facial skin, a set of facial muscle 

actuators, and underlying skull structure, was presented in [4]. The skin model uses a 

kind of non-linear spring to directly simulate the dynamic deformation of the facial 

skin. Force-based facial muscle models are created to simulate the distribution of the 

muscle force applied on the skin surface. This facial model is more realistic as 

compared to previous facial models, and is efficient in facial animation and expression 

synthesis applications. Along with the improvements in facial animation models, there 

were also advancements in the area of pre-surgical facial models. Koch et al. 

constructed a 3D physically based facial model from CT and laser range scans [5]. The 

concept of 3D volumetric elasticity is being applied in the construction of the model to 

allow the representation of important volumetric effects such as incompressibility in a 

natural and physically accurate manner. Another recent physically based facial model 

used for pre-surgery simulation was developed by Gladilin et al. and used for static 

soft tissue prediction and muscle simulation [6]. This model uses the linear elastic 
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modeling approach to simplify the highly complicated biomechanical behavior of 

different tissue types. In this model, it has been assumed that different tissue groups 

have similar properties. Another model developed using similar concepts can be found 

in [7].  

 

A more recent pre-surgical facial model is in [8], where a laser range scan provides a 

photorealistic 3D model of the patient’s face and a CT scan provides a 3D 

representation of the patient’s skull. These data sets are used to generate triangulated 

models of the patient’s face and bone structure. A mesh is generated for both the bone 

and soft-tissues using the Marching Cubes algorithm [9]. Both the CT and laser data 

sets are registered via the selection of corresponding cephalometric landmarks of the 

phtotorealistic face surface obtained by the laser range scanner and the untextured face 

surface taken from the CT scanner. Basic components of the soft-tissue model are 

mass points and springs, which connect these mass points. The model enables the 

representation of multi-layer soft tissue with differential elasto-mechanical properties. 

At any instant of time, the motion and deformation of the mesh is described by a 

system of second-order differential equations, each expressing the motion of a node. In 

surgical simulation, the external forces are applied at these nodes by simulating 

interactions with surgical instruments. Another example of a facial model which made 

use of CT data is in [10]. A 3D reconstruction of the whole skull was established from 

CT data, together with a mesh representing the CT soft tissues. Laser scanned images 

provide a textured surface for the model. The soft tissue mesh is deformed 

correspondingly as the bone segments are being shifted. This model did not take into 

consideration the anatomy of the masticatory muscles. The same situation was 
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encountered in the surgical model used for correction of facial asymmetry which was 

presented in [11]. The emphasis in this surgical model has been placed on the skull. 

 

Many pre-surgical facial models incorporated information from CT data. An example 

of a pre-surgical facial model which does not make use of CT data is in [12]. This 

simulation system integrated the morphological data of a patient’s teeth, jaw and face. 

It combines laser scanned data of face and teeth onto the coordinate system of the 

cephalogram using the projection matching technique. The patient’s mandibular shape 

was simulated on the computer display by transforming a generic model, used as a 

template, till it matches that of the patient’s cephalogram. 

 

1.3 Problem statement 

The primary inadequacy with existing pre-surgical facial models is that they do not 

incorporate the actual location, shape and size of the masticatory muscles. This could 

be because the models were constructed using mainly CT data which does not clearly 

display the anatomy of the human masticatory muscles as we will see in Chapter 2. 

Segmentation is a key step to the building of accurate muscles models. The focus of 

the work presented in this thesis is to provide computerized techniques for 

segmentation of human masticatory muscles which will facilitate the building of 

accurate muscles models for future integration into current available pre-surgical facial 

models.    

 

In the process of a maxillofacial surgery, surgeons will first detach the masticatory 

muscles from the bone before making adjustments to the bone. After which, they will 
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attach the masticatory muscles back on to the bones. Hence the availability of 

information on actual location, shape and size of the masticatory muscles would be 

instrumental in helping maxillofacial surgeons to have a better understanding of the 

mastication system of the patient during surgical procedures concerning the jaws.  

 

In many medical imaging applications, various parts of the anatomy have to be 

segmented from medical image sets and segmentation plays an important role in 

biomedical image processing [13]. Though the masticatory muscles may be seen in 

MR scans of the patient, segmentation of them have to be carried out before clinicians 

can visualize them in 3D and measure important quantities such as their volume and 

surface area. As mentioned earlier, there is also a need to carry out segmentation 

before models of the masticatory muscles can be built. Currently, the segmentation 

process is done manually and clinicians have to go to every image slice and mark out 

the boundaries of the muscles [14 – 18]. This is an extremely time-consuming process. 

We seek to develop segmentation techniques to aid clinicians in the segmentation of 

human masticatory muscles and reduce the amount of time taken. To our knowledge, 

though techniques for segmenting limb muscles are available [19], segmentation 

techniques for the masticatory muscles are currently unavailable. A key challenge here 

is the close proximity and fuzzy boundaries between the masticatory muscles and 

surrounding soft tissue. 

 

1.4 Objectives 

The main focus of our research work is on developing techniques for segmenting the 

human masticatory muscles from MR data. But before that, we carried out research 

work on the extraction of both skull and surface information from CT data, as it was 
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observed that many facial models make use of CT data for skull information and laser 

scans for surface information [8 – 10]. This is inefficient and the facial and CT scans 

may have different resolution which may hinder the integration and accurate diagnosis. 

Though this is not the main focus of our thesis, introducing this method will facilitate 

future work of creating a more realistic pre-surgical facial model which incorporates 

the information of the human masticatory muscles with the skull and surface 

information. 

 

The segmentation of the skull, and in particular the mandible, is an important step for 

maxillofacial surgery. For instance, the comparison of pre- and post-surgical 

assessment of mandibular asymmetry is considered to be an appropriate means of 

determining the effectiveness of maxillofacial surgery [20].  

 

After designing a method which allows clinicians to extract skull and surface 

information from CT data, we looked into developing techniques for segmenting 

masticatory muscles from MR data. This is a challenging task due to the close 

proximity between the muscles and their surrounding soft tissue, as well as the 

complicated structure of the muscles. Hence we studied 2D followed by 3D 

segmentation techniques for the masticatory muscles.  

 

As such, the second objective of this thesis is to perform segmentation of the 

masticatory muscles from 2D MR images. For this purpose, we first explore the use 

and improve the watershed segmentation algorithm [21]. The watershed segmentation 

technique has many applications in medical image segmentation [22] and is useful for 

segmenting objects which do not have clear boundaries between them [23]. Despite the 
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usefulness of the watershed segmentation algorithm, there is presence of over-

segmentation in the segmentation results produced using it. In the process of our work, 

we aim to minimize this problem. In addition to the watershed segmentation algorithm, 

we studied the use of the snake model, which is another popular technique that has 

been used extensively and found to be suitable for MR image segmentation [24, 25].  

We explore the use of the gradient vector flow (GVF) snake [26] to segment the 

masticatory muscles from 2D MR images. GVF snake has its own disadvantages. 

When a poor initialization to GVF snake is used, it may not converge to the desired 

boundaries. Another concern is the computation time required for the GVF snake to 

arrive at its final convergence. Hence in our work, we aim to provide good 

initializations to the GVF snake automatically and reduce the amount of computation 

time. We also experimented with the use of GVF snake for segmentation of the 

temporalis. As the results were less than ideal, another method, which comprises of 

various image processing techniques, was proposed to perform the task.  

 

The structures of human masticatory muscles are generally complex and the close 

proximity between the muscles and their surrounding soft tissue, which has relatively 

similar gray levels, make the task of 3D segmentation of the muscles a difficult one. 

We make use of patient-specific models to facilitate the segmentations. Hence, the 

third objective in this thesis is to create patient-specific masticatory muscles models. 

Shape-based interpolation [27, 28] is one of the popular techniques commonly used for 

modelling in medical imaging applications and we will make use of it to build patient-

specific masticatory muscles models. It is extremely time-consuming if the clinician 

has to manually segment the muscles from most, if not all, of the all slices in a MR 

data set. Hence the key issue which we are addressing under this objective is to devise 
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a method to identify the slices where manual segmentations have to be carried out in 

order for accurate models to be built. Depending on the complexity of the structure, the 

number of slices required may be a small fraction of the total number of slices in the 

data set. 

 

Having built the patient-specific masticatory muscles models, the fourth objective of 

the thesis is to develop a technique which incorporates the information from the 

models to facilitate the segmentation of the muscles. Model-based segmentation is 

increasingly being adopted in medical image segmentation as they incorporate prior 

knowledge which facilitates segmentation [29 – 31].  

 

The last objective of this thesis is to perform quantification of the segmented 

masticatory muscles. MR data sets from normal subjects are used in our work. 

 

1.5 The thesis 

In this section, an overview of the thesis is provided in order to give the scope of each 

chapter. The thesis consists of 7 chapters, including this introductory chapter. 

 

In Chapter 2, we introduce the imaging modalities used in our work. We segment the 

skull and surface information for CT data. However, there is hardly any visible 

boundary between the masticatory muscle regions and the surrounding soft tissue in 

CT data. Hence we made use of MR data for segmentation of the masticatory muscles. 

There are various sequences and parameters involved in MR data acquisition. We 
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provide sample MR images acquired using different parameters and we introduce the 

selected imaging sequence used in our work.  

 

In Chapter 3, we introduce our proposed method which facilitates the extraction of the 

skull and surface information from CT data. Clinicians commonly depend on facial 

scans for the surface information and CT data for skull information. This is unlike our 

proposed method which is able to extract skull and surface information from CT data.  

 

In Chapter 4, we introduce an improved watershed segmentation algorithm which 

addresses the over-segmentation problem posed by the conventional algorithm by 

performing thresholding on the gradient magnitude image and post-segmentation 

merging to merge the initial partitions formed by the watershed transform. We further 

addressed the problem by making use of K-means clustering to reduce the presence of 

fine textures in the image before applying the improved watershed algorithm to the 

resulting image. Besides the watershed segmentation algorithm, GVF snake is also 

applied to segment the human masticatory muscle from MR slices. Anisotropic 

diffusion [32] was used to smoothen the highly textured image. Correlation between a 

template of the targeted muscle, which was obtained from the manual tracings, and the 

smoothened image is then checked. This provides an initial segmentation. It serves as 

initialization to the GVF snake which iterates to arrive at the final segmentation. For 

segmentation of the temporalis, thresholding is employed to roughly remove the 

unwanted components. Adaptive morphological operations are then applied to first 

remove the brain tissue, followed by the removal of the other soft tissues surrounding 

the temporalis.  
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In Chapter 5, we propose a method for determining dominant slices of each 

masticatory muscle in a MR data set. We define dominant slices to be the MR slices 

that together are representative of the muscle shape. In the training sets, the 

masticatory muscles were first manually segmented by an expert radiologist. From 

these training sets, we determine the locations of the dominant slices for each of the 

muscles using a set of criteria which best captures the main features of the muscle 

shape. Given a test set, we obtain patient-specific models for each of the muscles by 

carrying out 2D manual segmentation of the muscle from the dominant slices and 

using shape-based interpolation to create the muscle model from them.  

 

In Chapter 6, we present methods which incorporate information from the patient-

specific models to segment the human masticatory muscles from MR data sets. The 

patient-specific models serve as coarse segmentations which we refine by matching 

distributions of the pixels’ intensity values. The segmentation results were validated 

against ground truth provided by an expert radiologist who has more than 15 years of 

clinical experience. Quantifications of the segmented muscles volume were then 

carried out. 

 

Finally, in Chapter 7, we give an overview of our achievements together with 

recommendations for future work. 
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Chapter 2 

Data Acquisition 

 

2.1 Introduction 

CT data has been widely employed for craniofacial and maxillofacial surgery. It 

provides 3D information of the jaw without geometrical distortion [33]. It can be used 

for computation of geometric parameters of movement to determine the curvilinear 

distractor dimensions required to correct mandibular deformities [34]. It is also 

commonly used in pre-surgical planning as well as for navigation purposes during 

surgery [35 – 37]. 

 

MR imaging is increasingly being used in clinical treatment for dental patients. For 

example, MR imaging was used in the evaluation of patients with occult submucous 

cleft palate and information obtained was used to aid in the treatment decision [38]. In 

another example, MR imaging was used in the clinical diagnosis for a patient who 

suffers from malocclusion and who had been diagnosed with Simpson-Golabi-Behmel 

syndrome, which causes general overgrowth in height and weight [39]. In a more 

recent clinical study [40], it was suggested that MR imaging is useful in the evaluation 

of soft tissue changes that occur in the temperomandibular joint after acute condylar 

trauma.   
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The data used in our work was acquired at National University Hospital Department of 

Diagnostic Imaging using CT and MR (symphony maestro class with quantum 

gradients) scanners from Siemens (Figures 2.1 and 2.2).  

 

Figure 2.1: CT scanner. 

 

Figure 2.2: MR scanner. 

2.2 Selection of imaging modalities 

CT data is commonly used by clinicians who wish to analyze the jaws and skull of the 

patients [33 – 37]. Comparing the CT image in Figure 2.3 and the MR image in Figure 

2.4, it can be observed that the bony regions in a CT image are easily visible as they 

have higher gray levels. In contrast, it is difficult to accurately delineate the bony 

regions in a MR image. Hence in the work presented in this thesis, we make use of CT 

data for extracting the skull. 
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Figure 2.3: CT image with identified bone regions. 
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Figure 2.4: MR image with identified bone regions. 

 

In some clinical studies such as [16], clinicians make use of CT data to carry out their 

studies on the volume and shape of the masticatory muscles. However, it can be 

observed that in a CT image (Figure 2.5), the masticatory muscles hardly have visible 

boundaries with the surrounding soft tissue. In contrast, it can be observed in a MR 

image (Figure 2.6) that there are visible boundaries between the masticatory muscles. 



 17   

Clinicians who used CT data to analyze the masticatory muscles have to make use of 

manual contour tracing to segment the muscles and this is very time-consuming. 

Furthermore, it was reported in [41] that MR imaging is able to provide accurate 3D 

images which allow diagnosis of lesions within the masseter muscle. In contrast, these 

clinicians found it difficult to diagnose on CT data. Therefore, in our work here, we 

make use of MR images for segmentation of the human masticatory muscles. 

    

Masseter 
regions 

 

 

 

 

 

 

 

Figure 2.5: CT image with identified masseter regions. 

 
Having decided on MR imaging as the imaging modality for human masticatory 

muscles in our work, we have to decide on the imaging sequence to use. We explored a 

number of imaging sequences which included fast spin echo (FSE), gradient recall 

echo (GRE), spoiled gradient recall (SPGR) and fast low angle shot (FLASH). Figures 

2.4 and 2.6 show MR images acquired using the T1 FLASH sequence and Figure 2.7 

the images acquired using FSE, GRE and SPGR sequences. The T1 FLASH images 

are clearly superior in displaying the anatomy of the human masticatory muscles. 

Hence, in our work here, we acquired MR data using T1 FLASH (240mm FOV, 

TR=9.93ms, TE=4.86ms). This was done using a 1.5T MR scanner. 
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Figure 2.6: MR image with identified masseter regions. 

Though the selected MR imaging protocol is capable of displaying the anatomy of the 

human masticatory muscles, it should be noted that geometric distortion of the 

anatomy might be present in the MR data. Such distortion can occur due to magnetic 

susceptibility artifacts [42] and partial volume effects [43], among other factors. 

Magnetic susceptibility artifacts occur due to the different magnetic susceptibilities of 

different tissues which cause de-phasing and frequency shifts that result in image 

artifacts. Partial volume effects are due to the limited spatial resolution during imaging 

and the size of the image voxel is larger than the size of the feature to be imaged. 

Further description on the physical background and reduction strategies for MR image 

artifacts is in [44]. In addition, there are earlier works which ascertain the geometric 

accuracy of MR data. A previous study was carried out to determine whether MR data 

has sufficient geometric accuracy to allow implant planning based on it [45] and in 

another study, morphometric measurements of cadeveric lumbar spine obtained from 

MR data were compared against those obtained from the physical specimen [46]. As 

the emphasis of this thesis is on development of segmentation techniques for 
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segmenting the masticatory muscles, no experiments are performed to ascertain the 

geometric accuracy of the MR data here.  

  

 

(a) 

 

(b) 

 

(c) 

Figure 2.7: MR images acquired using (a) T1 weighted FSE,                                         

(b) T2* weighted GRE, (c) T1 weighted SPGR. 
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2.3 Data acquisition time 

The time taken to acquire each MR data set is a factor which we took into account in 

the data acquisition process as human subjects are involved. A longer scan time meant 

that there is a higher possibility of the subject moving thus resulting in motion artifacts. 

It took around ten minutes to acquire a MR data set from the mandible to the region 

just cephalad to the pinna and in order to scan the entire head, which includes the 

mandible and the entire brain, it took about fifteen minutes. The fifteen minute scan 

captures four masticatory muscles: masseter, lateral pterygoid, medial pterygoid and 

temporalis. But it is difficult for the subjects to remain stationary for the entire fifteen 

minutes. Using the ten minute scan, we were unable to capture the entire temporalis. 

However, the image quality was better with fewer motion artifacts. In our work here, 

we make use of data sets acquired using ten minute scans. 
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Chapter 3 

Analysis of CT data 

 

3.1 Introduction 

In this chapter, we deal with three-dimensional volumetric CT. The CT data used in 

our work here comprises a series of 2D images that exhibit axial cross-sections of the 

head. A CT image is a pixel map of the X-ray attenuation coefficient of the tissue 

within a cross-sectional plane. CT data is especially suitable for visualizing high-

density objects such as bones and clinicians commonly make use of it to extract skull 

information. A skull has to be extracted from CT data for the applications in 

craniofacial surgery that are concerned with the anomalies of the head and facial 

bones.  In addition to skull information, clinicians have to analyze the surface 

information of patients during diagnosis. 

 

It is observed that most clinicians commonly rely on facial scans and CT images, for 

surface and skull data respectively, in their diagnosis of patients. Such a practice may 

not be efficient. After identifying the area of interest from the facial scan, medical 

practitioners will still have to go through the process of locating the corresponding CT 

slices from the CT set. Furthermore, the facial and CT scans may have different 

resolution and this may hinder accurate diagnosis. 
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We introduce a process which includes extraction of both the skull and surface data 

from the CT slices, and construction of 3D geometric model which medical 

practitioners can depend on in their diagnosis of patients. 

 

3.2 Overview of proposed method 

Our proposed method (Figure 3.1) involves the use of thresholding for extracting the 

skull. For extraction of the surface data, thresholding is first used to extract the 

background followed by edge detection to extract the surface data. An arithmetic 

addition is performed to add the extracted skull data and extracted surface data 

together before applying volume rendering to construct the 3D model. 

 

3D Geometric model 

CT Slices 

Thresholding Thresholding 

Extracted Skull Extracted Background 

Sobel Filtering 

Extracted Surface Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Figure 3.1: Flow-chart of proposed method. 
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3.3 Extraction of skull 

Extraction of the skull in our proposed method is done using thresholding. 

Thresholding is traditionally used for extraction of a skull [47] and it is effective 

because the bone has higher Hounsfield number than the muscles, fats and tissues. A 

CT slice with its corresponding histogram are as displayed in Figure 3.2. 
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Figure 3.2: (a) A sample CT image, (b) Corresponding histogram of image. 
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From the histogram in Figure 3.2(b), it can be observed that the CT image consists of 

pixels with relatively low intensity values and relatively high intensity values, which 

implies that these pixels belong to the background and the bone respectively. In our 

early work [48], we did a manual selection of the threshold value after observing the 

histogram and successfully extracted the skull. The Otsu method is able to produce 

similar results. A sample of the extracted skull from the CT slice in Figure 3.2(a) is in 

Figure 3.3.  

 

 

Figure 3.3: Extracted skull of CT slice.  

 

We did a simple test to check if the skull has been satisfactorily extracted. An 

arithmetic subtraction is performed to subtract the extracted skull data (Figure 3.3) 

from the original CT slice (Figure 3.2) and the result is as displayed in Figure 3.4. 

Comparing Figure 3.4 with Figure 3.2 visually, it can be observed that the bright 

regions (skull data) in Figure 3.2 have been fully subtracted away, leaving behind only 

the darker regions.  

 



 25  

 

Figure 3.4: CT slice with skull data subtracted. 

 

3.4 Extraction of surface information 

Instead of making using facial scans to obtain the surface data, which is usually done, 

we will extract the surface facial data from the CT scan in a two-step process. The first 

step involves using the extraction of the background using thresholding. There are a 

number of techniques to determine a proper threshold value [49]. We have employed 

the Otsu method because of its reliability and computational efficiency [50]. The otsu 

threshold value determined by the method for the CT slice in Figure 3.2 is 93 and the 

extracted background is as shown in Figure 3.5. 

 

Figure 3.5: Extracted background of CT slice. 
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After extracting the background of the CT slice, the next task will be to obtain the 

surface data from the extracted background. This is achieved by making use of the 

 Sobel filter to obtain the edges of the extracted background. Sobel filtering is 

preferred because the Sobel operstors have the advantage of providing both a 

differencing and a smoothing effect [51]. Since derivatives enhance noise, the 

smoothing effect is a particularly attractive feature of the Sobel operators. The 

extracted surface data obtained after performing Sobel filtering on the image in Figure 

3.5 is displayed in Figure 3.6. 

33×

 

 

Figure 3.6: Extracted surface data of CT slice. 

 

An arithmetic addition is performed to add the extracted skull data (Figure 3.3) and 

extracted surface data (Figure 3.6) together. The resulting image is in Figure 3.7. 
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Figure 3.7: Extracted skull and surface data of CT slice. 

 

3.5 3D Reconstruction 

Surface rendering and volume rendering are two popular techniques to render objects 

in 3D. Surface rendering treats the object as having a surface of a uniform colour, 

while volume rendering directly displays a sampled 3D scalar field without first fitting 

geometric primitives to the sample. Volume rendering [52] is preferred to surface 

rendering here because the latter requires high quality scan and excellent skull 

extraction to show clean edges. An example of a reconstructed 3D volumetric model 

obtained through volume rendering is as displayed in Figure 3.8. 

 

Figure 3.8: Reconstructed 3D geometric model. 
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3.6 Results and discussion 

The CT data set (512 x 512; 1mm thickness) of a patient is being used to validate the 

effectiveness of the proposed process. The skull and surface data is first extracted from 

all the CT slices, after which, the 3D volumetric model is constructed. The resulting 

3D model is as presented in Figure 3.9, with increasing opacity. The actual profile of 

the patient is as shown in Figure 3.10. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Figure 3.9: 3D Geometric models with varying opacity. 



 29  

 

By varying the opacity of our 3D volumetric model, medical practitioners can choose 

to view the data of interest more clearly. With low opacity, the skull can be observed 

clearly but not the surface data, and when set to high opacity, the surface data can be 

observed clearly but not the skull.   

 

  

                                             (a)                                           (b) 

Figure 3.10: (a) Frontal and (b) Profile photos of a patient. 

 

We make a comparison between the 3D virtual human head in Figure 3.9 and the 

actual profile of the patient in Figure 3.10 visually, to determine if the 3D model 

constructed is accurate. It is observed that 3D model that we constructed is similar to 

the actual profile of the patient. From the profile, it can be observed that the patient is 

suffering from facial problem, but it is not possible to view the area of interest of the 

skull. However, based on the 3D model that we constructed, we are able to observe 

that this patient suffer from restriction of growth in the upper jaw that give rise to 

flattened facial appearance. The growth of the lower jaw however is normal. 
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From the 3D model that we have reconstructed, it is possible to observe both the skull 

and surface data. However, this may still not be a true representation of the human 

head because the human head also consists of various muscle groups and tissues. 

Medical practitioners will need to make use of Magnetic Resonance Imaging (MRI), 

which uses a magnetic field and pulses of radio wave energy, to provide images of the 

masticatory muscles and facial tissues.  

 

There has been on-going research to develop physical models of facial tissue and 

muscle articulation. One of the earliest facial models was developed by Waters and 

Terzopoulus [53]. Under that facial model, a tissue model is represented by a lattice of 

non-linear spring units with carrying visco-elastic properties. In more recent research 

[54], a generic 3D Finite Element Model of the face soft tissues was developed to 

describe the continuous mechanical behavior of the soft tissues. Despite continued 

efforts in development of pre-surgical facial models, it can be observed that there is a 

primary inadequacy in that these models do not take into account the location, shape 

and size of the human masticatory muscles which play a key role in one’s ability to 

chew and smile.  

 

The importance of the human masticatory muscles provides us with motivation to 

develop techniques for patient-specific modelling and segmentation of the human 

masticatory muscles which we will introduce in subsequent chapters. 
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Chapter 4 

Segmentation techniques for MR slices 

 

4.1 Introduction 

Segmentation is an important component of image analysis. It is essential for 

successful automated analysis of biomedical images and is a crucial step in numerous 

clinical and research applications, including three-dimensional visualization, 

volumetric measurement, image-guided surgery, radiotherapy planning and detection 

of changes over time. The detection of lesions and abnormalities is important for 

medical diagnosis, e.g., the segmentation of tumors from MR images.  

 

There are several common approaches for medical image segmentation and some 

examples are provided here. Thresholding is a simple yet often effective means for 

segmentation of images in which different structures have contrasting intensities. 

Connectivity-based thresholding finds a boundary between two regions using the path 

connection algorithm and changing the threshold adaptively [55, 56]. A major 

limitation of thresholding is that it does not take into account the spatial characteristics 

of an image and thus is sensitive to the noise, artifacts and intensity inhomogeneities 

that can occur in MR images. A recent approach, supervised range-constrained 

thresholding, uses prior knowledge to confine the analysis to the histogram of the 

region of interest (ROI). It has been applied to MR images and is able to give a good 

solution despite poor image quality [57]. Other examples of thresholding being 

instrumental in medical imaging include a local thresholding algorithm that determines 
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marrow intensity value in the neighborhood of each voxel based on nearest-neighbor 

statistics [58] and a multilevel thresholding technique that generates a contour map 

used for the identification of coherent regions [59]. 

 

Another popular technique for medical image segmentation is the active contour model 

which involves the use of an energy minimizing spline whose energy depends on its 

shape and location within the image. The traditional active contour model [60] has two 

primary drawbacks. Firstly, the initialization of the snake must be close enough to the 

desired contour in the image in order for the snake to evolve correctly towards the 

desired contour. A poor initialization will mean that the snake may be trapped in local 

minima. Secondly, the traditional snakes have difficulty evolving to concavities and 

sharp corners. The gradient vector flow (GVF) [26] was proposed as a new external 

force for snakes to solve the drawbacks of traditional snakes. As the GVF field is 

calculated as a diffusion of the gradient vectors of an edge map derived from the 

image, it greatly increases the capture range of the snake and the ability to move into 

boundary concavities. The GVF snake has been applied in numerous medical image 

analyses. It was used for surface extraction and thickness measurement of the articular 

cartilage from MR images. Gradient direction information was incorporated into the 

GVF model to make the snake more stable and converge to the correct surface, hence 

tracking the cartilage surfaces effectively [61]. In another application, the GVF snake 

was modified to contain both the local and global information of the contour, which 

made the snake more accurate and robust to blood vessel occlusions [62]. 

 

Another segmentation technique used in the work here is the watershed algorithm [21, 

63] which is a technique that has been widely used in medical image segmentation [64 
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- 66] due to its inherent advantages. Besides being a simple and intuitive method, it is 

able to produce a complete division of the image into distinct regions even when the 

contrast is poor, thus obviating the need to carry out any post-processing work such as 

contour linking [23]. In the watershed algorithm, the image is treated as a 

topographical surface in which the height of each point on the surface is given by its 

corresponding gray level. The set of pixels with the lowest regional elevation 

corresponds to the regional minimum. The minima of an image are the groups of 

connected pixels whose grey levels are lower than those of their neighbors. Based on 

the rainfall simulation approach of the watershed algorithm, a drop of water that falls 

onto any point of the surface will flow downwards along the path of steepest slope, 

eventually ending in a minimum. This is the catchment basin.  Watersheds are the 

boundaries of the different catchment basins. In image processing terms, the catchment 

basins are the image partitions that we seek to obtain, while the watersheds are the 

boundaries of the partitions. A graphical representation is in Figure 4.1. 
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Figure 4.1: (a) Topographical analogy of rainfall simulation by watershed algorithm, 
 

(b) Topographical representation of edge map when clustering is not carried out, 
 

(c) Topographical representation of edge map when clustering is carried out. 
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Despite its many advantages, the watershed technique has some drawbacks, such as 

over-segmentation and sensitivity to noise [23]. The result of watershed segmentation 

is a large number of small regions, which reduces its usefulness due to the severe over-

segmentation. In addition, the results obtained using the watershed transform are 

sensitive to local variations of the image, noise and false edges. 

 

Though numerous techniques have been proposed for medical image segmentation, 

there is currently none for the segmentation of the human masticatory muscles. This is 

a challenging task due to the close proximity between the muscles and their 

surrounding soft tissue, as well as the complicated structure of the muscles. Hence 2D 

followed by 3D segmentation techniques for the human masticatory muscles were 

studied. 

 

4.2 MR image segmentation using watershed algorithm 

4.2.1 Overview of proposed method  

The objective of our work here is to reduce the problem of over-segmentation posed by 

the watershed algorithm. In our improved watershed algorithm, we address the above 

drawbacks by (i) performing thresholding on the gradient magnitude image, and (ii) 

post-segmentation merging to merge the initial partitions formed by the watershed 

transform. When we applied our improved watershed algorithm to MR images, we 

observed that the problem of over-segmentation in MR images was due mainly to 

presence of fine textures irrelevant to the given segmentation task. We use clustering 

to address this problem. 

 



 36 

One commonly used clustering algorithm is the fuzzy C-means (FCM) which is a soft-

segmentation method [67 – 69] that has been used extensively [70]. Under soft 

segmentation method, voxels may be classified into multiple classes with a varying 

degree of membership. The FCM employs fuzzy partitioning such that a data point can 

belong to all clusters with different membership grades between 0 and 1. It is an 

iterative algorithm and its aim is to find cluster centers that minimize a dissimilarity 

function. Another commonly used clustering algorithm is the K-means clustering 

algorithm [71, 72]. The clusters produced by K-means clustering do not overlap, which 

is unlike those produced by FCM that employs soft partitioning. The K-means 

algorithm partitions data points into their respective clusters by minimizing a distance 

function. As compared to FCM, K-means clustering has a lower computational 

complexity. The performance of FCM also degrades significantly with increased noise.  

 

In our proposed approach (Figure 4.2), we use K-means clustering (because of its 

lower computational complexity) to provide an initial coarse segmentation of the 

highly textured image before applying the improved watershed segmentation 

algorithm. Experiments are conducted using this proposed method.  
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Figure 4.2: Flowchart of proposed improved watershed segmentation algorithm. 

(The optional integration of K-Means clustering is in the dotted box.) 

 
4.2.2 The proposed method 

4.2.2.1 Obtaining the improved gradient magnitude image 

In our improved watershed segmentation algorithm, Gaussian filtering is applied as a 

pre-processing step for image smoothing and to reduce presence of noise. The gradient 

magnitude image is obtained by applying the Sobel operator to the Gaussian-filtered 

image. We have also experimented with the Canny edge detector, and found that the 

results obtained by both methods are comparable. 

  

The total number of partitions that result from segmentation is dependent on the 

number of edges. Unlike the conventional watershed algorithm, false edges are 
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discarded by thresholding the gradient magnitude image to reduce the number of false 

edges. The threshold is selected to be the mean magnitude of all the edge pixels. Pixels 

whose gradient magnitudes are greater than the threshold retain their original values, 

while those with values less than the threshold are set to zero. 

 

4.2.2.2 Watershed segmentation: Initial partitioning 

The rainfall analogy states that any drop of water that falls onto the topographical 

surface will flow along the path of steepest descent to a minimum. On the image, a 3×3 

window is centered on each pixel and the steepest gradient direction computed. The 

center of the window is then shifted in the steepest gradient direction to the 

neighboring pixel. If there is more than one direction with the steepest gradient, the 

direction which was first computed is selected. This process is repeated until the path 

reaches a minimum. The pixels constituting the path adopt the label of that minimum. 

By scanning the image in a raster fashion, we repeat the rainfall simulation by tracing a 

path for all the pixels that are unlabelled. The paths reaching a common minimum 

adopt the same label as that minimum, and constitute the catchment basin, which is a 

partition in the image. 

 

4.2.2.3 Post-segmentation merging 

The initial segmentation map provides a complete division of the image with no under-

segmentation but there is a problem of over-segmentation. A segmentation map with 

fewer partitions is generally preferred because it will provide a better representation of 

the original image. Hence, we implement a post-segmentation merging step, based on 

spatial criteria, to reduce the number of partitions significantly. When segmenting the 

masticatory muscles, which are relatively large compared to smaller objects of interest 
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such as blood vessels, the reduction of over-segmentation by merging produces 

segmentation maps that are more representative of the targeted anatomical objects. 

 

Let the intensity value at point ( )yx,  in the original image be ( )yxI ,  and the initial 

partitions obtained from the watershed segmentation be { }NRRRRR ,...,,, 321= , where 

iR  denotes the thi partition and N the total number of partitions. Let the number of 

pixels in each partition iR  be denoted by iN . The mean intensity of each partition  iR  

is denoted by 

                                                 ∑
∈

=
iRyxi

i yxI
N

M
),(

),(1
                                         (4.1) 

Two measures are defined for neighbouring partitions iR and jR . The first measure is 

the difference in the mean intensities between partition iR and partition jR : 

                           jiij MMM −=                         (4.2) 

The second measure is the difference in the intensity values between the 8-connected 

neighbours of the boundary pixels belonging to partition iR and partition jR . We first 

let m represent a pixel which lies on the boundary of a region iR  and the set neighs(m) 

represents its 8-connected neighbors. We further define a set of pixels of the neighbors 

of all boundary pixels of a partition iR : 

                               { ( ) ( )}neighs , boundaryim iW v v m m R= ∈ ∈                          (4.3) 

The second measure is defined as: 
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where pixel imWP∈ , k is the number of pixels in imW  and b
iN  is the number of 

boundary pixels in partition iR . The second measure differs from the first in that it 

takes into consideration only the boundary pixels of the partitions. This measure is 

introduced based on the assumption that two regions which have pixels with similar 

intensities surrounding the boundary pixels should be merged. 

 

In addition, we introduce a criterion ijC , which is a measure of similarity in intensity 

values between two partitions iR and jR , and define it as the sum of ijM  and ijB : 

                         ijijij BMC +=                            (4.5) 

After determining ijC  for all partitions iR and jR , we calculate its mean and set it to be 

the threshold: 
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where ( )
iRVΘ  is the number of neighboring partitions surrounding partition iR . The 

indices of the partitions surrounding partition iR  define the set 
iRS . If ijC  is less 

than cT , partitions iR  and jR  are similar based on the spatial criterion and hence should 

be merged.  

 

The size of a partition was also considered before deciding whether we should merge it 

with another partition. When segmenting relatively large objects such as masticatory 

muscles, it is reasonable to merge only small regions because larger regions are, in 

general, representative of individual objects and hence should not be merged. The size 
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threshold is set to be the average size (in terms of number of pixels) of all the 

partitions: 

                                                     ∑
=

=
N

i
isize N

N
T

1

1                                                     (4.7) 

If the partition size is less than sizeT , the partition is small and not representative of an 

individual object, and should be considered for merging. Each partition whose size is 

smaller than sizeT  is compared with its neighboring partitions in terms of similarity in 

intensity.  

 

The post-segmentation merging procedure is summarized as follows: 

Step 1: Find the total number of partitions, iN . 

Step 2: Calculate ijC for all partitions and determine cT . 

Step 3: Calculate size of each partition and determine sizeT . 

Step 4: Go to each partition in the image (left to right, top to bottom). 

Step 5: If partition size sizeT<  and if ij cC T< , mark the two partitions for merging. 

Step 6: Merge all marked partitions and find the total number of partitions, 1iN + . 

Step 7: Iterate the entire procedure till  1i iN N+ = . 

 

4.2.2.4 K-means clustering with improved watershed algorithm  

It can be observed that MR images of the head are highly textured especially in the 

muscles regions where there is presence of muscle fibres. We apply K-means 

clustering to the histogram to obtain a coarse segmentation of the highly textured MR 

image.  
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K-means clustering is suitable for biomedical image segmentation when the number of 

clusters (K) is known [73]. An MR image of the head typically consists of regions 

representing bone, soft tissue, fat and air. A suitable value of K would be 4 for such 

images. It should be stressed that the number of clusters may not be equal to the 

number of partitions obtained after clustering because in our work, the K-means 

clustering algorithm operates on the histogram of the image. It classifies the pixels in 

the image with the number of clusters fixed a priori. The centroids of the clusters are 

initially placed at equal intervals away from each other. Next, we take each data point 

and associate it with the nearest centroid according to its Euclidean distance from the 

cluster means. When all points have been assigned to their respective clusters, an 

initial clustering has been obtained. The new centroids are calculated, from which we 

determine the new distance measure, in the form of a squared error function, between 

the same data points and the nearest new centroid. This process is carried out 

iteratively and terminates when the cluster means do not shift by more than a given 

cut-off value or the iteration limit is reached. 

 

In the resulting image after K-means clustering is applied, the highly textured areas are 

smoothened as neighbouring pixels with similar intensities are clustered. After 

clustering, all pixels within the same cluster are then assigned a common intensity 

value (the cluster centroid), and we have only K different intensity values compared to 

256 different intensity values in the original image. A graphical representation of the 

proposed method is in Figure 4.1.  

 

In image processing terms, the catchment basins are the image partitions that we seek 

to obtain, while the watersheds are the boundaries of the partitions (Figure 4.1(a)). 
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Without clustering, there is a total of 256 different intensity values (0-255) in the 

image. The presence of highly textured surfaces means that there are many local 

minima in the image, resulting in the formation of a larger number of watersheds when 

the rainfall simulation is applied (Figure 4.1(b)). After clustering, when the highly 

textured surfaces have been smoothened, there are fewer local minima on the edge 

map, and hence a smaller number of watersheds (Figure 4.1(c)). 

 

4.2.3 Experiments  

We compute the number of partitions in the segmentation maps obtained using (i) 

conventional watershed algorithm, (ii) improved watershed algorithm and (iii) K-

means clustering with improved watershed algorithm. We use σ = 1 in the Gaussian 

filtering process. The Sobel edge filter used is a 3 × 3 mask. When comparing the 

Sobel filter against the Canny filter, the parameters for the latter are: σ = 1, 3 × 3 edge 

detector, upper threshold = 0.5, lower threshold = 0.05.  

 

The above algorithms are applied to 60 MR images, with image size of 100 × 64 

pixels, to segment the masseter. The number of partitions in the final segmentation 

maps produced by (i) conventional watershed algorithm, (ii) improved watershed 

algorithm and (iii) K-means clustering with improved watershed algorithm are 

compared to evaluate the effectiveness of our proposed method in reducing over-

segmentation. Results obtained using our proposed method are also compared with 

those obtained using the gradient vector flow (GVF) snake and K-means clustering 

alone. The values of the parameters used in our GVF snake are: elasticity parameter = 

0.5, rigidity parameter = 0.5, viscosity parameter = 0.1, external force weight = 1. 
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The manual segmentations (Figure 4.3), which serve as the ground truth in the 

evaluation of our proposed method, are provided by an expert radiologist who has 

more than 15 years of clinical experience.  

Original Images Ground Truth 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

Figure 4.3: Original MR images and their corresponding ground truths. 
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To evaluate the consistency between our computerized segmentations and the manual 

segmentations, we use the κ  index [74]: 

         κ %100
)()(

)(2 ×⎟⎟
⎠

⎞
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⎝

⎛
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∩

×=
SNMN

SMN                                      (4.8) 

where M and S denote the masseter regions obtained by manual segmentations and the 

proposed method, respectively, M S∩  the intersection between M and S, and ( )N ⋅  

the number of pixels in a region. The masseter is located in the central portion of the 

60 test images used in our study. Hence, the partition in the center of the segmentation 

map produced by the proposed method can easily be identified as the masseter region 

S. The smallest value of κ  is %0  (no overlap) and the largest value is %100 (exact 

overlap). 

 

In addition, experiments employing different parameter values are carried out. We vary 

the gradient threshold from 0.5 to 1.5 times the average edge magnitude. The 

effectiveness of merging criteria ijM  and ijC  are compared based on the number of 

final partitions formed. Instead of using K = 4 for clustering, we use K = 6 and K = 8 

and compare the final segmentation results. It should be stressed that in our proposed 

method, we assume that small partitions are not representative of an individual object 

and should be considered for merging. 

 

4.2.4 Results 

Examples of segmentation maps obtained using the conventional and our improved 

watershed algorithms are shown in Figure 4.4. The mean number of partitions in the 

final segmentation maps and the extent of post-segmentation merging are listed in 

Table 4.1. On average, our improved watershed algorithm is able to produce 
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segmentation maps that have 95% fewer partitions than maps formed by the 

conventional algorithm. 

 

Original MR image Segmentation map using 
conventional algorithm 

Segmentation map using 
improved algorithm 

 

 
(a) 

 
342 partitions 

 
5 partitions 

 
(b) 

 
342 partitions 

 
8 partitions 

 
(c) 

 
328 partitions 

 
7 partitions 

 
(d) 

 
343 partitions 

 
14 partitions 

 

Figure 4.4: Segmentation results using improved watershed algorithm. 
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Table 4.1: Summarized results obtained using improved watershed algorithm. 

 

 
Number of MR 

images used = 60 

Number of partitions in 
segmentation map using 
conventional algorithm 

Number of partitions in 
segmentation map using 

improved algorithm 

 
Percentage of partitions 

merged (%) 

Mean 325 14.5 95.5 

Standard Deviation 24.7 3.51 1.10 

 

 

Table 4.2: Comparison of summarized results obtained using K-means clustering with 

improved watershed algorithm and GVF snake. 

 

 
Number of 
MR images 
used = 60 

Number of partitions 
in segmentation map 
using conventional 

algorithm 

Number of partitions 
in segmentation map 

using improved 
algorithm with K-
means clustering 

 
Percentage of 

partitions 
merged (%) 

 
κ  index using 

proposed 
method (%) 

 
κ  index 

using GVF 
snake (%) 

Mean 325 6.0 98.2 90.6 91.2 

Standard 
Deviation 24.7 1.35 1.41 1.74 1.58 

 

 

The summarized results obtained using K-means clustering with improved watershed 

segmentation algorithm are listed in Table 4.2 and examples of the segmentation maps 

are in Figure 4.5. The mean κ  index obtained is 90.6%. On average, K-means 

clustering combined with the improved watershed is also able to produce segmentation 

maps that have 98% fewer partitions than those maps formed by the conventional 

algorithm. 
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Original MR 
image 

MR image after  
K-means 
clustering 

Final 
segmentation map 

Segmentation 
map using 

conventional 
algorithm 

Final 
segmentation 

using GVF snake 

 

 
(a) 

 

 

 
 

4 partitions 

κ  = 91.8% 

 
342 partitions 

  

 
 
 
 

κ  = 92.6% 

 
(b) 

 

 
 

 
3 partitions 
κ  = 93.0% 

 
342 partitions 

 
κ  = 93.2% 

 

 
(c) 

 
 

 
4 partitions 
κ  = 92.1% 

 
328 partitions 

 
κ  = 91.8% 

 
(d) 

 
 

 
4 partitions 

κ  = 91.2% 

 
343 partitions 

 
κ  = 90.7% 

 

Figure 4.5: Results from K-means clustering with improved watershed algorithm. 

 

Using the GVF snake, the mean κ  index obtained is 91.2% (Table 4.2). Besides the 

GVF snake, we made use of K-means clustering alone to delineate the masseter. The 

mean κ  obtained is approximately 83%, which is much lower than the 90.6% obtained 

using the proposed method. K-means clustering alone is unable to fully delineate the 
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masseter. It is seen in the top right-hand portion of Figure 4.5(b) that small unwanted 

regions remain attached to the masseter after K-means clustering. 

 

4.2.5 Discussion 

4.2.5.1 Comparisons between conventional and proposed improved 

watershed algorithms 

We apply the improved watershed algorithm to segment the masseter from MR 

images. The results in Figure 4.4 show that there is a serious problem of over-

segmentation with the conventional watershed segmentation algorithm. Referring to 

Figure 4.4(b), the segmentation map produced by the conventional algorithm has 342 

partitions, in contrast to the 8 partitions resulting from the improved algorithm. Thus, 

98% of the initial partitions have been merged and the improvement factor is 342/8 = 

43. A better representation of the masseter has been obtained. 

 

Visual inspection of the segmentation results reveals that there is no visible under-

segmentation. However, the improved algorithm has not completely solved the 

problem of over-segmentation (Figure 4.4). This may be explained by the fact that 

regions with relatively similar intensities give rise to many local minima when the 

improved watershed algorithm is applied. We address this problem by making use of 

K-means clustering to smooth the inhomogeneous regions before applying the 

improved watershed segmentation algorithm. 
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4.2.5.2 Improved watershed algorithm with and without clustering 

The segmentation maps obtained using the improved watershed segmentation 

algorithm with and without K-means clustering are compared. In Figure 4.4(c), there 

are 7 partitions in the segmentation map produced by the improved watershed 

segmentation algorithm. When we apply K-means clustering combined with the 

improved watershed segmentation algorithm to the same image, we obtain a much 

improved segmentation map with only 4 partitions (Figure 4.5(c)). Compared with the 

segmentation map obtained using the conventional algorithm, which has 328 

partitions, the proposed method produces a segmentation map with 98% fewer 

partitions and a κ  value of  91.8%. 

 

4.2.5.3 Comparison between proposed method and GVF snake 

The segmentation results obtained using the proposed method are comparable to those 

obtained using the GVF snake (Figure 4.6).  The mean κ  values are 90.6% and 91.2%, 

for the proposed method and the GVF snake, respectively. It should be noted, 

however, that the proposed method has the advantage of lower computational 

complexity. With the GVF snake, correct initialization is critical; improper 

initialization will lead to longer computational time and inaccurate segmentation 

(Figure 4.6). Furthermore, good results with the GVF snake are highly dependent on 

correct tuning of the parameter values. 

 

4.2.5.4 Selection of threshold for magnitude of edge pixels 

In our work, thresholding of the gradient magnitude image was performed with the 

threshold set to the average magnitude of all the edge pixels. When the threshold is set 

to 1.5 times the average magnitude, there is under-segmentation and missing edges, 
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resulting in the targeted object not being fully delineated. In contrast, when the 

threshold is set to be 0.5 times the average magnitude, over-segmentation is present 

and we do not obtain a good representation of the targeted object. By selecting the 

average magnitude to be the threshold, we avoid under-segmentation and reduce over-

segmentation.  
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Original MR 
image 

Poor 
initialization 

Final 
segmentation 

Good 
initialization 

Final 
segmentation 

 
 

 

 

 

 

 
 

 

 
 

 

 
κ  = 92.6% 

 
 

 

 

 

 

 
 

 
     

 
 

       

 
κ  = 93.2% 

 
 

 
 

 

 

 

 
 

 
 

 

 

 
κ  = 91.8% 

 

 

 

 

 
 

 
 

 

 

 

 
κ  = 90.7% 

 

Figure 4.6: Segmentation results obtained using GVF snake. 
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4.2.5.5 Sensitivity to merging criteria, ijM  and ijC  

If ijM , instead of ijC , is used as the similarity criterion, the results (Figure 4.7) are not 

as good. As observed in Figure 4.7(d), using ijM  produces a final segmentation map 

with 20 partitions; with ijC , the final segmentation map has 15 partitions. 

Original MR image 
Segmentation map 
using conventional 

algorithm 

Segmentation map 
using improved 

algorithm (Mij as 
merging criterion) 

Segmentation map 
using improved 
algorithm (Cij as 

merging criterion) 
 

 
(a) 

 

 
342 partitions 

 

 
22 partitions 

 

 
19 partitions 

 
 

 
(b) 

 

 
342 partitions 

 

 
17 partitions 

 

 
15 partitions 

 
 

 
(c) 

 

 
328 partitions 

 

 
13 partitions 

 

 
10 partitions 

 
 

 
(d) 

 

 
343 partitions 

 

 
20 partitions 

 

 
15 partitions 

 
 

Figure 4.7: Comparison between results obtained using different merging criteria. 
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4.2.5.6 Sensitivity to number of clusters (K) 

We have been using K = 4 for K-means clustering since we have prior knowledge that 

the regions in the MR images represent bone, soft tissue, fat and air. The results 

obtained with K equal to 4, 6 and 8 are shown in Figure 4.8. It is clear that the 

segmentation results are very similar. Hence, even though the actual number of regions 

is not known a priori, an estimate of K obtained by visual inspection may be used with 

satisfactory outcomes. 

 

Original MR image MR image after K-
means clustering 

Final segmentation 
map 

  
K = 4 

 

  
K=6 

 

  
K = 8 

 

 

Figure 4.8: Segmentation results using different values of K during clustering. 
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4.2.5.7 Limitations of proposed method 

It should be stressed that the proposed method has been designed for the segmentation 

of relatively large objects such as the masseter that we have used for illustration in this 

paper, and may not be generalized to segmentation of small objects such as blood 

vessels. This is because during post-segmentation merging, we have assumed that 

larger regions are representative of individual objects and hence should not be merged. 

For segmentation of smaller objects, other algorithms [75 - 77] may be more 

appropriate.  

 

4.3 MR image segmentation using model-based approach 

4.3.1 Overview of proposed method 

It has been mentioned earlier in Section 4.2.5.3 that in order for the GVF snake to 

produce a good segmentation in our application here, we will need to have a good 

initialization. In this section, a model-based method for automatically initializing the 

GVF snake and obtaining good segmentations is presented. 

 

The proposed method is a two-stage process (Figure 4.9). In the training stage, we use 

reference MR images in which the targeted muscles have been manually segmented to 

determine the spatial relationships between the head region of interest (ROI) and 

targeted muscle ROI. The targeted muscle and head ROIs are the bounding boxes of 

the muscle and head regions, respectively, in a 2D image (Figure 4.10(a)). The manual 

segmentations of the muscles are also used to construct muscle templates which are 

employed in the segmentation stage to discard unwanted background pixels in the 

study image. An initial segmentation is obtained by using morphological operators and 
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this serves as the input contour to the GVF snake which iterates to obtain the final 

segmentation result. The proposed method is used to segment the masseter, lateral 

pterygoid and medial pterygoid, shown in Figure 4.11, from 2D MR images.  

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 
 
 

Figure 4.9: Overview of methodology. 
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(b)

(c) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Figure 4.10: Spatial relationship between 

(a) boundary of head ROI and origin of masseter ROI, 

(b) origin of head ROI and origin of lateral pterygoid ROI, 

(c) origin of head ROI and origin of medial pterygoid ROI. 

Head ROI

Muscle ROI

(a) 
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Masseter 

Lateral Pterygoid 

Medial Pterygoid 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Masticatory muscles in MR T1 FLASH image. 

 

4.3.2 The proposed method 

4.3.2.1 Acquisition of prior knowledge 

The masticatory muscles in the training data sets are first manually segmented by a 

medical expert. The first 2D axial slice in each data set is in the region of the orbit 

while the last slice is in the neck region. We assign a start index Ii to the axial slice in 

which the targeted muscle first appears and an end index If to the axial slice in which 

the targeted muscle last appears in the data set. In addition, we introduce the 

normalized slice index In for a MR slice Ir which lies between Ii and If : 

                                                           
if

ir
n II

III
−
−

=                                                     (4.9) 
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For each of the five training data sets, we compute the relative location of the MR slice 

Il which has the largest surface area of the targeted muscle. This serves as the reference 

slice. The average values of Il for the masseter, lateral pterygoid and medial pterygoid 

are 0.487, 0.383 and 0.423, respectively. The actual Il in the training data sets ranges 

from 0.477 to 0.494, 0.368 to 0.395 and 0.405 to 0.440 for the masseter, lateral 

pterygoid and medial pterygoid, respectively. 

 

Having selected the reference slice from each data set for each of the muscles, we now 

automatically detect the head ROI (Figure 4.12(a)) from the projections of the image in 

the horizontal and vertical directions (Figure 4.12(b)).  

 
 
 

 
 
 
 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 

 

 

                                              vertical                                                             horizontal                                             

(b) 

Figure 4.12: (a) Head ROI, (b) Projections in vertical and horizontal directions. 
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The masticatory muscles are paired muscles with symmetrical origins and attachments 

on each side of the midline. The masseter has a lateral origin and attachment, and is 

centered laterally to the ramus of the mandible. The medial and lateral pterygoid 

muscles have medial origins on the pterygoid processes and lateral attachments to the 

ramus and neck of the mandible, respectively. We make use of this anatomical 

information, together with our observations from the five training data sets to specify a 

spatial relationship between the ROI of each masticatory muscle and the head ROI in 

the reference slice. 

 

The spatial relationship between the head and masseter ROIs (Fig. 4.10(a)) is specified 

in terms of the distance between the boundaries of the head ROI and the origin of the 

masseter ROI. For a reference slice of the masseter, the distances 111111 ,,,,, nmkjwl  

(Fig. 4.13(a)) are measured and the relative distances calculated as follows: 

                             
1

1
,1 l

m
m r =  , 

1
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n
n r =  , 

1
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,1 l

kk r =  , 
1

1
,1 w

jj r =                           (4.10) 

To obtain a good estimate of the spatial relationship, we use the mean values of 

rrrr jknm ,1,1,1,1 ,,,  obtained from the five reference slices.  

 

The model of the muscle requires a template of the muscle region in addition to the 

spatial relationship. This is obtained by first manually tracing the masseter boundary 

on each of the five reference slices. The boundary (or contour) is represented as a 

linked list of points whose coordinates are normalized to the length and breadth of the 

head ROI to allow for different head sizes. The five masseter contours are aligned 

using their centroids, and the mean contour obtained by averaging the radial distances 
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for each unit polar angle from 0 to 360 degrees. The mean contour is the template of 

the masseter. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

(a)  

 

 

 

 

 

 

 

 

                                                                                 i = 2 for lateral pterygoid 

                                                                                                i = 3 for medial pterygoid 

(b)  

 

Figure 4.13: (a) Spatial relationship between head and masseter ROIs,  

(b) Spatial relationship between head and lateral pterygoid ROIs in reference images. 
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The spatial relationships between the head and the lateral and medial pterygoid ROIs 

(Figure 4.10(b) and Figure 4.10(c)) are specified in terms of the distance from the 

origin of the head ROI to the origin of the muscle ROIs. Following the procedure used 

for the masseter, we measure the various spatial distances 222222 ,,,,, nmkjwl for the 

lateral pterygoid (Figure 4.13(b)) and calculate the relative distances rrrr jknm ,2,2,2,2 ,,,  

of each of the five reference slices from the five training data sets. This procedure is 

also used for the medial pterygoid where we first measure 333333 ,,,,, nmkjwl  followed 

by calculation of rrrr jknm ,3,3,3,3 ,,, . The process of constructing the templates of the 

lateral and medial pterygoids follows that for the masseter. 

 

4.3.2.2 Segmentation of muscles from MR slices in study datasets 

Given an image from the study data set, the system first automatically determines the 

head ROI based on the vertical and horizontal projections (as described in the previous 

section). The system then makes use of the spatial relationship between the targeted 

muscle ROI and the head ROI to identify the targeted muscle ROI in the study image. 

A combination of image processing techniques, which includes anisotropic diffusion, 

template correlation and GVF snake, is used to arrive at the final segmentation. 

 

Given that the width and length of the head ROI in the study image are ia  and ib , 

respectively, where 3,2,1=i  denotes the masseter, lateral pterygoid and medial 

pterygoid, respectively, we derive equations for the spatial parameters , , ,i i i ic d e f  

(Figure 4.14): 

                      ,i i i rc a j s=  ,  ,i i i rd b k s=   , ,i i i re a n s=   ,  ,i i i rf b m s=                      (4.11)                         
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                                                                                 i = 2 for lateral pterygoid 

                                                                                                i = 3 for medial pterygoid 

(b) 

 

Figure 4.14: (a) Spatial relationship between head and masseter ROIs,  

(b) Spatial relationship between head and lateral pterygoid ROIs in study images. 
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and maximum values of s are found to be 1.3 and 2.5, respectively. The selection of an 

appropriate value of s is further discussed in Section 4.3.5. When s is 2.5, our method 

is applicable to images that have been rotated 15° clockwise or anti-clockwise from the 

upright position. The selection of an appropriate value of s is further discussed in 

Section 4.3.5. 

 

The muscles consist of bundles of multinucleated cells known as muscle fibers, which 

give rise to a highly textured appearance in the MR image. An image of the masseter 

with its muscle fibers is shown in Figure 4.15. Inaccurate results will be produced 

when we apply active contour and GVF techniques to such textured regions, thus 

necessitating prior image smoothing with anisotropic diffusion [32] (number of 

iterations = 20, time-step = 0.2, one smoothing per iteration) which encourages intra-

region smoothing while inhibiting inter-region smoothing. 

 

 

 

 

 

Figure 4.15: Masseter with its muscle fibers. 

 

The muscle ROI comprises soft tissue, fat and bone. Compared to soft tissue, bone has 

relatively low and fat relatively high intensity values. Using this knowledge, we are 

able to approximately separate the soft tissue from the bone and the fat. We make use 

of the fuzzy c-means (FCM) algorithm [78] with three clusters to divide the muscle 

ROI into three different clusters. As the defined ROI is small, the difference in 

Masseter 
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computation times taken by FCM and K-means clustering is insignificant. After the 

ROI has been clustered, thresholding is then carried out, with the lower and upper 

thresholds being the minimum and maximum intensity values of the second cluster, to 

form the binary image of the ROI. We discuss the effect of using four clusters in 

Section 4.3.5. 

 

The templates of the masseter, lateral and medial pterygoids are shown in Figure 4.16. 

The targeted muscle template ( 1 2T T×  pixels) is moved from left to right, top to bottom 

across the targeted muscle ROI ( 1 2R R×  pixels). We measure the amount of overlap 

between the ROI and the template at each position and this is done 1 1 2 2( )( )T R T R− −  

times. If the regions in the targeted muscle ROI and the template overlap by 75% or 

more, we note the positions of the overlapping pixels. We discuss the effect of 

changing the threshold value to 65% and 85% in Section 4.3.5. 

 

 

 

 

                         

                                      (a)                              (b)                               (c) 

 

Figure 4.16: Templates of (a) masseter, (b) lateral pterygoid, (c) medial pterygoid. 

 

After all the checking has been done, a binary image is formed with the pixels noted 

earlier taking a value of ‘1’. Morphological opening is then applied to the binary image 

to open the connections between the muscle region and its surrounding soft tissue. 
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Connected component labelling [79] is employed to find the largest connected 

component. Morphological closing is used to fill up the holes in the resulting image. 

The initial segmentation of the muscle is thus obtained. The edge map of the initial 

segmentation is derived using Canny filter [80] and used to initialize the GVF [26] 

snake for refining the initial segmentation of the muscle. 

 

The use of GVF snake is preferred over the conventional active contours or snakes 

which are curves that move within images to find object boundaries. The curve is 

represented by: 

                                                ( ) ( ) ( )[ ]sysxs ,=Χ , [ ]1,0∈s                                        (4.12) 

and it deforms through the image to minimize the energy function: 

                                   ( ) ( )( ) ( )( ) dssEssE ext∫ ⎥⎦
⎤

⎢⎣
⎡ Χ+Χ+Χ=

1

0

22 "'
2
1 βα                        (4.13) 

where α  and β  are parameters representing the degree of the smoothness and 

tautness of the contour respectively. ( )s'Χ  and ( )s"Χ  are the first and second 

derivatives of ( )sΧ  with respect to s . The external energy extE  is derived from the 

image and set to small values at features of interest. As object boundaries are usually 

of high gradient in the image ( )yxI , , a typical example of external energy for seeking 

the edges is given as: 

                                          ( ) ( ) ( )[ ] 2,,, yxIyxGyxEext ∗∇−= σ                                 (4.14) 

where ( )yxG ,σ  is a 2D Gaussian function with standard deviation σ . ∗  denotes linear 

convolution and ∇  denotes the gradient operator. The external force extF  is derived 

from external energy and defined so as to attract the snake to strong edges: 
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                                            ( ) ( )Χ−∇=Χ extext EF                                               (4.15) 

GVF was proposed as a new external force for snakes to solve the drawbacks of 

traditional snakes. The GVF field is the vector field: 

                                               v ( ) ( ) ( )[ ]yxvyxuyx ,,,, =                                            (4.16) 

that minimizes the energy function: 

                                ( ) yxffvvuu yxyx ∂∂∇−∇++++= ∫∫
222222 vμε                       (4.17) 

where extEf −=  is an edge map derived from the image, and μ  is a parameter 

controlling the degree of smoothness of the vector field. By replacing the external 

force extF  by the GVF field v, a solution for GVF snake can be obtained.  

 

4.3.3 Experiments 

Our proposed method was applied to five MR study data sets. The user is required to 

input Ii and If for each of the targeted muscles in each data set. The reference slice will 

then be automatically derived. For each muscle, we performed 2D segmentation on the 

reference slice of the muscle, as well as on the two slices superior and two slices 

inferior to the reference slice. Hence, a total of 75 segmentation results (25 for each 

muscle) were obtained. The values of the parameters used in our GVF snake are: 

elasticity parameter = 0.5, rigidity parameter = 0.5, viscosity parameter = 0.1, external 

force weight = 1. The consistency between our computerized segmentations and the 

manual segmentations was evaluated using the κ  index which was introduced earlier 

in equation 4.8. 

 

In addition, we make use of false positive rate (FPR) to measure the probability of the 

method incorrectly giving a positive result:  
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                                        FPR %100
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where ( )pFN  denotes the number of pixels which the method incorrectly determines 

as positive. The false negative rate (FNR) gives the probability of a negative result: 

                                         FNR %100
)(
)(
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

MN
FN n                                        (4.19) 

where ( )nFN  denotes the number of pixels which the method incorrectly determines 

as negative. 

 

In addition to experiments carried out to check for the accuracies of the segmentations 

obtained using our proposed method, other experiments were carried out to analyze the 

sensitivity to scaling factor s and image rotation of our proposed method. Parameters 

such as the number of clusters used in FCM clustering and overlap threshold were also 

justified empirically. 

 

4.3.4 Results 

We perform 2D segmentation of the masseter on a total of 25 MR images from the five 

study data sets. In Figure 4.17, we show a set of masseter results obtained after each 

stage. In Figure 4.18, we display another 10 segmentation results of the masseter from 

different MR images. The above results are obtained using s = 1.3. Numerical 

validations are performed on the 25 segmentation results by comparison with the 

ground truths, with the results tabulated in Table 4.3. The meanκ , FPR and FNR are 

91.4%, 7.8% and 9.4%, respectively. 
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Original MR image MR image with identified ROI of 
masseter Original masseter ROI 

 

 

 

 

 

 

 

 

ROI after anisotropic 
diffusion filtering ROI after thresholding ROI after checking for 

overlap with template 

ROI after 
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ROI after removing unwanted regions 
via connected components labelling Initialization of GVF snake Final Segmentation of the 

masseter 
 

 

 
 

 

             

              

 

Figure 4.17: Results at each stage for segmentation of masseter.  
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(a) (b) (c) (d) (e) 

 

 

 

 

  

 

 

 

 

(f) (g) (h) (i) (j) 

 
Figure 4.18: Segmentations of masseter from 10 different MR images. 
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Table 4.3: Validation results on segmentation of masseter. 

 

The ROIs of the lateral pterygoid and medial pterygoid identified by our proposed 

method are shown in Figures 4.19(a) and 4.19(b), respectively. They are obtained 

using s = 1.3. Five sets of segmentation results for the lateral pterygoid are displayed 

in Figure 4.20 and five sets of segmentation results for the medial pterygoid in Figure 

4.21. The average κ , FPR and FNR are 92.1%, 5.9%, 9.9%, respectively, for the 

lateral pterygoid (Table 4.4), and 91.2%, 8.6%, 9.1%, respectively, for the medial 

pterygoid (Table 4.5).  

 

 

 

 

                                              (a)                                                       (b) 

Figure 4.19: Identified ROI of (a) lateral pterygoid, (b) medial pterygoid. 

Image 
Index κ (%) FPR (%) FNR (%) Image 

Index κ (%) FPR (%) FNR (%) 

1 93.0 2.6 11.4 14 91.8 10.3 6.1 

2 93.5 3.8 9.2 15 90.2 9.5 10.1 

3 92.8 4.5 9.9 16 87.8 9.7 14.7 

4 91.3 6.3 11.1 17 90.8 7.3 11.1 

5 92.8 7.7 6.7 18 92.0 9.2 6.8 

6 90.6 11.6 7.2 19 91.5 7.4 9.6 

7 89.5 10.4 10.6 20 90.3 8.2 11.2 

8 91.5 5.8 11.2 21 91.4 6.3 10.9 

9 90.2 9.8 9.8 22 91.8 7.1 9.3 

10 88.6 9.2 13.6 23 93.3 5.2 8.2 

11 91.2 10.6 7 24 92.1 5.8 10 

12 92.4 10.9 4.3 25 91.6 7.9 8.9 

13 93.0 7.5 6.5 Mean 91.4 7.8 9.4 
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Result Original ROI of lateral 
pterygoid 

Initialization of GVF 
snake 

Final segmentation of lateral 
pterygoid 
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Figure 4.20: Segmentation results of lateral pterygoid. 
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Result Original ROI of medial 
pterygoid 

Initialization of GVF 
snake 

Final segmentation of 
medial pterygoid 
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Figure 4.21: Segmentation results of medial pterygoid. 
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Table 4.4: Validation results on segmentation of lateral pterygoid. 

 

Table 4.5: Validation results on segmentation of medial pterygoid. 
 

 
 
 

Image 
Index κ (%) FPR (%) FNR (%) Image 

Index κ (%) FPR (%) FNR (%) 

1 93.6 5.7 7.1 14 91.3 6.1 11.3 

2 93.8 4.3 8.1 15 91.0 5.5 12.5 

3 95.2 3.2 6.4 16 88.9 7.7 14.5 

4 92.4 5.8 9.4 17 91.7 7.2 9.4 

5 91.8 6.0 10.4 18 93.0 4.5 9.5 

6 90.8 5.5 12.9 19 92.4 7.5 7.7 

7 91.2 7.8 9.8 20 90.5 9 10 

8 92.0 5.7 10.3 21 91.9 6.3 9.9 

9 92.2 6.2 9.4 22 92.8 5.9 8.5 

10 91.5 9.4 7.6 23 95.3 3.2 6.2 

11 89.8 5.6 14.8 24 93.1 5.1 8.7 

12 91.0 4.3 13.7 25 92.6 6.5 8.3 

13 92.8 3.8 10.6 Mean 92.1 5.9 9.9 

Image 
Index κ (%) FPR (%) FNR (%) Image 

Index κ (%) FPR (%) FNR (%) 

1 91.2 8.7 8.9 14 90.5 9.7 9.3 

2 92.5 7.1 7.9 15 88.5 8.5 14.5 

3 92.8 5.5 8.9 16 90.8 7.2 11.2 

4 92.1 7.3 8.5 17 91.5 8.1 8.9 

5 91.8 9.2 7.2 18 92.1 9.2 6.6 

6 89.6 10.6 10.2 19 90.9 10.1 8.1 

7 92.0 9.2 6.8 20 89.5 9.3 11.7 

8 93.3 8.5 4.9 21 90.4 7.3 11.9 

9 91.1 9.2 8.6 22 90.8 8.1 10.3 

10 89.6 9.6 11.2 23 92.3 9.2 6.2 

11 91.9 8.8 7.4 24 91.8 9.7 6.7 

12 91.5 7.5 9.5 25 87.1 8.8 17 

13 93.7 7.8 4.8 Mean 91.2 8.6 9.1 
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4.3.5 Discussion 

4.3.5.1 Accuracy of segmentation results 

Segmenting the masticatory muscles from MR images is difficult because a muscle 

and its surrounding tissue have similar gray levels, often with no distinct boundaries 

between them. Despite this, our proposed method, which involves prior knowledge of 

the location and a template of the muscle, is able to segment with average κ  greater 

than 90%. In the process, the problem of providing good initializations to the GVF 

snake was solved. The proposed method was also applied to the segmentation of the 

masseter, lateral and medial pterygoids.  

 

By training the system using the spatial relationship between the head ROI and muscle 

ROI, the system is able to automatically determine the muscle ROI in a study image. 

In Figure 4.17, the output at each stage of the method for segmenting the masseter is 

displayed. The soft tissue is approximately separated from the fat and bone through 

FCM with three clusters. In the ROI after thresholding, soft tissue is present together 

with muscles. By checking for the overlap between the template and the regions in the 

ROI, we are able to remove the majority of the unwanted soft tissue. After checking 

for overlap with the template, small unwanted regions remaining in the muscle ROI are 

then removed through the use of connected components labelling. This gives us an 

initial segmentation of the muscle. 

 

The initialization process for the GVF snake is automatic. The initial segmentations 

serve as good initializations for the GVF snake; since they are close to the actual 

boundaries of the muscles, relatively little iterations are required before the GVF snake 

converges. Furthermore, accurate segmentations are, to a certain extent, dependent on 
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the initial state. Our method to initialize the GVF snake proves to be good as we are 

able to obtain κ better than 90%. 

 

The presence of clear, distinct boundaries and the proximity of the initialization to the 

GVF snake affect the accuracy of our segmentation results. A better accuracy will be 

achieved when there are clear boundaries between the masseter and its surrounding 

soft tissue (κ = 93.5%, Figure 4.18(d)). On the contrary, the lack of a distinctive 

boundary may result in a less accurate segmentation (κ = 89.5%, Figure 4.18(a)). 

Referring to Figures 4.18(g) and (h), leakages can be observed in the segmentation 

results as some parts of the initializations were near to surrounding soft tissue.  

 

4.3.5.2 Sensitivity to scaling factor s and rotation of MR image 

In Section 4.3.2.2 we introduce a scaling factor s to enlarge the muscle ROI in the 

study image. A larger ROI may be needed to ensure that the muscle is fully enclosed in 

it. The ROIs with s = 1, 1.1, 1.2, are shown in Figure 4.22. The ROI will fail to fully 

enclose the muscle for s below 1.2.  

 

 

 
 
      
 
 
 
 

 

                         (a)                                                      (b)                                                     (c)                        

Figure 4.22: Masseter ROI when (a) s = 1, (b) s = 1.1, (c) s = 1.2. 
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We have also tested our method for its robustness to situations where the image is 

rotated by 15° to the left and right, or 15° up and down from the upright position. To 

handle such cases, s needs to be as large as 2.5. The segmentation results are shown in 

Figure 4.23. It can be observed that for s = 2.5, the ROI will contain more spurious 

components compared to s = 1.3. However, by checking for the overlap between the 

ROI and the template, together with morphological operators, the method is able to 

provide good initializations to the GVF snake; the average κ  of the segmentation 

results shown in Figure 4.23 is greater than 90%. For values of s greater than 2.5, it 

can be observed that the ROI contains more soft tissue that has relatively similar 

intensity values to the muscle, and hence the results may not be as good. The 

validation shows that our proposed method is tolerant to a 15° rotation of the head. 

Even though the model is 2D in nature, it is tolerant to a rotation of 15° and can be 

applied to two neighbouring slices. This is an encouraging sign of a good model. When 

dealing with data sets where the head has been rotated by more than 15°, a solution 

will be to locate the midsagittal plane (MSP) in the image [81] and rotate the image till 

the MSP is in an upright position. 
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Figure 4.23: Segmentation results of the masseter when image is rotated. 
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4.3.5.3 Justification of parameters 

Throughout our work presented in Section 4.3, we have made use of FCM with three 

clusters. Figure 4.24 displays the segmentation results through FCM with four clusters. 

When we change the number of clusters from three to four, the average interval 

between the lower and upper thresholds is reduced from 100 to 70. The size of the 

remaining region after thresholding is smaller, and the probability of forming an 

overlap with the template at 75% or more decreases. Hence, the initialization of the 

GVF snake falls within the boundaries, and the GVF snake may be trapped in local 

minima as it propagates outwards. Compared to using FCM with three clusters, κ  

decreases and FNR increases. It is also possible that no region in the ROI overlaps 

with the template at 75%, as shown in the second result of Figure 4.24. 

 

The objective of checking for the overlap between template and ROI is to reduce the 

amount of unwanted soft tissue in the ROI. It is mentioned in Section 4.3.2.2 that we 

set the threshold for the overlap between template and muscle ROI to be 75%. Instead 

of 75%, we have also experimented with 65% and 85%, with the segmentation results 

shown in Figure 4.25 and Figure 4.26, respectively. From Figure 4.25, it can be 

observed in the first and third result that, when the overlap is 65%, we are still able to 

obtain good segmentations of the masseter. However, it is also possible that there is 

minimal removal of unwanted soft tissue, as observed in the second result. The 

initialization of the GVF snake falls in the unwanted soft tissue and the snake does not 

converge to the muscle boundary. Compared to setting the overlap to 75%, κ  

decreases and FPR increases. In contrast, when we set the amount of overlap to be 

85%, there may be excessive removal of soft tissue. Hence the initializations of the 

GVF snake tend to lie within the actual boundaries of the muscle as observed in Figure 
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4.26. In such situations, as the snake grows outward, it may be trapped in local minima 

and not converge to the actual boundaries. When the overlap threshold is set within 

(65%, 85%), the segmentation results are reasonable (κ > 90%), so for all the 

experiments we set the parameter as 75%. 
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Figure 4.24: Segmentation results of the masseter when FCM clusters = 4. 
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Figure 4.25:  Segmentation results of the masseter when overlap = 65%. 
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Figure 4.26: Segmentation results of the masseter when overlap = 85% 
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4.4 Segmentation of temporalis from MR image 

4.4.1 Overview of proposed method 

In Section 4.3, a method was presented for segmentation of the masseter, lateral and 

medial pterygoids. The focus of this section is on the segmentation of the temporalis. 

The method proposed in Section 4.3 which relies on the GVF snake does not give good 

segmentations of the temporalis and this will be discussed in Section 4.4.5.  

 

The flowchart of the proposed method is in Figure 4.27. Similar to the earlier method, 

a spatial relationship relating the temporalis ROI to the head ROI is first obtained from 

reference images in the training data sets where the temporalis has been manually 

segmented. The temporalis ROI is automatically detected in a study image. Range-

constrained thresholding [57] is used to roughly remove the fat, white matter, 

cerebrospinal fluid (CSF) and muscle tendon in the ROI. This is followed by the use of 

adaptive morphological operations to first remove the brain tissue, followed by 

removing other soft tissues surrounding the temporalis, before finally deriving the final 

segmentation.  

 

Stage 1: Knowledge acquisition on spatial relationship between head ROI and temporalis ROI 

 

 

    

 
 
 
 
 
 

Input reference image 

Head ROI detection

Temporalis ROI detection 

Relate head ROI to temporalis ROI
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Stage 2: Segmentation of temporalis in study image 

 
 
 
 
 
 
 
 
 
 
 
 
              
 
 
  

 

Figure 4.27: Flow-chart of proposed method. 

 

4.4.2 The proposed method 

4.4.2.1 Selection of reference slice from each MR dataset 

We made use of the same MR datasets used in Section 4.3 for this section. They were 

acquired using a imaging protocol which scans the entire masseter and pterygoids. 

However, a small segment of the temporalis that is cephalad to the pinna is not 

imaged, but this does not have any significant effect on the development of the 

proposed method. We selected the reference slice for the temporalis at the level just 

cephalad of the pinna. Currently this selection is done manually, but it can be 

automated via tracking the contour of the head boundary.  

 

Input study image 

Head ROI detection

Automatic temporalis ROI detection

Apply range-constrained 
thresholding to temporalis ROI 

Remove brain tissue 

Remove soft tissue connected to 
temporalis 
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4.4.2.2 Spatial relationship between temporalis and head ROIs 

From the reference MR images (one from each of the five training data sets), we 

determine the spatial relationship between the head and temporalis ROIs. The 

temporalis and head ROIs are the bounding boxes of the temporalis and head regions, 

respectively, in a 2D MR image. This spatial relationship serves as the prior 

knowledge for training the system to identify the temporalis ROI in the study image.  

 

In each reference image, the head ROI is determined through the projections of the 

image in the x  (horizontal) and y  (vertical) directions. The temporalis ROI is defined 

to be the bounding box of the manually segmented temporalis in the reference image.  

 

The spatial relationship between the head and temporalis ROIs (Figure 4.28) is 

specified in terms of the distance between the boundaries of the head ROI and the 

origin of the muscle ROI.  

 

 

 

 

 

 

Figure 4.28: Spatial relationship between head and temporalis ROI in reference image. 

 

For a reference image of the temporalis, the distances 111111 ,,,,, hvkjwb  (Figure 4.29) 

are measured and the relative distances calculated as follows: 

 

Temporalis 
ROI 

Head ROI 
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To obtain a good estimate of the spatial relationship, we use the mean values of 

rrrr jkvh ,1,1,1,1 ,,,  obtained from the five reference images. 

 

4.4.2.3 Detection of temporalis ROI in study images 

Given an image from the test data set, the system first automatically determines the 

head ROI based on the vertical and horizontal projections. Given that the width and 

length of the head ROI in the study image are 2w and 2b , respectively, we derive 

equations for the spatial parameters 2222 ,,, hvkj : 

                                 sjwj ir22 = , skbk ir22 = , svwv ir22 = , shbh ir22 =                         (4.21) 

The graphical representation can be found in Figure 4.14(a) in the earlier section, 

where the parameters here, 2222 ,,, hvkj  are represented by 1111 ,,, cdfe respectively. 

Parameter s is a scaling factor introduced to allow for the slight variations in location, 

shape and size of the muscles between different subjects. In our work, the value of s is 

set to 1.3. We discuss the effects of varying s in Section 4.4.5. 

 

4.4.2.4 Range-constrained thresholding on temporalis ROI 

Having determined the temporalis ROI (Figure 4.29(a)), we apply the default fuzzy C-

means (FCM) clustering [78] in Matlab 7.0 for an initial segmentation of the 

temporalis ROI. While we use FCM with four clusters in our work, experiments show 

that FCM with three clusters yields similar final results. We denote the fraction of the 

pixels belonging to the clusters with the lowest and highest mean intensities as 1x  

and 2x , respectively (indicated in the cumulative histogram of Figure 4.30). In the 

temporalis ROI, fat and white matter have relatively high intensity values compared to 
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the temporalis and other soft tissue. Therefore, they belong to the cluster with the 

highest mean intensity value. On the other hand, CSF and muscle tendon have 

relatively low intensity values, and hence it is reasonable to assume that they belong to 

the cluster with the lowest intensity. We make use of range-constrained thresholding to 

remove fat, white matter, CSF and the tendon from the temporalis ROI, since it has 

been demonstrated in [57] that it is able to provide a threshold with more consistent 

and robust binarization than conventional thresholding methods. 

 

     
 

          (a)                         (b)                       (c)                         (d)                        (e) 

       Figure 4.29: Temporalis ROI (a) before, (b) after range-constrained thresholding,      

(c) segmented brain tissue, (d) temporalis ROI after subtraction of brain tissue,  

(e) ROI with small connected components removed. 
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      Figure 4.30: Cumulative histogram of temporalis ROI. 

 

Two parameters associated with range-constrained thresholding, b
lH and b

hH , 

constrain the fraction range within the ROI. When determining the upper threshold for 

the removal of fat and white matter, we set b
lH and b

hH ,to be μ−− 21 x  and 

μ+− 21 x , respectively, where μ is the tolerance to FCM’s clustering error. When 

determining the lower threshold for the removal of CSF and tendon, we set 

b
lH and b

hH ,to be μ−1x  and μ+1x , respectively. Having determined the frequency 

ranges, we then made use of Otsu’s method [50] to determine the respective thresholds 

within the specified fractions. In our study, similar results are obtained for μ varying 

between 0.05 and 0.10. Examples of these results, as well as a discussion on FCM 

susceptibility to local minima, are described in Section 4.4.5. 
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4.4.2.5 Adaptive morphology to remove brain tissue 

A substantial amount of brain tissue remains in the temporalis ROI after thresholding 

(Figure 4.29(b)). Although this tissue constitutes the largest proportion of the ROI, it is 

not feasible to use connected component labeling [79] to locate the largest connected 

component and remove it because there is a possibility that small parts of the 

temporalis may be connected to it. The use of a fixed structuring element to 

morphologically separate the brain and muscle tissue is also not advisable as this may 

cause excessive erosion to the muscle structure. Hence, we propose the use of adaptive 

morphology operations to separate the brain tissue from the other soft tissues. 

 

In the temporalis ROI, we first check if the tissue on the left side of the ROI (which 

lies in the right hemisphere of the brain) is connected to the soft tissue on the right side 

of the ROI using connected components labelling. If they are, we apply morphological 

opening to the ROI with a circular structuring element of radius 1. If the brain tissue is 

still connected to the soft tissue on the right side, we apply morphological opening 

with the radius of the structuring element increased, by 1. As the use of morphological 

opening is destructive as the structuring element increases in size, the radius of the 

structuring element is limited to a maximum of 5. The entire process is iterated until 

the brain tissue is separated from the remaining soft tissue. This approach fits our work 

because in the temporalis ROI, the CSF is removed after range-constrained 

thresholding and there will be a demarcation between brain tissue and the remaining 

soft tissue. There may be some weak connections between them, and these are 

removed after applying the above adaptive morphological procedure.  
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The segmented brain tissue (Figure 4.29(c)) is subtracted from the temporalis ROI, 

leaving the other soft tissue in the ROI (Figure 4.29(d)). Small connected components 

are then removed from the ROI and only the largest connected component is left 

(Figure 4.29(e)). 

 

4.4.2.6 Removal of unwanted soft tissue around temporalis in ROI 

After applying range-constrained thresholding and morphological operations to the 

temporalis ROI, the presence of unwanted soft tissue persists. From empirical studies 

with the study images, it is observed that the top half of the temporalis ROI usually 

contains more unwanted components compared to the bottom half of the temporalis 

ROI. In the upper half, the eye and other soft tissue surrounding the temporalis are not 

removed during thresholding. In the lower half, there is only a slight presence of 

unwanted soft tissue (if any) surrounding the temporalis after range-constrained 

thresholding and adaptive morphological removal of the brain tissue. We provide an 

illustration in Figure 4.31(a) and (b), which display the top half and bottom halves, 

respectively, of the temporalis ROI. Comparing the two, it is clear that the former 

requires more processing to remove the unwanted soft tissue compared to the latter. 

   
                                                              

(a) (b) 
 
Figure 4.31: (a) Top partition, (b) bottom partition of temporalis ROI in Figure 4.29(e). 

 

Hence, we first divide the temporalis ROI (j2 × k2) into two equal partitions (top and 

bottom), with the top partition comprising the first (j2 / 2) rows of the temporalis ROI 
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and the bottom partition comprising the next (j2 / 2) rows. We then make use of a 

similar adaptive morphology technique, described in Section 4.4.2.5, to process the 

two partitions. For the top partition, it is assumed that no pixel belonging to the 

temporalis lies on the boundaries of the temporalis ROI. Hence, in our method, a check 

is first carried out to see if any pixel belonging to the largest connected component lies 

on the boundaries of the temporalis ROI. If so, morphological opening is applied to the 

top partition to remove small unwanted components. The structuring element used in 

the first iteration is a disk with radius 1. If any boundary pixel is still part of the largest 

connected component, we increase the disk radius by 1 and re-apply morphological 

opening to the original top partition. The iterations stop when the largest connected 

component does not have any pixels lying on the boundary of the temporalis ROI. The 

same process is employed on the bottom partition.  

 

4.4.3 Experiments 

The proposed method was applied to five MR study data sets. In each data set, the user 

is required to select the reference slice for the temporalis. We then performed 2D 

segmentation of the temporalis on the reference slice, as well as on the two slices 

superior and two slices inferior to the reference slice. Hence, a total of 25 segmentation 

results (five from each of the five study data sets) were obtained. The κ  index, FPR 

and FNR which were introduced earlier in equations 4.8, 4.18 and 4.19 were used as 

evaluation criteria. 

 

To further validate the proposed method, we also made use of the leave-one-out 

evaluation strategy [82] to evaluate the performance. With this method, all the data 
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sets were involved in training as well as testing, giving a total of 50 segmentation 

results. 

 

4.4.4 Results 

A set of results obtained after each stage of operation in our method is shown in Figure 

4.32. The results have been obtained using s = 1.3. Numerical validations are 

performed on the 25 segmentation results, using five training sets and five test sets by 

checking for their consistencies with the ground truths (Table 4.6). The mean κ , FPR 

and FNR are 90.2%, 8.7% and 10.9%, respectively. 

 

Using the leave-one-out evaluation strategy, the mean κ , FPR and FNR obtained from 

50 results are 90.5%, 9.1% and 9.8%, respectively. The results (Table 4.7) are similar 

to those obtained earlier. 
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Figure 4.32: Results after each stage of segmentation.  
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Table 4.6: Numerical validation results for segmentation of temporalis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 
Index κ (%) FPR (%) FNR (%) Image 

Index κ (%) FPR (%) FNR (%) 

1 91.7 8.1 8.5 14 91.1 6.8 11.0 

2 88.5 9.8 13.2 15 88.9 10.1 12.1 

3 85.2 11.6 18.0 16 87.8 11.8 12.6 

4 92.0 6.3 9.7 17 92.1 7.5 8.3 

5 89.7 8.5 12.1 18 92.8 5.5 8.9 

6 90.6 7.7 11.1 19 90.2 8.8 10.8 

7 88.6 10.4 12.4 20 91.5 6.8 10.2 

8 92.2 5.8 9.8 21 89.5 9.1 11.9 

9 89.8 9.8 10.6 22 91.0 10.8 7.2 

10 91.6 8.8 8.0 23 88.1 9.8 14.0 

11 92.5 7.1 7.9 24 87.8 12.1 12.3 

12 89.5 11.8 9.2 25 90.8 7.5 10.9 

13 92.0 4.5 11.5 Mean 90.2 8.7 10.9 
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Table 4.7: Validation results using leave-one-out evaluation strategy. 

 

Test 
Set Image κ  

(%) 
FPR 
(%) 

FNR 
(%) 

Test 
Set Image κ  

(%) 
FPR 
(%) 

FNR 
(%) 

1 85.2 11.6 18.0 26 87.8 11.8 12.6 

2 88.5 9.8 13.2 27 92.1 7.5 8.3 

3 91.7 8.1 8.5 28 92.8 5.5 8.9 

4 92.0 6.3 9.7 29 91.5 6.8 10.2 

1 

5 89.7 8.5 12.1 

6 

30 90.2 8.8 10.8 

6 88.6 10.4 12.4 31 87.8 12.1 12.3 

7 90.6 7.7 11.1 32 89.5 9.1 11.9 

8 92.2 5.8 9.8 33 91.0 10.8 7.2 

9 91.6 8.8 8.0 34 90.8 7.5 10.9 

2 

10 89.8 9.8 10.6 

7 

35 88.1 9.8 14.0 

11 89.5 11.8 9.2 36 89.8 9.7 10.7 

12 92.0 4.5 11.5 37 91.5 10.1 6.9 

13 92.5 7.1 7.9 38 93.1 6.8 7.1 

14 91.1 6.8 11.0 39 91.8 8.1 8.3 

3 

15 88.9 10.1 12.1 

8 

40 90.5 8.8 10.2 

16 88.7 10.5 12.1 41 89.8 11.5 8.9 

17 90.4 9.2 10.1 42 91.6 10.8 6.1 

18 92.3 7.1 8.3 43 93.4 8.1 5.1 

19 91.2 8.8 9.0 44 92.5 6.5 8.5 

4 

20 86.9 13.5 12.7 

9 

45 89.3 12.3 9.1 

21 90.7 9.4 9.2 46 90.9 9.5 8.7 

22 91.3 7.2 10.2 47 91.7 8.3 8.3 

23 93.0 8.7 5.4 48 92.6 7.7 7.1 

24 90.5 11.8 7.2 49 90.8 12.1 6.3 

5 

25 87.9 12.3 11.9 

10 

50 89.1 11.8 10.1 
 

Mean κ  = 90.5% Mean FPR = 9.1% Mean FNR = 9.8% 
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4.4.5 Discussion 

4.4.5.1 Accuracy of segmentation results 

The temporalis has a complex structure as observed in the MR images. This, together 

with the fact that it is surrounded by soft tissue with similar intensity values, has made 

its segmentation from MR images challenging. The proposed method, which involves 

thresholding and morphological operations, is able to produce segmentations with 

average κ  of 90%.  

 

4.4.5.2 On dividing the ROI before further processing 

Based on empirical studies, we divided the temporalis ROI into two equal partitions 

before further processing, as mentioned in Section 4.4.2.6. The presence of the orbit 

and unwanted soft tissue surrounding the temporalis, even after range-constrained 

thresholding and extraction of the brain tissue, means that the top half of the ROI 

requires more processing than the bottom half. We make use of morphological opening 

to separate the temporalis from the unwanted components. With reference to Figure 

4.31(a) and (b), based on our method, the top partition undergoes morphological 

processing whereas the bottom partition does not, and hence the original structure of 

the temporalis in the bottom partition is preserved. If we had processed the temporalis 

ROI as a whole, we would find that the bottom half of the temporalis ROI undergoes 

the same morphological opening as the upper half, and the resulting structure will not 

be a good representation of the temporalis.  
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                                                    (a)                                       (b) 

Figure 4.33: Bottom partition of temporalis ROI (a) before, (b) after processing. 

 

To further illustrate our method, Figure 4.33(a) displays the bottom partition from 

another temporalis ROI. Unlike that in Figure 4.31(b), it requires morphological 

processing to break the connections between the temporalis and its surrounding soft 

tissue. Figure 4.33(b) displays the result after our method has successfully removed the 

unwanted soft tissue. 

 

4.4.5.3 Sensitivity to scaling factor s and rotation of MR image 

We introduce a scaling factor s in Section 4.4.2.3 to enlarge the temporalis ROI in the 

study image. A larger ROI may be needed to ensure that the muscle is fully enclosed. 

As illustrated in Figure 4.34, when s = 1, the ROI fails to enclose the entire temporalis. 

From experiments, we obtain a minimum value of s = 1.3 to ensure the ROI 

encompasses the temporalis. In addition, we have also experimented with s = 1.5, 1.75, 

2.0 and 2.5, with the results in Figure 4.34. The segmentation results, with mean 

κ around 90%, are comparable to the result obtained using s = 1.3. The advantage of 

using a larger value of s is that it allows the ROI to fully enclose the temporalis even 

when the images have been rotated. This is analogous to a situation where the subject’s 

head is rotated for the scan. However, when s is increased to a large value, the 

proposed method may fail to produce the expected segmentation results. Figure 4.35 
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displays the corresponding images when s = 3.5 and the temporalis is not segmented 

correctly. 
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Figure 4.34: Segmentation results when parameter s is varied. 
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Figure 4.35: Segmentation results obtained when s = 3.5. 

 

Besides testing for its sensitivity to scaling factor s, we also tested the proposed 

method for its robustness in scenarios where the image has been rotated by 15° 

clockwise and anti-clockwise, or 15° up and down from the upright position. The value 

of s used is 2.5. The segmentation results are comparable to those obtained when the 

images are not rotated and the average κ is around 90%. We note that for s = 2.5, the 

ROI will contain more spurious components compared to s = 1.3. However, our 

method is sufficiently robust to overcome this problem and produce good 
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segmentations of the temporalis. Where there is a wide rotation of the head (>15°), a 

possible solution will be to locate the midsagittal plane (MSP) in the image [81] and 

rotate the image till the MSP is in an upright position before applying the proposed 

method. Besides the MSP, locating other anatomical features, such as the eyes or 

medulla could also help in the localisation and make our proposed method more 

rotationally invariant. 

 

The segmentation results indicate that the proposed method is capable of segmenting 

the temporalis from 2D MR images. The advantages with the proposed method are that 

it is effective when the ROI is enlarged to encompass more unwanted components and 

when the images are rotated. These signs are encouraging. 

 

4.4.5.4 Sensitivity to choice of reference slice 

As mentioned in Section 4.4.2.1, we selected the reference slice for the temporalis at 

the level just cephalad of the pinna. Using this reference slice, we obtain a 

segmentation accuracy of around 90%. In addition, we tested the robustness of the 

proposed method to different selected reference slices. We selected as reference slice 

the image slices that are 5 slices superior and 5 slices inferior to the proposed 

reference. The values of κ , FPR and FNR are 87.0%, 17.2%, 7.6%, respectively, 

when the reference slice is 5 slices superior to the proposed reference, and 87.6%, 

20.0%, 2.7%, respectively, when the reference slice is 5 slices inferior to the proposed 

reference. The results are similar to those obtained when the proposed reference is 

used. Selecting the reference slice to be at the level just cephalad of the pinna offers 

the possibility of automating the process via tracking the contour of the head boundary. 
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4.4.5.5 Sensitivity of range-constrained thresholding to fraction 

range and comparison with FCM and Otsu methods 

As mentioned in Section 4.4.2.4, there are two parameters associated with range-

constrained thresholding, namely b
lH and b

hH , that constrain the fraction range within 

the ROI. b
lH and b

hH  can be varied by adjusting μ , which we define as the tolerance 

to FCM’s clustering error. We experimented with values of μ  ranging from 0.05 to 

0.10 and obtained similar results. An illustration of the results produced by range-

constrained thresholding using μ  = 0.05 and μ = 0.10 is shown in Figure 4.36.  
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Figure 4.36: Resulting temporalis ROI using different thresholding techniques. 

 

We have also compared our method against FCM clustering and Otsu's method, with 

the results in Figure 4.36. It is seen that Otsu's method misclassified some brain tissue 
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and parts of the temporalis as background. FCM clustering produces satisfactory 

results but it also has the problem of misclassifying some boundary brain tissue. The 

susceptiability of FCM to local minima depends on the complexity of the feature space 

as well as the initial condition. If the system contains local minima and the initial state 

is located near a local minimum, then FCM will converge to the local minimum. On 

the other hand, similar to variance-based thresholding methods, FCM tends to result in 

a type of systematic error which selects the threshold towards the component with the 

larger probability or larger variance [83]. Nevertheless, FCM could provide a good 

initial solution, which can be improved by methods incorporating some prior 

knowledge such as range-constrained thresholding. 

 

4.4.5.6 Comparison with results obtained using GVF snake 

We have compared the results obtained using our method against those obtained using 

the GVF snake, which is one of the popular techniques used in medical image 

segmentation. We initialize the GVF snake with points close to the boundaries of the 

temporalis, and the results are shown in Figure 4.37.  The value of κ , FPR and FNR 

are 80.8%, 26.7%, 12.1%, respectively, for the first result in Figure 4.37, and 84.7%, 

14.7%, 15.7%, respectively, for the second result in Figure 4.37. Comparing these 

results against those in Figures 4.32 and 4.34, we note that our method produces 

superior results. The GVF snake does not segment the temporalis accurately but, 

instead, converges to the muscle tendon within the temporalis (Figure 4.37). In 

contrast, the proposed method is able to retain the thin space occupied by the tendon 

(Figures 4.32 and 4.34). Another indication that our method produces superior results 

is that it manages to delineate the temporalis from its surrounding tissue in narrow and 

concave regions, unlike the use of the GVF snake, which propagates inwards and away 
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from the concave boundaries despite the initializations being made near them. A 

possible reason for this is the settings of the parameters in the GVF snake.  
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Figure 4.37: Segmentation results obtained using GVF snake. 



      104 

Chapter 5 

Determining dominant slices for patient-

specific masticatory muscles modeling 
 

5.1 Introduction 

Techniques for segmenting the masticatory muscles from MR images were presented 

in the previous chapters. They were validated and tested for their robustness. The work 

found in [84, 85] are examples where 2D methods are applied sequentially to the slices 

of a 3D volumetric data. For the segmentation of masticatory muscles, repeatedly 

applying our proposed 2D methods to all the 2D slices in the MR dataset may not 

achieve good segmentation results. This is because in a 3D MR dataset, there are slices 

where no clear boundary exists between the muscle and the surrounding tissue. As 

such, we will need to make use of the neighbouring slices which provide additional 

information.  

 

In this chapter, we describe an approach for obtaining patient-specific models of the 

masticatory muscles from the MR images of the head. We determine the set of 

dominant slices that together best represent the salient features of the 3D muscle shape 

from training datasets. Candidates for the dominant slices are identified by shape- and 

area-based criteria, and this is followed by fuzzy-c-means clustering [78] to determine 

the actual slices. Manual segmentation is carried out on these dominant slices on the 

patient dataset, with shape-based interpolation [28] then applied to construct accurate 

muscle model. Compared to the common practice of manually segmenting the 
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masticatory muscles from all MR slices [15, 18], there is significant time-savings as 

each MR dataset used in our work consists of nearly 170 slices.  

 

In an initial work [86] done, a method was proposed for the extraction of the masseter 

utilizing knowledge from only three MR slices (starting slice, ending slice, as well as 

the slice with the largest cross-sectional muscle area) to extract the entire masseter. 

With only three slices, the shape and size variations of the muscle are not adequately 

captured, as illustrated in Figure 5.1. A better representation can be obtained with the 

use of more slices. However, the selection of these slices is not trivial as a random or 

an equally-spaced selection is not likely to lead to an accurate model. In our approach, 

we propose a set of shape- and area-based criteria for determining the candidates for 

these dominant slices, with clustering used to establish the final dominant slices. 

 

 
 

                                                  (a)                                                                   (b) 
 

 Figure 5.1:  (a) Model used in earlier method, (b) Model used in current method. 
(Dominant slices are represented by shaded ellipses)  

 

 



      106 

5.2 Overview of proposed work 

In the training sets, the left and right masseters and the lateral and medial pterygoids 

were first manually segmented by an expert radiologist. From these training sets, we 

determine the locations of the dominant slices for each of the muscles using a set of 

criteria that capture the main features of the muscle shape. Given a patient dataset, we 

carry out 2D segmentation of the muscle on the dominant slices, followed by shape-

based interpolation to construct the 3D muscle model. 

 

5.3 The proposed method 

5.3.1 Normalization of slice location 

The masticatory muscles vary in size between humans, and therefore the number of 

MR slices that they occupy differs. We use the normalized slice index, nI , so that the 

locations of the dominant slices are size-invariant. For a slice rI , its normalized value 

is:                                                

                                                             
if

ir
n II

II
I

−
−

=                                                  (5.1) 

where iI  and fI  refer, respectively, to the locations of the slices where the targeted 

muscle first and last appears. They are identified through human intervention. 

 

5.3.2 Determination of dominant slices 

Dominant slices are obtained from training sets. In order for an accurate patient-

specific muscle model to be built, the MR slices that capture the main features of the 

muscle shape have to be determined. We define the following set of criteria for 

locating the candidates for the dominant slices: 
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• Slices where the muscle first and last appears (Figure 5.2).  

• Slices where the muscle area pattern undergoes a change, i.e., the turning 

points in the plot of cross-sectional muscle area vs nI  (Figure 5.3). 

• Slices in which the structure of the masticatory muscle undergoes a 

significant change in orientation, i.e., the turning points in the plot of the 

muscle centroid on each slice vs nI  (Figure 5.4). 

 

 

Figure 5.2: Sample MR slice where masseter first starts to appear. 

 

 

 

 

Masseter 
region 
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(a) 

 

(b) 

 

Figure 5.3: (a) Change in cross-sectional muscle area pattern,  

(b) Turning points in the plot of cross-sectional muscle area vs nI . 
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(a) 

 

 
(b) 

 

Figure 5.4: (a) x-coordinate of muscle region centroid vs nI , 

(b) y-coordinate of muscle region centroid vs nI . 
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Slices iI  and fI are considered dominant slices because they have to be identified 

correctly in order for an accurate model to be built. Furthermore, the muscle regions in 

iI  and fI  are often indistinct due to their smaller areas, and a high degree of clinical 

expertise is required for their recognition.  

 

To build an accurate muscle model, it is important to locate the slices where the cross-

sectional muscle area pattern changes. These slices can be found at the turning points 

in the plot of cross-sectional muscle area vs nI  . The masticatory muscles were 

manually segmented by an expert radiologist in each of the training sets, and the cross-

sectional muscle areas were measured and their values plotted against the normalized 

slice location. A spline with 10 polynomial coefficients was then fitted onto the points 

using the spline-fitting function in MATLAB 7.0. Section 5.6.3 presents a discussion 

on number of coefficients used. On each of the spline-fitted curves, the normalized 

slice locations at the turning points of the spline are selected as the candidate slices.  

 

Dominant slices also exist where the muscle undergoes a significant change in 

orientation. From each of the training datasets, the centroid of the manually segmented 

muscle region on each slice is measured in terms of their x and y coordinates. The 

centroid of a muscle region R  is defined in terms of the moments ijm : 

                                                 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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01

00
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The x coordinate ( )x  of the muscle centroid on each of the slices is plotted against the 

normalized slice locations, and a spline was fitted onto the plotted points as described 

earlier. The same process is applied to the y coordinate ( )y . The turning points on each 

of the spline-fitted graphs are selected as the candidate slices. 

 

5.3.3 Clustering of candidate slice locations 

Clustering refers to the partitioning of a collection of data points into clusters such that 

objects inside the same cluster show similarity in the defined features. Our objective 

here is to cluster the N  identified candidates, denoted by their slice indices id , to 

determine the dominant slices. The set of candidates is denoted by D , i.e., 

                                                }{ Rd|N,...,,i,dD ii ∈== 21                                       (5.4) 

FCM clustering, which is useful in dealing with nontrivial data and uncertainties [78], 

is applied to set D  to obtain c classes. The locations of the dominant slices are given 

by the cluster centers.  

 

The class prototypes are represented by a 1×c matrix V , with the kth  ( c,...,,k 21= ) 

row representing the prototype of the kth class. The cluster is represented by a Nc×  

matrix U . The element kiu  of matrix U represents the membership of the ith data point 

to the kth class. With FCM clustering, kiu  ranges from 0  to 1  and characterizes the 

degree of similarity between the ith data point and the kth class prototype: 

                                                iu
c

k
ki ∀=∑

=

,1
1

;   ikuki ,,10 ∀≤≤                                  (5.5) 
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The matrix U  is found by minimizing the generalized least squares within-group 

square error function J : 
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                                        (5.6) 

where [ )∞∈ ,1b  is a weighting exponent on each fuzzy membership and  denotes 

the Euclidean distance. kiu  and kv  are updated as follows: 
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The default FCM function available in MATLAB 7.0 is used in the implementation of 

our work. The parameters and their values are: weighting component 2.0b = , 

maximum number of iterations = 100, minimum amount of improvement = 1×10-5. By 

varying the number of classes, c, we are able to investigate the effects that the number 

of dominant slices has on the accuracy of the muscle models. 

 

5.3.4 Shape-based interpolation 

Having determined the locations of the dominant slices, segmentation of the 

masticatory muscles from the corresponding 2D slices in the test dataset is then carried 

out. We apply the shape-based interpolation algorithm proposed in [28] to create the 

models for each of the masticatory muscles. In this approach, each object is grouped 

into two types of components, namely simple and complex. A non-uniform rational B-

spline (NURBS)-based method and a distance map-based method are designed for 
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interpolation of the simple components and the complex components, respectively. For 

each masticatory muscle, once all the object points have been interpolated, the results 

are combined hierarchically in a bottom-up manner to produce the interpolation of the 

entire muscle. In the process, knowledge-based and heuristic strategies are used to 

preserve various topological relationships. A comprehensive description of this hybrid 

approach can be found in [28]. This approach has also been validated quantitatively 

and effectively used for interpolation of the Schaltenbrand-Wahren atlas [87]. The 

work presented here differs from earlier work as the determination of dominant slices 

is carried out for accurate patient-specific masticatory muscles modeling. Instead of 

making use of all available slices, which was the case in earlier work, only the 

dominant slices were used to build the models in the work presented here. 

 

5.4 Experiments 

The leave-one-out method [82] is used to evaluate the proposed method and fifteen 

datasets from adult volunteers were used. With this evaluation method, all the datasets 

were involved in training as well as testing. A total of 90 masticatory muscles models 

(left and right masseters, lateral and medial pterygoids) belonging to fifteen subjects 

were built. To evaluate the consistency between the patient-specific models and the 

manual segmentations, we again make use of the κ  index [74] which was introduced 

in the previous chapter. 

 

For each of the 90 muscle models, the number of dominant slices c was varied from 5 

to 10 and their influence on the accuracy was investigated. In our MR datasets, which 

consist of 1mm slices, the masseter, lateral pterygoid and medial pterygoid muscles 

occupy approximately 80, 35 and 50 slices respectively. It is pertinent to study how 
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model accuracy varies with the fraction of slices used, and to this end we introduce the 

compression ratio, η,  

                                                               η = 
sliceT
c                                                      (5.9) 

where c is the number of dominant slices used for the targeted muscle and sliceT  is the 

number of slices occupied by the targeted muscle. 

 

Other experiments include testing our proposed approach for its robustness against the 

selection of iI  and fI  which was performed manually and studying the effects of 

varying the number of polynomial coefficients used in the spline-fitting process. 

 

5.5 Results 

We provide sample plots of cross-sectional muscle area vs nI  which were obtained in 

our experiments. The plots for the masseters, lateral pterygoids and medial pterygoids 

are in Figures 5.5–5.7 respectively. Sample plots of x- and y-coordinate of centroids 

belonging to muscle region on each slice vs nI  for the masseters. lateral pterygoids and 

medial pterygoids are in Figures 5.8–5.10 respectively. The mean graphs obtained 

from the datasets belonging to the fifteen subjects are shown in the bottom row of 

Figures 5.5–5.10. It should be noted that determination of the candidates for dominant 

slices is not performed on the mean graphs in order to avoid missing out on potential 

candidates. 
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 Figure 5.5:  Samples of cross-sectional muscle area vs nI  for masseters. 
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Figure 5.6:  Samples of cross-sectional muscle area vs nI  for lateral pterygoids. 
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Figure 5.7:  Samples of cross-sectional muscle area vs nI  for medial pterygoids. 
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Figure 5.8:  Samples of (a) x-coordinate, (b) y-coordinate of centroid of muscle region 

vs nI  for masseters. 
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Plot of x-coordinate of muscle region 

centroid against normalized slice location 
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Figure 5.9:  Samples of (a) x-coordinate, (b) y-coordinate of centroid of muscle region 

vs nI  for lateral pterygoids. 
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(a) 
 
 
 

Left Medial Pterygoid Right Medial Pterygoid 

 
Plot of x-coordinate of muscle region 

centroid against normalized slice location 
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(b) 

 

Figure 5.10:  Samples of (a) x-coordinate, (b) y-coordinate of centroid of muscle 

region vs nI  for medial pterygoids. 
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The accuracies of the results for the left, right masseters, lateral pterygoids and medial 

pterygoids models when c is varied are summarized in Tables 5.1–5.3, respectively, 

and plotted in Figure 5.11.  

 

The number of dominant slices c was varied from 5 to 10 for each of the 90 muscle 

models. In Figures 5.12, 5.14 and 5.16, examples on the orientations of the masseters, 

lateral pteygoids and medial pterygoids models are provided respectively, while in 

Figures 5.13, 5.15 and 5.17, sample models obtained for the masseters, lateral 

pteygoids and medial pterygoids respectively when c was varied, are displayed.  

 

The average overlap indices ( κ ) achieved for the left, right masseters, lateral 

pterygoids and medial pterygoids, when 10 dominant slices are selected, are 91.5%, 

91.4%, 90.7, 91.2%, 92.3% and 91.1%, respectively.  
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Table 5.1: Validation results for left and right masseters. 
 

Left Masseter Right Masseter 

c Test 
Set 

κ  
(%) c Test 

Set 
κ  

(%) c Test 
Set 

κ  
(%) c Test 

Set 
κ  

(%) 
1 80.7 1 83.5 1 81.8 1 85.2 
2 81.2 2 84.0 2 80.9 2 84.3 
3 78.3 3 82.1 3 79.3 3 82.2 
4 81.7 4 83.9 4 82.1 4 85.5 
5 78.6 5 81.1 5 77.5 5 81.0 
6 81.7 6 84.8 6 82.3 6 85.4 
7 78.0 7 81.2 7 77.9 7 82.8 
8 80.8 8 82.5 8 80.5 8 83.8 
9 79.3 9 83.0 9 78.1 9 81.8 

10 79.8 10 82.3 10 80.4 10 84.9 
11 78.9 11 82.6 11 78.5 11 82.5 
12 80.3 12 83.3 12 79.7 12 83.1 
13 79.7 13 83.9 13 80.8 13 82.9 
14 78.5 14 83.5 14 79.2 14 83.8 
15 80.5 15 81.8 15 81.5 15 84.5 

5 

Mean 79.9 

6 

Mean 82.9 

5 

Mean 80.0 

6 

Mean 83.6 
   

1 86.8 1 89.8 1 87.8 1 91.2 
2 87.5 2 90.4 2 87.5 2 90.2 
3 86.3 3 89.2 3 85.8 3 88.9 
4 85.8 4 89.6 4 87.2 4 90.3 
5 85.3 5 90.3 5 87.9 5 90.3 
6 86.7 6 89.1 6 88.1 6 90.5 
7 85.2 7 88.9 7 86.1 7 89.6 
8 86.1 8 90.4 8 87.0 8 91.0 
9 85.9 9 87.6 9 85.8 9 88.9 

10 86.7 10 89.4 10 88.5 10 91.0 
11 87.1 11 89.2 11 87.1 11 89.3 
12 86.5 12 87.9 12 86.8 12 89.6 
13 85.9 13 88.9 13 87.8 13 89.1 
14 86.1 14 88.1 14 87.6 14 89.5 
15 85.5 15 88.5 15 88.1 15 89.7 

7 

Mean 86.2 

8 

Mean 89.2 

7 

Mean 87.3 

8 

Mean 89.9 
   

1 90.9 1 92.2 1 91.9 1 92.6 
2 91.2 2 92.0 2 91.6 2 91.8 
3 90.5 3 91.5 3 89.8 3 90.7 
4 90.8 4 91.8 4 91.3 4 92.0 
5 91.2 5 92.1 5 91.0 5 91.8 
6 89.9 6 91.7 6 91.0 6 91.9 
7 90.3 7 91.4 7 90.3 7 90.7 
8 91.4 8 92.9 8 91.5 8 92.0 
9 88.3 9 90.4 9 89.8 9 90.6 

10 90.2 10 91.2 10 91.7 10 92.2 
11 89.5 11 90.9 11 90.5 11 91.4 
12 89.3 12 91.3 12 90.3 12 90.6 
13 90.5 13 91.1 13 91.1 13 91.6 
14 91.1 14 91.6 14 90.1 14 90.4 
15 89.7 15 90.7 15 90.5 15 91.2 

9 

Mean 90.3 

10 

Mean 91.5 

9 

Mean 90.8 

10 

Mean 91.4 
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Table 5.2:  Validation results for left and right lateral pterygoids. 
 

Left Lateral Pterygoid Right Lateral Pterygoid 

c Test 
Set 

κ  
(%) c Test 

Set 
κ  

(%) c Test 
Set 

κ  
(%) c Test 

Set 
κ  

(%) 
1 80.7 1 84.9 1 78.9 1 83.2 
2 80.0 2 83.6 2 79.2 2 83.8 
3 77.7 3 81.0 3 77.8 3 81.0 
4 78.6 4 83.5 4 79.4 4 82.4 
5 80.8 5 84.9 5 78.1 5 83.2 
6 80.7 6 84.2 6 77.5 6 81.3 
7 78.6 7 83.2 7 79.2 7 83.6 
8 80.6 8 84.8 8 80.2 8 84.0 
9 77.2 9 83.0 9 78.9 9 83.2 

10 78.4 10 82.3 10 79.1 10 84.4 
11 80.5 11 83.5 11 80.2 11 84.2 
12 78.2 12 82.4 12 79.4 12 81.2 
13 79.1 13 83.1 13 77.7 13 83.4 
14 80.3 14 83.5 14 78.6 14 82.2 
15 77.2 15 82.7 15 79.5 15 81.9 

5 

Mean 79.2 

6 

Mean 83.4 

5 

Mean 78.9 

6 

Mean 82.9 
   

1 89.4 1 90.4 1 89.7 1 90.9 
2 86.2 2 87.0 2 87.8 2 88.9 
3 86.6 3 87.7 3 86.8 3 87.4 
4 87.2 4 88.5 4 86.9 4 87.5 
5 86.7 5 89.8 5 87.2 5 90.4 
6 87.5 6 89.7 6 88.2 6 89.6 
7 87.8 7 89.0 7 86.6 7 87.4 
8 86.2 8 87.8 8 88.8 8 90.3 
9 88.8 9 90.0 9 88.4 9 89.5 

10 85.5 10 87.8 10 87.1 10 87.8 
11 86.1 11 88.5 11 87.3 11 87.8 
12 86.4 12 87.7 12 86.5 12 87.4 
13 85.9 13 87.9 13 86.4 13 88.4 
14 86.5 14 88.4 14 87.4 14 89.2 
15 87.4 15 88.9 15 87.7 15 88.1 

7 

Mean 87.0 

8 

Mean 88.6 

7 

Mean 87.5 

8 

Mean 88.7 
   

1 91.7 1 91.9 1 91.8 1 92.7 
2 88.1 2 89.7 2 90.7 2 92.0 
3 88.6 3 90.8 3 88.1 3 89.7 
4 89.1 4 91.4 4 89.2 4 90.6 
5 90.4 5 91.7 5 91.3 5 92.7 
6 91.0 6 91.3 6 90.9 6 92.7 
7 89.8 7 90.4 7 89.1 7 90.6 
8 88.1 8 89.1 8 91.3 8 92.6 
9 90.4 9 91.5 9 90.9 9 92.2 

10 88.8 10 90.3 10 88.9 10 90.4 
11 89.1 11 90.3 11 88.4 11 89.8 
12 88.6 12 89.8 12 88.3 12 90.5 
13 90.2 13 90.8 13 89.2 13 91.3 
14 89.9 14 90.5 14 89.4 14 90.7 
15 89.7 15 91.4 15 88.6 15 89.1 

9 

Mean 89.6 

10 

Mean 90.7 

9 

Mean 89.7 

10 

Mean 91.2 
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Table 5.3:  Validation results for left and right medial pterygoids. 
 

Left Medial Pterygoid Right Medial Pterygoid 

c Test 
Set 

κ  
(%) c Test 

Set 
κ  

(%) c Test 
Set 

κ  
(%) c Test Set κ  

(%) 
1 81.4 1 84.5 1 81.4 1 84.1 
2 78.2 2 84.9 2 80.3 2 85.0 
3 78.6 3 82.4 3 79.5 3 84.2 
4 78.5 4 82.0 4 80.8 4 83.5 
5 81.0 5 84.1 5 80.2 5 83.8 
6 80.4 6 82.1 6 79.8 6 84.9 
7 78.0 7 83.5 7 80.8 7 85.1 
8 77.5 8 83.7 8 80.5 8 84.7 
9 81.1 9 85.0 9 81.2 9 84.5 

10 78.3 10 82.8 10 81.8 10 85.3 
11 78.6 11 82.1 11 79.8 11 83.8 
12 79.2 12 83.4 12 81.2 12 84.5 
13 80.1 13 84.2 13 79.4 13 83.5 
14 78.4 14 83.8 14 79.6 14 84.1 
15 79.6 15 84.1 15 80.5 15 84.6 

5 

Mean 79.3 

6 

Mean 83.5 

5 

Mean 80.5 

6 

Mean 84.4 
   

1 85.4 1 88.8 1 86.5 1 88.2 
2 87.5 2 89.7 2 87.1 2 89.7 
3 86.3 3 90.4 3 87.0 3 87.9 
4 87.1 4 89.1 4 85.7 4 88.5 
5 86.7 5 90.5 5 86.7 5 88.2 
6 85.4 6 88.6 6 87.6 6 88.4 
7 86.1 7 89.3 7 88.1 7 90.5 
8 87.7 8 91.2 8 87.7 8 89.7 
9 86.8 9 90.2 9 86.2 9 88.3 

10 85.8 10 90.9 10 88.9 10 89.3 
11 86.4 11 88.1 11 85.6 11 88.4 
12 87.1 12 89.7 12 86.4 12 89.1 
13 86.8 13 89.8 13 87.2 13 89.5 
14 87.2 14 90.5 14 86.8 14 89.2 
15 85.8 15 89.5 15 87.3 15 90.2 

7 

Mean 86.5 

8 

Mean 89.8 

7 

Mean 87.0 

8 

Mean 89.0 
   

1 90.8 1 91.8 1 91.0 1 92.4 
2 91.4 2 92.2 2 89.8 2 91.1 
3 90.7 3 91.0 3 88.5 3 89.8 
4 91.5 4 92.3 4 90.8 4 91.7 
5 90.8 5 92.7 5 91.5 5 92.4 
6 89.8 6 91.9 6 88.6 6 89.1 
7 91.5 7 93.5 7 91.2 7 91.7 
8 91.9 8 93.4 8 89.9 8 90.5 
9 91.4 9 93.0 9 90.5 9 90.9 

10 91.3 10 92.1 10 89.5 10 91.0 
11 90.5 11 91.2 11 89.2 11 90.9 
12 91.2 12 92.4 12 90.4 12 91.3 
13 91.5 13 93.1 13 91.0 13 92.1 
14 90.9 14 92.2 14 89.4 14 90.5 
15 89.7 15 91.8 15 90.8 15 91.6 

9 

Mean 91.0 

10 

Mean 92.3 

9 

Mean 90.1 

10 

Mean 91.1 
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Lateral Pterygoids 
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Medial Pterygoids 
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Figure 5.11:  Plot of models’ accuracies against number of dominant slices and 

compression ratio. 
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Figure 5.12:  Orientations of the (a) right and (b) left masseters models. 
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Figure 5.13:  Left and right masseters models. c is the number of dominant slices used. 
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3D View Axial View 
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Figure 5.14:  Orientations of the (a) right and (b) left lateral pterygoids models. 
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Figure 5.15:  Left and right lateral pterygoids models. 

 
 
 
 
 
 
 
 
 
 



      135 

 
 
 
 
 

 

Right Medial Pterygoid 

3D View Axial View 

 

 
 

 

 
 

Coronal View Sagittal View 

 

 
 

 

 
 

 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 



      136 

 
 
 
 
 
 

Left Medial Pterygoid 

3D View Axial View 

 

 
 

 

 
 

Coronal View Sagittal View 

 

 
 

 

 
 

 
 

(b) 
 
 

Figure 5.16:  Orientations of the (a) right and (b) left medial pterygoids models. 
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Figure 5.17:  Left and right medial pterygoids models. 

 

5.6 Discussion 

5.6.1 Sensitivity of model accuracy to number of dominant slices, c 

It can be observed in Figure 5.11 that the accuracy of the constructed models improves 

as the number of dominant slices is increased. When only five dominant slices are 

used, accuracy is about 80% or less; with 10 dominant slices, it is above 90%. It can 
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also be observed in Figure 5.11 that the rate of increase in accuracy levels off as the 

number of dominant slices increases. For example, referring to the accuracy for the 

right masseter in Table 5.1, the increase was 3.6% when the number of dominant slices 

was raised from 5 to 6, but only 1.5% when the number of dominant slices was 

increased from 8 to 10. The use of 8 dominant slices will produce muscle models with 

nearly 90% accuracy, and compared to the use of 10 dominant slices, the difference in 

accuracy is approximately 2%. This trend is continued when more than 10 dominant 

slices are utilized. 

 

Besides displaying the variation of accuracy against number of dominant slices used 

(c), Figure 5.11 also shows the variation of accuracy against compression ratio (η). To 

obtain accuracy above 90%, a higher η ( 2860
35
10 .= ) is required for the lateral 

pterygoid compared to the masseter ( 1250
80
10 .= ). This is accounted for by the greater 

complexity of the structure of the former (Figure 5.15) compared to that of the latter 

(Figure 5.13). 

 

5.6.2 Selection of Ii and If 

Currently the selection of slices iI and fI , where the muscle first and last appears, 

respectively, is done manually by the radiologist. The accurate selection of these two 

slices is hindered by the presence of fuzzy boundaries between the muscles and 

surrounding soft tissue. Manual selection might also introduce intra- and inter-observer 

variations. Fortunately, these factors do not have a significant impact in the case of our 

MR datasets, which have 1mm slices. The masseter muscle occupies about 80 slices, 
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and hence a variation of two slices will only cause a deviation of 2.5%. For the lateral 

and medial pterygoid muscles, which occupy about 35 and 50 slices, respectively, a 

variation of two slices will result in a deviation of 5.7% and 4.0%, respectively. 

  

Using eight dominant slices, we carried out a sensitivity test to investigate the effect 

that selection of iI  and fI  has on model accuracy. We denote the original iI  and fI  

that we have selected for our models by o
iI  and o

fI , respectively. We considered four 

scenarios: (i) o
iI +2 slices and o

fI +2 slices; (ii) o
iI +2 slices and o

fI 2 slices− ; (iii) 

o
iI 2 slices−  and o

fI +2 slices; (iv) o
iI 2 slices−  and o

fI 2 slices− . Through this test, we 

conclude that slight variations of 2 slices± in the selection of iI  and fI have little 

impact on the accuracies of the built models with the difference being less than 2% 

when compared to the models built using  o
iI  and o

fI . 

 

5.6.3 Number of polynomial coefficients used in spline fitting 

It is mentioned in Section 5.3.2 that 10 polynomial coefficients are used in the spline-

fitting function. This is because it has been observed, in this particular application 

here, that a smaller number of polynomial coefficients, such as 5, may result in over-

smoothing of the spline, higher approximation error and overlooking of the dominant 

slices. On the other hand, a large number of polynomial coefficients, such as 15, will 

result in over-fitting and the inclusion of less salient dominant slices. This is illustrated 

in Figure 5.18.  

 



      140 

                                       
                                                                         (a) 

                                       
                                                                         (b) 

                                       
                                                                         (c) 

 

Figure 5.18: Spline-fitting when (a) 10 polynomial coefficients are used, 

(b)  5 polynomial coefficients are used, 

(c) 15 polynomial coefficients are used. 
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5.6.4 Segmentation of muscles from dominant slices in study datasets 

Segmentation of the muscles has to be carried out on the dominant slices. Other than 

MR slices iI and fI , where an experienced clinician will be better able to differentiate 

between muscle and surrounding tissue, the techniques proposed in the previous 

chapter can be applied to segment the muscles from the dominant slices. Other 

alternatives for 2D segmentation on the dominant slices will include manual contour 

tracing or the live-wire method [88]. 

 

5.6.5 Comparison with models from slices selected at equal intervals 

We selected eight dominant slices at regular intervals for each of the masticatory 

muscles. For example, if the masseter occupies 78 slices, the dominant slices, where 

2D segmentation is carried out, would be slices 1, 12, 23, 34, 45, 56, 67 and 78. The 

mean κ  values obtained using this method were 84.2%, 77.6% and 81.2% for the 

masseter, lateral and medial pterygoids, respectively. Using eight dominant slices, κ  

values obtained were 89.6%, 88.7% and 89.4%, respectively. The difference in 

accuracy is the largest for the lateral pterygoid (difference of 11.1%) and the smallest 

for the masseter (difference of 5.4%). This is because the structure of the lateral 

pterygoid (Figure 5.15) is more complex compared to the masseter (Figure 5.13). By 

selecting dominant slices at equal intervals, and not using our proposed method, one 

will fail to capture the slices which best represent the features (shape and size) of the 

lateral pterygoid and hence a model with lower accuracy would be constructed.  
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5.6.6 Clustering of candidates for dominant slices 

As mentioned in Section 5.3.3, FCM clustering is performed on the candidates for 

dominant slices to obtain c classes, with the cluster centers taken to be the locations of 

the dominant slices. Although the slices at the turning points in the plots of cross-

sectional muscle area vs In were selected as candidates for dominant slices, the 

dominant slices that are finally determined in the test set may not contain them, due to 

the clustering process. Comparing the left masseter models when c = 8, 9 and 10 in 

Figure 5.13, it can be observed that when c = 9, the dominant slices do not consist of 

one of the slices at the turning points. A slice near it is determined instead. Even then, 

the overall accuracy of the built model is not greatly affected and this is an 

encouraging sign. 

 

5.6.7 Potential application to other structures 

Using the proposed method, the dominant slices were determined for the masseter, 

lateral and medial pterygoids, and accurate muscle models were built. The masseter, 

lateral and medial pterygoids are anatomies of different shapes and sizes, and the fact 

that accurate models of them can be built using the proposed method is an indication 

that it is applicable to other anatomies with different shapes and sizes.  
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Chapter 6 

Segmentation of the masticatory muscles 

from volumetric data 
 

6.1 Introduction 

The lack of a computerized method for the segmentation of human masticatory 

muscles is most probably due to the fact that they lacks strong edges in MR images 

and they have fairly similar intensity values with their surrounding soft tissue. This 

situation is more severe in some MR slices than others. We propose a model-based 

solution to segment the masticatory muscles from MR datasets.  

 

There is an increasing use of model-based techniques for segmentation in MR images, 

such as the work described in [89], which incorporates prior knowledge for 

segmenting the corpus callosum from MR images with little human intervention. 

Another example is found in [30], where segmentation is carried out via matching of 

distributions belonging to photometric variables that incorporate learned shape and 

appearance models for the objects of interest. Other examples of model-based methods 

used in medical image segmentation can be found in [90, 91]. 

 

In the previous chapter, an approach was presented to determine the dominant slices 

for the masticatory muscles and accurate patient-specific masticatory muscles models 

were built. These models provide useful information especially in the regions where 

there are fuzzy boundaries between the muscles and surrounding soft tissue.  
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In the proposed method presented in this chapter, the patient-specific models serves as 

initial coarse segmentations which are further refined by first matching the 

distributions of the intensity values belonging to the pixels within the patient-specific 

models to their expected distributions which were estimated from the distributions of 

the pixels within the segmented muscle regions in the dominant slices. The boundaries 

of the output results are then expanded and boundary analysis performed on it. In this 

process, boundary pixels whose intensity values fall outside the standard deviation 

range, which was obtained from the boundaries of the segmented muscle regions in the 

dominant slices, are removed, thus providing the final segmentations.  

 

6.2 Overview of proposed work 

The overview of the proposed method is in Figure 6.1. Given a test MR dataset, 

patient-specific muscles models are first built using the process described in Chapter 5. 

These models serve as the coarse segmentations. Two refinements are then carried out 

on the coarse segmentations to arrive at the final segmentations. In the first refinement, 

the distributions of the pixels’ intensity values in the muscles’ regions belonging to the 

muscles models are matched to their expected distributions, which are obtained from 

the muscles regions in the dominant slices. The boundaries of the output results are 

then expanded and boundary analyses are performed on them. In this iterative process, 

boundary pixels whose intensity values fall outside the threshold are removed. The 

threshold is set to be the intensity standard deviation of the pixels belonging to the 

boundaries of the segmented muscles regions in the dominant slices. 
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Patient-specific muscles models 
 

Matching distributions of pixels in 
MR slices of muscles models 

Analysis on boundary pixels and 
removal of outliers 

 

 

 

 

 

 

Figure 6.1: Overview of proposed method. 

 

6.3 The proposed method 

6.3.1 Matching distributions in MR slices 

The patient-specific muscles models obtained using the approach proposed in the 

previous chapter serve as coarse segmentation of the masticatory muscles. An initial 

refinement is performed by matching the distributions of the intensity values belonging 

to the pixels in the muscles regions belonging to the slices within the muscles models 

to their expected distributions which we estimated from the distributions of the pixels 

within the segmented muscles regions in the dominant slices. The rationale behind this 

is that there is relatively uniform distribution of the intensity values within the muscle 

structure. 

 

Let the slices which the muscle occupy in the MR test dataset be , 

where  denotes the slice and N the total number of slices that the muscle occupies 

in the MR test dataset. The intensity value at point 

{ }NS,...,S,S,SS 321=

thiiS

( )y,x  is defined as  and  

as the muscle region bounded by the patient-specific muscle model in slice . By 

( yxI , ) iR

iS
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letting  be the number of pixels in , the mean and standard deviation intensity of 

each region  are denoted by: 

iN iR

iR

∑
∈

=
i

i
R)y,x(i

R )y,x(I
N

M 1
                                                                                       (6.1) 

and 

( )∑
∈

−=
i

ii
R)y,x(

R
i

R M)y,x(I
N

SD 21
                                                                   (6.2) 

respectively.  

 

Through the distributions of the pixels’ intensity values lying within the segmented 

muscle regions in the dominant slices, the distributions ( )est
R

est
R ii

SD,M  of the regions in 

the slices lying between the dominant slices are estimated. For a slice  which lies 

between dominant slices  and  where 

iS

kj <kSjS , 
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⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
−+=

jk

MM
jiMM jk

ji

RR
R

est
R                                                                           (6.3) 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
−+=

jk

SDSD
jiSDSD jk

ji

RR
R

est
R                                                                       (6.4) 

The muscle regions in the dominant slices of the coarse segmentation built from a test 

dataset are assumed to be reasonably accurate, as they can be either manually 

segmented or segmented accurately using our proposed 2D techniques which have 

been validated, and hence no refinement is performed on them. As for the slices lying 

in between the dominant slices, there might be some inaccuracies with the muscle 

regions delineated by the coarse segmentation and this can be improved. An initial 

refinement process is carried out for the muscle region in each slice:  

 



 147 

• Shift the centroid to one of its 8-connected neighbours (Figure 6.2).  

 

 

 

 

 

 

 

 

 

Figure 6.2: Shifting of the centroid and its corresponding muscle region. 

 

• Calculate the intensity mean ( )'
Ri

M  and standard deviation ( )'
Ri

SD  of the 

corresponding muscle region. 

• Repeat the above two steps for the other 8-connected neighbours. 

• Out of the 9 possible regions (inclusive of the original region), select the 

muscle region which has the minimum combined difference between its 

distribution and the estimated distribution i.e. minimize the following 

criterion: 

( ) ( )( )est
R

'
R

est
R

'
RR iiii

SDSDMMT −+−=                                                                         (6.5) 

 

 



 148 

6.3.2 Boundary analysis 

Having selected the muscle regions whose distributions best matches the estimated 

distributions, 3D boundary analysis is carried out on the resulting muscle structure 

after the first refinement. Before this analysis is carried out, the boundary of the 

resulting muscle structure is first expanded by 2 pixels (Figure 6.3).  

 
  

2 pixel-thick of 
expanded boundary 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.3: 2D view of a muscle region in a MR slice after expanding the boundary. 

 

The rationale behind expanding the boundary is that the initial boundary might have 

omitted some of the pixels which should be included. Expanding the boundary will 

include some of the pixels which were previously left out. However, expanding the 

boundary also meant the inclusion of some pixels which should not be included. This 

problem is minimized by removing boundary pixels whose intensity values fall outside 

the standard deviation range derived from the pixels on the muscles’ boundaries in the 



 149 

dominant slices. Pixels whose intensity values fall outside the standard deviation range 

are classified as outliers. The rationale behind this is that in our application here, the 

boundary pixels belonging to a single anatomy have intensity values that do not have a 

wide standard deviation. The pixels with relatively higher intensity values and 

relatively lower intensity values probably belong to surrounding bright tissue and bone 

tissue respectively. 

 

We calculate the intensity standard deviation ( )ref
BSD  of the boundaries belonging to 

the segmented muscle regions in the dominant slices of the test dataset. This is set as a 

threshold and the refinement process is carried out as follows:  

 

• Obtain the boundary of the 3D muscle.  

• Calculate the mean ( )BM  and standard deviation ( )BSD  of the boundary 

pixels. 

• If , remove those boundary pixels with intensity values smaller 

than  or greater than . 

ref
BB SDSD >

ref
BB SDM − ref

BB SDM +

• Repeat the above 3 steps on the resulting 3D muscle. 

• Stop iterations when . ref
BB SDSD <

 

6.4 Experiments 

Using the locations of the dominant slices which were determined in the previous 

chapters, patient-specific muscles models were built using test datasets from fifteen 
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adult volunteers. Six dominant slices are used here. These models serve as coarse 

segmentations and the proposed approach presented here is applied to refine them.  

 

A total of 90 human masticatory muscles (left and right masseters, lateral and medial 

pterygoids) belonging to fifteen subjects were segmented. The κ  index [74] 

introduced earlier was used to evaluate the consistency between the computerized 

segmentations and manual segmentations. In addition, quantification was carried out 

by measuring the volumes of the muscles segmentations. 

 

Other experiments include varying the number of available options for the selection of 

centroid candidates and varying the boundary thickness after the initial refinement.  

 

6.5 Results 

The accuracies for the segmentations of the masseters, lateral pterygoids and medial 

pterygoids are tabulated in Tables 6.1 – 6.3 respectively. The average κ  indices 

achieved for the left and right masseters, lateral pterygoids and medial pterygoids are 

86.6%, 87.5%, 86.5%, 86.3%, 86.9% and 87.1% respectively. Examples of the 

segmentations for the left and right masseters, lateral pterygoids and medial pterygoids 

can be found in Figures 6.4 – 6.6 respectively while examples of the volume rendered 

human head together with the human masticatory muscles is in Figure 6.7. The 

muscles segmentations displayed in Figures 6.4 – 6.6 follow the positional array 

shown in Figures 5.12, 5.14 and 5.16 respectively. 
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Table 6.1: Validation results for left and right masseters segmentations. 

 
 

Left Masseter Right Masseter 

Test Set Overlap index κ  (%) Test Set Overlap index κ  (%) 

1 86.2 1 88.5 

2 87.9 2 87.1 

3 85.3 3 86.5 

4 86.6 4 89.1 

5 87.0 5 86.3 

6 88.5 6 88.1 

7 85.0 7 87.5 

8 85.9 8 87.8 

9 85.5 9 84.2 

10 85.4 10 87 

11 87.8 11 88.1 

12 85.5 12 87.3 

13 86.5 13 86.0 

14 88.1 14 89.5 

15 87.8 15 89.5 

Mean Mean 86.6 87.5 

Standard 
deviation 

Standard 
deviation 1.18 1.42 
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Table 6.2: Validation results for left and right lateral pterygoids segmentations. 

 
 

Left Lateral Pterygoid Right Lateral Pterygoid 

Test Set Overlap index κ  (%) Test Set Overlap index κ  (%) 

1 86.0 1 87.9 

2 88.4 2 86.8 

3 84.7 3 84.7 

4 86.9 4 84.6 

5 87.9 5 87.1 

6 87.0 6 86.5 

7 85.1 7 87.4 

8 87.9 8 88.0 

9 88.0 9 85.6 

10 86.2 10 88.1 

11 87.4 11 86.7 

12 84.6 12 86.1 

13 85.0 13 83.7 

14 86.4 14 86.9 

15 85.2 15 83.6 

Mean Mean 86.5 86.3 

Standard 
deviation 

Standard 
deviation 1.31 1.50 
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Table 6.3: Validation results for left and right medial pterygoids segmentations. 

 
 

Left Medial Pterygoid Right Medial Pterygoid 

Test Set Overlap index κ  (%) Test Set Overlap index κ  (%) 

1 85.6 1 85.3 

2 85.2 2 87.1 

3 88.4 3 86.0 

4 84.0 4 88.1 

5 88.4 5 86.0 

6 88.5 6 86.7 

7 89.1 7 89.9 

8 88.5 8 85.8 

9 86.0 9 85.2 

10 85.9 10 88.5 

11 84.1 11 89.8 

12 87.3 12 86.1 

13 85.2 13 86.2 

14 89.1 14 86.6 

15 87.8 15 89.5 

Mean Mean 86.9 87.1 

Standard 
deviation 

Standard 
deviation 2.01 1.63 
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Figure 6.4: 3D segmentations of left and right masseters. 
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Left Lateral Pterygoid Right Lateral Pterygoid 

    

        
    

        
    

    
    

    

        
 

Figure 6.5: 3D segmentations of left and right lateral pterygoids. 
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Left Medial Pterygoid Right Medial Pterygoid 

    

    
    

    

    
    

    

    
    

    

    
    

 

Figure 6.6: 3D segmentations of left and right medial pterygoids. 
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Masseter Lateral Pterygoid Medial Pterygoid 

 
 

Figure 6.7: Volume rendered images of the human head with masticatory muscles. 

 

6.6 Discussion 

6.6.1 Accuracy of the muscles segmentations  

The patient-specific model plays an important role in our proposed method as it serves 

as an initial coarse segmentation. Comparisons are made between the accuracies of the 
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patient-specific models and the segmentations obtained in this chapter. In the previous 

chapter, it was reported that the average κ  indices achieved for the left and right 

patient-specific masseters, lateral and medial pterygoids models are 82.9%, 83.6%, 

83.4%, 82.9%, 83.5% and 84.4% respectively when six dominant slices were being 

used.  

 

Empirical results indicate that on average, the left and right masseters, lateral and 

medial pterygoids segmentations obtained here have improvements in accuracies of 

3.7%, 3.9%, 3.1%, 3.4%, 3.4% and 2.7% respectively over the models which were 

used as coarse segmentations. It should be stressed here even that though a significant 

improvement cannot always be guaranteed, there is always a positive improvement in 

the accuracy over that of the patient-specific models. Comparing the results in Figures 

6.4 – 6.6 against those in Figures 5.13, 5.15 and 5.17, it can however be observed that 

the segmentation results have coarser surfaces as compared to the patient-specific 

models. This is due to the removal of outlier pixels on the boundary, which resulted in 

uneven boundaries. 

 

The number of dominant slices used in our work here is six and 2D segmentations are 

carried out on only these six slices, which is only a small fraction of the MR slices 

which the muscles typically occupy and hence the amount of work clinicians need to 

do is minimized, which is the motivation for proposing this approach. It should be 

noted that increasing the number of dominant slices may help to improve on the 

accuracy of the model but this will result in a greater amount of human interaction and 

time consumption which makes it unfavourable.  
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6.6.2 On selection of centroid candidates 

It was mentioned in Section 6.3.1 that the centroid of the muscle region in each MR 

slice was shifted from its original position to its 8-connected neighbours and checked 

for the agreement between the distributions of the corresponding regions and the 

estimated distribution which was derived from the masseter regions in the dominant 

slices. The region which has the best matched distribution is selected. 

 

The candidates for the centroid were restricted to the 8-connected neighbours to 

preserve the shape of the patient-specific models. Further experiments were conducted 

to expand the list of candidates for centroid such that it includes the 16 pixels 

surrounding the 8-connected neighbours. It was observed that the final selected 

position of the centroid is usually among the original centroid and its 8-connected 

neighbours.  Hence it is recommended that the candidates for the centroid be restricted 

to the 8-connected neighbours to reduce the amount of time consumed in the shifting 

and checking process. 

 

6.6.3 On expansion of the boundaries after initial refinement 

It was mentioned in Section 6.3.2 that the boundary of the coarse segmentation was 

expanded by 2 pixels before boundary analysis was carried out on it. By doing so, it is 

hoped that those pixels in the muscles regions which have been omitted by the coarse 

segmentations are included. The main reason for restricting the expansion to 2 pixels is 

that in a number of the MR slices, especially those in the region where the masseter 

first and last appears, the muscle and tissue have very similar intensity values and the 

inclusion of such pixels should be minimized. 
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It should be also noted here that in the boundary analysis process carried out under the 

proposed approach, not only the pixels in the expanded boundaries are being 

considered. At each iteration, the standard deviation of the intensities of the boundary 

pixels is being calculated and pixels classified as outliers are removed. The iterations 

stop only when the intensity standard deviation is smaller than the threshold which is 

set to be the standard deviation of the intensities of the boundary pixels of the 

segmented muscles regions in the dominant slices.   

 

6.6.4 Quantification of segmentation results and clinical findings 

The volumes of the 3D muscles segmentations were measured and tabulated in Tables 

6.4 – 6.6. The mean volumes of the left and right masseters are 26.23cm3 and 

25.53cm3 respectively. As the MR datasets used were acquired from healthy male 

adult subjects who have no facial problems, the left and right masseters’ volumes of 

each subject are relatively similar. However, as the subjects have a wide age range, it 

can be observed that the standard deviations are relatively large at 3.95cm3 and 

4.26cm3 for the left and right masseters respectively.  

 

The mean volumes of the left and right lateral and medial pterygoids are 

8.53±0.473cm3, 8.85±0.582cm3, 9.54±0.631cm3 and 9.76±0.859cm3 respectively.  

 

The measurements were further classified according to the age and ethnic group of the 

subjects. For Asians who are left than 30 years old, the mean left and right masseter 

volumes are 28.54cm3 and 27.72cm3 respectively while for Asians more than 40 years 

old, the mean left and right masseter volumes are 23.16cm3 and 22.13cm3 respectively. 
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These findings are in line with what was previously reported in a study [15] where the 

muscles were manually segmented and which mentioned that the masseter muscle 

volume in young adults (31.77 ± 8.99cm3) is higher than that of older adults (21.22 ± 

6.16cm3). This is an indication that the proposed computerized technique is effective 

and is an encouraging sign. It should however be emphasized here that the findings 

from our studies are not conclusive as only fifteen datasets were used. 
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Table 6.4: Quantification results for left and right masseters. 

 

Left Masseter Right Masseter 

Test Set Volume (cm3) Test Set Volume (cm3) 
Age Group Ethnic Group 

1 23.51 1 24.54 30-40 Asian 

2 30.56 2 31.89 20-30 Asian 

3 18.92 3 18.53 20-30 European 

4 30.49 4 31.05 30-40 Asian 

5 19.64 5 17.42 20-30 European 

6 23.00 6 21.97 40-50 Asian 

7 28.91 7 27.41 20-30 Asian 

8 26.97 8 24.16 20-30 Asian 

9 25.37 9 25.83 20-30 Asian 

10 32.07 10 29.44 20-30 Asian 

11 23.31 11 22.30 40-50 Asian 

12 26.29 12 25.41 30-40 Asian 

13 29.54 13 30.08 20-30 Asian 

14 28.53 14 27.22 20-30 Asian 

15 26.34 15 25.76 20-30 Asian 

Mean 26.23 Mean 25.53 

Standard 
deviation 3.95 Standard 

deviation 4.26 
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Table 6.5: Quantification results for left and right lateral pterygoids. 

 

Left Lateral Pterygoid Right Lateral Pterygoid 

Test Set Volume (cm3) Test Set Volume (cm3) 
Age Group Ethnic Group 

1 8.56 1 8.95 30-40 Asian 

2 9.38 2 9.58 20-30 Asian 

3 7.86 3 7.69 20-30 European 

4 8.86 4 9.29 30-40 Asian 

5 7.93 5 8.24 20-30 European 

6 8.23 6 8.11 40-50 Asian 

7 8.82 7 9.21 20-30 Asian 

8 8.16 8 8.78 20-30 Asian 

9 8.81 9 8.46 20-30 Asian 

10 8.89 10 9.20 20-30 Asian 

11 8.05 11 8.21 40-50 Asian 

12 7.93 12 8.79 30-40 Asian 

13 9.03 13 9.22 20-30 Asian 

14 8.89 14 9.52 20-30 Asian 

15 8.59 15 9.43 20-30 Asian 

Mean 8.53 Mean 8.85 

Standard 
deviation 0.473 Standard 

deviation 0.582 
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Table 6.6: Quantification results for left and right medial pterygoids 

 

Left Medial Pterygoid Right Medial Pteryoid 

Test Set Volume (cm3) Test Set Volume (cm3) 
Age Group Ethnic Group 

1 9.45 1 9.54 30-40 Asian 

2 10.21 2 10.51 20-30 Asian 

3 8.58 3 8.34 20-30 European 

4 10.3 4 10.98 30-40 Asian 

5 8.77 5 8.76 20-30 European 

6 8.85 6 8.92 40-50 Asian 

7 9.98 7 10.38 20-30 Asian 

8 9.78 8 9.51 20-30 Asian 

9 9.14 9 10.12 20-30 Asian 

10 10.21 10 10.68 20-30 Asian 

11 8.51 11 8.30 40-50 Asian 

12 9.60 12 9.78 30-40 Asian 

13 10.23 13 10.59 20-30 Asian 

14 9.92 14 10.28 20-30 Asian 

15 9.62 15 9.78 20-30 Asian 

Mean 9.54 Mean 9.76 

Standard 
deviation 0.631 Standard 

deviation 0.859 
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Chapter 7 

Conclusion 
 

7.1 Overview of Achievements 

• Improved watershed algorithm with K-means clustering 

The concept and implementation of the novel technique, improved watershed 

algorithm with K-means clustering, is described in this thesis. Through comparative 

studies with other methods such as the conventional watershed algorithm and K-means 

clustering, it has been shown that the proposed method is capable of producing 

superior results.  

 

The improved watershed technique [92, 93] was first proposed to address the main 

drawback of the conventional watershed technique, which is over-segmentation. The 

proposed algorithm differs from the conventional algorithm in that we perform 

thresholding on the gradient magnitude image to reduce the number of edge pixels. An 

important component in the improved watershed algorithm is post-segmentation 

merging of the partitions in the segmentation map formed by the watershed transform. 

  

The experimental results demonstrate that the improved watershed algorithm can 

greatly reduce the amount of over-segmentation produced by the conventional 

watershed segmentation algorithm. To further reduce the problem of over-

segmentation, the use of K-means clustering to obtain a coarse segmentation prior to 

the application of the improved watershed segmentation algorithm was proposed. 
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Experimental results obtained by applying the proposed improved watershed algorithm 

with K-means clustering to the segmentation of the masseter from 60 MR images 

indicate that the mean κ  index achieved is greater than 90%, and that the 

segmentation maps have 98% fewer partitions than those formed by the conventional 

algorithm [94, 95]. 

 

• Model-based approach for muscles segmentation from MR images 

A method for segmenting the masseters, lateral and medial pterygoids, which belong to 

the group of human masticatory muscles, from MR images is proposed in this thesis. 

Such method, to our best knowledge, is currently unavailable. In the process of 

designing the proposed method, a solution to the problem of providing good 

initializations to the GVF snake automatically was proposed. Without good 

initializations, the GVF snake does not provide good segmentations in the applications 

here.  

 

Under the proposed method [96 – 98], by training the system using the spatial 

relationship between the head ROI and muscle ROI, the system is able to determine 

the muscle ROI in a study image automatically, instead of requiring human interaction.  

The soft tissue is approximately separated from the fat and bone through FCM with 

three clusters. In the resulting ROI, the muscles are present with the soft tissue. By 

checking for the overlap between the template and the regions in the ROI, we are able 

to remove the majority of the unwanted soft tissue. After checking for overlap with the 

template, small unwanted regions remaining in the muscle ROI are then removed 

through the use of connected components labelling. This gives us an initial 

segmentation of the muscle, which serves as initialization to the GVF snake. 
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The initialization process for the GVF snake is automatic. The initial segmentations 

serve as good initializations for the GVF snake. Since they are close to the actual 

boundaries of the muscles, relatively little iterations are required before the GVF snake 

converges. Our method to initialize the GVF snake proves to be good as we are able to 

obtain a mean κ better than 90% in 75 segmentation results. This is achieved despite 

the fact that clear and distinct boundaries might be unavailable between muscles and 

surrounding soft tissue. Furthermore, even though the model is 2D in nature, it is 

tolerant to a rotation of 15° and can be applied to two neighbouring slices superior and 

inferior to the reference slice [98]. This is an encouraging sign. 

 

• Segmentation using adaptive morphology 

Morphological operations such as opening and closing are commonly used in image 

processing. However, the appropriate size of the structuring element is often unknown. 

In our application here, the use of a fixed structuring element to morphologically 

separate the brain and muscle tissue is not advisable as this may cause excessive 

erosion to the muscle structure. Hence the use of adaptive morphology is proposed. 

This is found to be more appropriate. 

 

In the proposed method for segmentation of the temporalis, we first check if the tissue 

on the left side of the ROI is connected to the soft tissue on the right side of the ROI. If 

they are, we apply morphological opening to the ROI with a circular structuring 

element of radius 1. If the brain tissue is still connected to the soft tissue on the right 

side, we apply morphological opening again but with the radius of the structuring 

element increased, by 1. The entire process is iterated until the brain tissue is separated 
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from the remaining soft tissue. This approach fits our work because in the temporalis 

ROI, the CSF is removed after range-constrained thresholding and there will be a 

demarcation between brain tissue and the remaining soft tissue. There may be some 

weak connections between them, and these are removed after applying the above 

adaptive morphological procedure.     

 

• Determination of dominant slices for patient-specific models 

A method for determining the dominant slices of the human masticatory muscles 

(masseter, lateral and medial pterygoids) in MR datasets of the head is proposed and 

implemented. The dominant slices for each muscle together capture the main features 

of the muscle. This method facilitates the building of accurate patient-specific human 

masticatory muscles models.  

 

In our proposed method [99 – 101], the masticatory muscles in the training datasets 

were manually segmented by an expert radiologist. The locations of the dominant 

slices for each muscle were then determined from the training datasets using area- and 

shape-based criteria. Given a test dataset, segmentation of the muscles is carried out 

only on the dominant slices whose locations had been determined from the training 

sets. Shape-based interpolation is used to construct the complete muscle models from 

the 2D segmentations. The mean accuracy of the models built is as high as 92% when 

10 dominant slices are being used, and drop to 78% when only 5 dominant slices are 

used. As the number of dominant slices is increased, the magnitude of the 

improvement in accuracy decreases. 
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Using the proposed method, the dominant slices for the masseters, lateral and medial 

pterygoids were determined and accurate muscles models were built. The muscles are 

anatomies of different shapes and sizes, and the fact that accurate models of them can 

be built using the proposed method is an indication that it is possibly applicable to 

other anatomies with different shapes and sizes. This is an encouraging sign. 

 

• 3D human masticatory muscles segmentation 

A method for 3D segmentation of the human masticatory muscles has been proposed 

and implemented. The task is a challenging one due to the lack of strong edges 

between the muscles and surrounding soft tissue in MR images. This situation is more 

severe in some MR slices than others. Other problems pertaining to 3D human 

masticatory muscles segmentation include intensity inhomogeneity between slices and 

the variation in the size of the muscles in different slices which may result in higher 

error rate. The proposed method, which makes use of patient-specific masseter models 

and matching of distributions of pixels' intensity values both within the muscle volume 

and on its boundaries is capable of producing good segmentations [102]. As compared 

to the common practice where clinicians manually segment the muscles from all slices 

in the MR dataset which consists of 160 slices in the work here, the proposed method 

is much more practical and the amount of time clinicians can save is considerable. 

 

7.2 Future Work 

• Platform for dental research 

An interactive environment, where MR scans are presented in tri-planar / 3D views, 

can be built to permit rapid quantification, visualization and interaction with structures 
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of human masticatory muscles from a database or input scans. Users can navigate 

around in the complex anatomical 3D spatial environment of the human head and 

relate regions in 2D slices to 3D space. An advantage this brings is that users can 

identify the positions where the muscles first and last appear with greater confidence. 

Comparisons between normal subjects and patients, using this environment, can 

possibly help identify facial asymmetry and ascertain extent of deformity.   

 

• Integration with facial models for pre-surgical simulations 

Using the techniques proposed in this thesis, the human masticatory muscles can be 

readily segmented when given a MR dataset. Studies can be carried out using the 

muscles segmentations to create statistical masticatory muscles models when a large 

number of datasets from a population becomes available. 

 

After statistical masticatory muscles models have been built, efforts can then be made 

to integrate them with available pre-surgical facial models. It has been observed that 

the primary inadequacy with exisiting models is that they lack information on the 

actual location, shape and size of the human masticatory muscles. The integration task 

is challenging and will involve multi-modality registration techniques to register the 

human masticatory muscles models with the skull and surface information which can 

be extracted from CT data using the method presented earlier in this thesis. The 

different image resolution will hinder the registration task. After the integration is 

completed, finite element method (FEM) can be used to model dynamic motion, which 

will allow clinicians to simulate and predict the deformations of human  masticatory 

muscles, as the bones (maxilla and mandible) are being adjusted. 



 171 

References 

 

[1] R.W. Brand and D.E. Isselhard. Anatomy of orofacial structures, St. Louis: 

Mosby, 1998. 

[2] R. Koch, M. Gross, F. Caris, D. Buren, G. Frankhauser and Y. Parish. Simulating 

facial surgery using finite element models, Proceedings of the 23rd annual 

conference on Computer Graphics and Interactive techniques, pp. 421-428, 1996.  

[3] Y. Aoki, S. Hashimoto, M. Terajima and A. Nakasima. Simulation of 

postoperative 3D facial morphology using a physics-based head model, Visual 

Computer, Vol. 17, No. 2, pp. 121-131, 2001. 

[4] Y. Zhang, E.C. Prakash and E. Sung. A new physical model with multilayer 

architecture for facial expression animation using dynamic adaptive mesh, IEEE 

Transactions on Visualization and Computer Graphics, Vol. 10, No. 3, pp. 339-

352, 2004. 

[5] R. M. Koch, S.H.M. Roth, M.H. Gross, A.P. Zimmermann and H.F. Sailer. A 

framework for facial surgery simulation, Proceedings of the 18th spring 

conference on Computer Graphics, pp. 33-42, 2002.  

[6] E. Gladilin, S. Zachow, P. Deuflhard and H.C. Hege. Anatomy and physics-based 

facial animation for craniofacial surgery simulations, Medical & Biological 

Engineering & Computing, Vol.42, No. 2, pp. 167-170, 2004. 

[7] K. Maki, N. Inou, A. Takanishi and A.J. Miller. Computer-assisted simulations in 

orthodontic diagnosis and the application of a new cone beam X-ray computed 

tomography, Journal of Orthodontics and Craniofacial Research, Vol. 6, Suppl. 1, 

pp. 179-182, 2003. 

 



 172 

[8] M. Meehan, M. Teschner and S. Girod. Three-dimensional simulation and 

prediction of craniofacial surgery, Journal of Orthodontics and Craniofacial 

Research, Vol. 6, No. 1, pp. 103-107, 2003. 

[9] W.E. Lorensen and H.E. Cline. Marching cubes: a high resolution 3-D surface 

construction algorithm, Proceedings of the 23rd annual conference on Computer 

Graphics and Interactive techniques, pp. 163-189, 1987.  

[10] J. Xia, N. Samman, R.W. Yeung, S.G. Shen, D. Wang, H.H. Ip and H. Tideman. 

Computer-assisted three-dimensional surgical planning and simulation. 3D soft 

tissue planning and prediction, International Journal of Oral Maxillofacial 

Surgery, Vol. 29, No. 4, pp. 250-258, 2000. 

[11] T.Y. Wong, J.J. Fang, C.H. Chung, J.S. Huang and J.W. Lee. Comparison of 2 

methods of making surgical models for correction of facial asymmetry, 

International Journal of Oral Maxillofacial Surgery, Vol. 63, No. 2, pp. 200-208, 

2005. 

[12] N. Noguchi and M. Goto. Computer simulation system for orthognathic surgery, 

Journal of Orthodontics and Craniofacial Research, Vol. 6, Suppl. 1, pp. 176-178, 

2003. 

[13] I.N. Bankman. Handbook of Medical Imaging: Processing and Analysis, 

Academic Press. 2000. 

[14] P.C. Benington, J.E. Gardener and N.P. Hunt. Masseter muscle volume measured 

using ultrasonography and its relationship with facial morphology, European 

Journal of Orthodontics, Vol. 21, No. 6, pp. 659-670, 1999. 

[15] T.K. Goto, K. Tokumori, Y. Nakamura, M. Yahagi, K. Yuasa, K. Okamura and S. 

Kanda. Volume changes in human masticatory muscles between jaw closing and 

opening, Journal of Dental Research, Vol. 81, No. 6, pp. 428-432, 2002. 

 



 173 

[16] M. Takashima, N. Kitai, S. Murakami, S. Furukawa, S. Kreiborg and K. Takada. 

Volume and shape of masticatory muscles in patients with hemifacial microsomia, 

The Cleft Palate-Craniofacial Journal, Vol. 40, No.1, pp. 6-12, 2003. 

[17] T.K. Goto, M. Yahagi, Y. Nakamura, K. Tokumori, G.E.J. Langenbach and K. 

Yoshiura. In vivo cross-sectional area of human jaw muscles varies with section 

location and jaw position, Journal of Dental Research, Vol. 84, No. 6, pp. 570-

575, 2005. 

[18] T.K. Goto, S. Nishida, M. Yahagi, G.E.J. Langenbach, Y. Nakamura, K. 

Tokumori, S. Sakai, H. Yabuuchi and K. Yoshiura. Size and orientation of 

masticatory muscles in patients with mandibular laterognathism, Journal of 

Dental Research, Vol. 85, No. 6, pp. 552-556, 2006. 

[19] J. Teran, E. Sifakis, S.S. Blemker, T.H. Ng, C. Lau and R. Fedkiw. Creating and 

simulating skeletal muscle from the visible human data set, IEEE Transactions on 

Visualization and Computer Graphics, 2005, Vol. 11, No. 3, pp 317-328, 2005. 

[20] P.R. Andresen, F.L. Bookstein, K. Conradsen, B.K. Ersboll, J.L. March, and S. 

Kreiborg. Surface-bounded growth modeling applied to human mandibles, IEEE 

Transactions on Medical Imaging, Vol. 19, No. 11, 2000. 

[21] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm 

based on immersion simulations, IEEE Transactions on Pattern Analysis and 

Machine Intelligence, Vol. 13, No. 6, pp. 583-598, 1991. 

[22] H.T. Nguyen, M. Worring and R.V.D. Boomgaard. Watersnakes: Energy-driven 

watershed segmentation, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 25, No. 3, pp. 330-342, 2003. 

 



 174 

[23] V. Grau, A.U.J. Mewes, M. Alcaniz, R. Kikinis and S.K. Warfield. Improved 

watershed transform for medical image segmentation using prior information, 

IEEE Transactions on Medical Imaging, Vol. 23, No. 4, 2004, pp 447-458, 2004. 

[24] N. Ray, S.T. Acton, T. Altes, E.E. De Lange and J.R. Brookeman. Merging 

parametric active contours within homogeneous image regions for MRI-based 

lung segmentation, IEEE Transactions on Medical Imaging, Vol. 22, No. 2, pp. 

189-199, 2003. 

[25] C. Pluempitiwiriyawej, J.M. Moura, Y.J. Wu and C. Ho. STACS: New active 

contour scheme for cardiac MR image segmentation, IEEE Transactions on 

Medical Imaging, Vol. 24, No. 5, pp. 593-603, 2005.  

[26] C. Xu and J.L. Prince. Snakes, Shapes, and Gradient Vector Flow, IEEE 

Transactions on Image Processing, Vol. 7, No. 3, pp. 359-369, 1998.  

[27] T.Y. Lee and C.H. Lin. Feature guided shape-based image interpolation, IEEE 

Transactions on Medical Imaging, Vol. 21, No. 12, pp. 1479-1489, 2002. 

[28] J. Liu and W.L. Nowinski. A hybrid approach to shape-based interpolation of 

stereotactic atlases of the human brain, Neuroinformatics, Vol. 4, No. 2, pp. 177-

198, 2006. 

[29] J. Yang, L.H. Staib and J.S. Duncan. Neighbor-constrained segmentation with 

level set based 3-D deformable models, IEEE Transactions on Medical Imaging, 

Vol. 23, No. 8, pp. 940-948, 2004. 

[30] D. Freedman, R.J. Radke, T. Zhang, Y. Jeong, D.M. Lovelock and G.T.Y. Chen. 

Model-based segmentation of medical imagery by matching distributions, IEEE 

Transactions on Medical Imaging, Vol. 24, No. 3, pp. 281-292, 2005. 

 



 175 

[31] M. Jiang, Q. Ji and B.F. McEwen. Model-based automated extraction of 

microtubules from electron tomography volume, IEEE Transactions on 

Information Technology in Biomedicine, Vol. 10, No. 3, pp. 608-617, 2006. 

[32] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion, 

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 7,  

pp. 629-639, 1990.  

[33] J.J. Abrahams. Dental CT imaging: a look at the jaw, Radiology, Vol. 219, No. 2, 

pp. 334-345, 2001. 

[34] K. Yeshwant, E.B. Seldin, J. Gateno, P. Everett, C.L. White, R. Kikinis, L.B. 

kaban and M.J. Troulis. Analysis of skeletal movements in mandibular distraction 

osteogenesis, Journal of Oral and Maxillofacial Surgery, Vol. 63, No. 3, pp. 335-

340, 2005. 

[35] A. Schramm, R. Schon, M. Rucker, E.L. Barth, C. Zizelmann and N.C. Gellrich. 

Computer-assisted oral and maxillofacial reconstruction, Journal of Computing 

and Information Technology, Vol. 14, No. 1, pp. 71-77, 2006. 

[36] J. Gateno, J.J. Xia, J.F. Teichgraeber, A.M. Chritensen, J.J. Lemoine, M.A.K. 

Liebschner, M.J. Gliddon and M.E. Briggs. Clinical feasibility of computer-aided 

simulation (CASS) in the treatment of complex cranio-maxillofacial deformities, 

Journal of Oral and Maxillofacial Surgery, Vol. 65, No. 4, pp. 728-734, 2007. 

[37] A.F. Ayoub, Y. Xiao, B. Khambay, J.P. Siebert and D. Hadley. Towards building 

a photo-realistic virtual human face for craniomaxillofacial diagnosis and 

treatment planning, International Journal of Oral and Maxillofacial Surgery, Vol. 

36, No. 5, pp. 423-428, 2007. 

 



 176 

[38] D.P. Kuehn, S.L. Ettema, M.S. Goldwasser, J.C. Barkmeier and J.M. Wachtel. 

Magnetic resonance imaging in the evaluation of occult submucous cleft palate, 

Cleft Palate-Craniofacial Journal, Vol. 38, No. 5, pp. 421-431, 2001. 

[39] T. Taniyama, N. Kitai, Y. Iguchi, S. Murakami, M. Yanagi and K. Takada. 

Craniofacial morphology in a patient with simpson-golabi-behmel syndrome, 

Cleft Palate-Craniofacial Journal, Vol. 40, No. 5, pp. 550-555, 2003. 

[40] S. Gerhard, T. Ennemoser, A. Rudisch and R. Emshoff. Condylar injury: magnetic 

resonance imaging findings of temporomandibular joint soft-tissue changes, 

International Journal of Oral and Maxillofacial Surgery, Vol. 36, No. 3, pp. 214-

218, 2007. 

[41] W.P. Smith, S. Prince and S. Phelan. The role of imaging and surgery in the 

management of vascular tumors of the masseter muscle, Journal of Oral and 

Maxillofacial Surgery, Vol. 63, No. 12, pp. 1746-1752, 2005. 

[42] J.F. Schenck. The role of magnetic susceptibility in magnetic resonance imaging: 

MRI magnetic compatibility of the first and second kinds, Medical Physics, Vol. 

23, No. 6, pp. 815-850, 1996. 

[43] J.M. Links, L.S. Beach, B. Subramaniam, M.A. Rubin, J.G. Hennessey and A.L. 

Reiss. Edge complexity and partial volume effects, Journal of Computer Assisted 

Tomography, Vol. 22, No. 3, pp. 450-458, 1998. 

[44] O. Dietrich, M.F. Reiser and S.O. Schoenberg. Artifacts in 3-T MRI: Physical 

background and reduction strategies, European Journal of Radiology, Vol. 65, No. 

1, pp. 29-35, 2008. 

[45] G. Eggers, M. Rieker, J. Fiebach, B. Kress, H. Dickhaus and S. Hassfeld. 

Geometric accuracy of magnetic resonance imaging of the mandibular nerve, 

Dentomaxillofacial Radiology, Vol. 34, No. 5, pp. 285-291, 2005. 

 



 177 

[46] H.K. Wong, J.C.H. Goh and P.S. Goh. Paired cylindrical interbody cage fit and 

facetectomy in posterior lumbar interbody fusion in an asian population, Spine, 

Vol. 26, No. 5, pp. 572-577, 2001. 

[47] C.-F. Westin, A. Bhalerao, H. Knutsson, and R. Kikinis. Using local 3D structure 

for segmentation of bone from computer tomography images, Proceedings of the 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 

pp. 794-800, 1997. 

[48] H.P. Ng, K.W.C. Foong, S.H. Ong and W.L. Nowinski. Towards construction of a 

3D virtual human head for clinical purposes, Proceedings of the 1st International 

Conference on Complex Medical Engineering, pp. 297-301, 2005. 

[49] P.K. Sahoo, S. Soltani, and A.K.C. Wong. A survey of thresholding techniques, 

Computer Vision, Graphics, and Image Processing, Vol. 41, pp. 233-260, 1988. 

[50] N. Otsu. A threshold selection method from gray-level histograms, IEEE 

Transactions on  Systems Man and Cybernetics, Vol. 9, No. 1, pp. 62-66, 1979. 

[51] R. C. Gonzalez and R. E. Woods. Digital Image Processing, Addison-Wesley, pp. 

419, 1992. 

[52] A.B. Jani, C.A. Pelizzari, G.T.Y. Chen, J. Roeske, R.J. Hamilton, R.L. Macdonald, 

F. Bova, K.R. Hoffmann and P.A. Sweeney. Volume rendering quantification 

algorithm for reconstruction of CT volume-rendered structures, IEEE 

Transactions on Medical Imaging, Vol. 19, No. 1, pp. 12-24, 2000. 

[53] K. Waters and D. Terzopoulos. A physical model of facial tissue and muscle 

articulation, Proceedings of the 1  Conference on st Visualization in Biomedical 

Computing, pp. 77 – 82, 1990. 

 



 178 

[54] M. Chabanas, V. Luboz, Y. Payan. Patient specification finite element model of 

the face soft tissues for computer-assisted maxillofacial surgery, Medical Image 

Analysis, Vol. 7, No. 2, pp.131-151, 2003. 

[55] C. Lee, S. Huh, T.A. Ketter and M. Unser. Unsupervised connectivity-based 

thresholding segmentation of midsagittal brain MR images, Computers in Biology 

and Medicine, Vol. 28, No. 3, pp. 309-338, 1998. 

[56] D.Y. Kim and J.W. Park. Connectivity-based local adaptive thresholding for 

carotid artery segmentation using MRA images, Image and Vision Computing, 

Vol. 23, No. 14, pp. 1277-1287, 2005. 

[57] Q.M. Hu, Z. Hou and W.L. Nowinski. Supervised range-constrained thresholding, 

IEEE Transactions on Image Processing, Vol. 15, No. 1, pp. 228-240, 2006. 

[58] B. Vasilic and F.W. Wehrli. A novel local thresholding algorithm for trabecular 

bone volume fraction mapping in the limited spatial resolution regime of in vivo 

MRI, IEEE Transactions on Medical Imaging, Vol. 24, No. 12, pp. 1574-1585, 

2005. 

[59] S. Shiffman, G.D. Rubin, and S. Napel. Medical image segmentation using 

analysis of isolable-contour maps, IEEE Transactions on Medical Imaging, Vol. 

19, No. 11, pp. 1064-1074, 2000. 

[60] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models, 

International Journal of Computer Vision, Vol. 1, No. 4, pp. 321-331, 1987. 

[61] J. Tang, S. Millington, S.T. Acton, J. Crandall and S. Hurwitz. Surface extraction 

and thickness measurement of the articular cartilage from MR images using 

directional gradient vector flow snakes, IEEE Transactions on Biomedical 

Engineering, Vol. 53, No. 5, pp. 896-907, 2006. 

 



 179 

[62] J. Xu, O. Chutatape and P. Chew. Automated optic disk boundary detection by 

modified active contour model, IEEE Transactions on Biomedical Engineering, 

Vol. 54, No. 3, pp. 473-482, 2007. 

[63] J.B.T.M. Roerdink and A. Meijster. The watershed transform: Definitions, 

algorithms and parallelization strategies, Fundamental Informaticae, Vol. 41, pp. 

187-228, 2000. 

[64] J.E. Cates, R.T. Whitaker and G.M. Jones. Case study: An evaluation of user-

assisted hierarchical watershed segmentation, Medical Image Analysis, Vol. 9, No. 

6, pp. 566-578, 2005. 

[65] H. Tek and H.C. Aras. Local watershed operators for image segmentation, 

Proceedings of the 7th International Conference on Medical Image Computing 

and Computer-Assisted Intervention, MICCAI, pp. 127-134, 2004.  

[66] R. Rodriguez, T.E. Alarcon and O. Pacheco. A new strategy to obtain robust 

markers for blood vessels segmentation by using the watersheds method, 

Computers in Biology and Medicine. Vol. 35, No. 8, pp. 665-686, 2005. 

[67] D.L. Pham and J.L. Prince. Adaptive fuzzy segmentation of magnetic resonance 

images, IEEE Transactions on Medical Imaging. Vol. 18, No. 9, pp. 737-752, 

1999.  

[68] M.N. Ahmed and S.M. Yamany. A modified fuzzy C-means algorithm for bias 

field estimation and segmentation of MRI data, IEEE Transactions on Medical 

Imaging. Vol. 21, No. 3, pp. 193-199, 2002.  

[69] S. Shen, W. Sandham, M. Granat and A. Sterr. MRI fuzzy segmentation of brain 

tissue using neighborhood attraction with neural-network optimization, IEEE 

Transactions on Information Technology in Biomedicine. Vol. 9, No. 3, pp. 459-

467, 2005. 

 



 180 

[70] J.C. Bezdek, L.O. Hall and L.P. Clarke. Review of MR image segmentation 

techniques using pattern recognition, Medical Physics. Vol. 20, No. 4, pp. 1033-

1048, 1993. 

[71] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman and A.Y. 

Wu. An efficient K-means clustering algorithm: analysis and implementation, 

IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 24, No. 7, 

pp. 881-892, 2002. 

[72] M. Laszio and S. Mukherjee. A genetic algorithm using hyper-quadtrees for low-

dimensional K-means clustering, IEEE Transactions on Pattern Analysis and 

Machine Intelligence. Vol. 28, No. 4, pp. 533-543, 2006. 

[73] C.W. Chen, J. Luo and K.J. Parker. Image segmentation via adaptive K-mean 

clustering and knowledge based morphological operations with biomedical 

applications, IEEE Transactions on Image Processing. Vol. 7, No. 12, pp. 1673-

1683, 1998. 

[74] V.K. Leemput, F. Maes, D. Vandermeulen and P. Suetens. Automated model-

based tissue classification of MR images of the brain, IEEE Transactions on 

Medical Imaging, Vol. 18, No. 10, pp. 897-908, 1999. 

[75] A.C.S. Chung. Vascular segmentation of phase contrast magnetic resonance 

angiograms based on statistical mixture modeling and local phase coherence, 

IEEE Transactions on Medical Imaging, Vol. 23, No. 12, pp. 1490-1507, 2004. 

[76] M.S. Hassouna, A.A. Farag, S. Hushek and T. Moriarty. Cerebrovascular 

segmentation from TOF using stochastic models, Medical Image Analysis, Vol. 

10, No. 1, pp. 2-18, 2006. 

 



 181 

[77] Y. Qiao, Q.M. Hu, G.Y. Qian, S.H. Luo and W.L. Nowinski. Thresholding based 

on variance and intensity contrast, Pattern Recognition, Vol. 40, No. 2, pp. 596-

608, 2007. 

[78] J.C. Bezdek. Pattern recognition with fuzzy objective function algorithm, New 

York, Plenum, 1981. 

[79] Q. Hu, G. Qian and W.L. Nowinski. Fast connected-component labelling in three-

dimensional binary images based on iterative recursion, Computer Vision and 

Image Understanding, Vol. 99, No. 3, pp. 414-434, 2005. 

[80] J. Canny. A computational approach to edge detection, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, Vol. 8, No. 4, pp. 679-698, 1986. 

[81] Q. Hu and W.L. Nowinski. A rapid algorithm for robust and automatic extraction 

of the midsagittal plane of the human cerebrum from neuroimages based on local 

symmetry and outlier removal, NeuroImage, Vol. 20, No. 4, pp. 2153-2165, 2003. 

[82] K. Fukunaga and D.M. Hummels. Leave-one-out procedures for nonparametric 

error estimates, IEEE Transactions on Pattern Analysis and Machine Intelligence, 

Vol. 11, No. 4, pp. 421-423, 1989. 

[83] Z.J. Hou, Q.M. Hu and W.L. Nowinski. On minimum variance thresholding, 

Pattern Recognition Letters, Vol. 27, No. 14, pp. 1732-1743, 2006. 

[84] D.L. Pham, J.L. Prince, A.P. Dagher and C. Xu. An automated technique for 

statistical characterization of brain tissues in magnetic resonance image, 

International Journal of Pattern Recognition and Artificial Intelligence, Vol. 11, 

No. 8, pp. 1189-1211, 1997. 

[85] Y. Ge, J.M. Fitzpatrick, B.M. Dawant, J. Bao, R.M. Kessler and R.A. Margolin. 

Accurate localization of cortical convolutions in MR brain images, IEEE 

Transactions on Medical Imaging, Vol. 15, No. 4, pp. 418-428, 1996.  

 



 182 

[86] H.P. Ng, S.H. Ong, K.W.C. Foong, P.S. Goh and W.L. Nowinski. Automatic 

segmentation of muscles of mastication from magnetic resonance images using 

prior knowledge, Proceedings of the 28th Annual International Conference IEEE 

Engineering in Medicine and Biology Society, pp. 5294-5297, 2006. 

[87] W.L. Nowinski, J. Liu and A, Thirunavuukarasuu. Quantification of three-

dimensional inconsistency of the subthalamic nucleus in the Schaltenbrand-

Wahren brain atlas, Stereotactic and Functional Neurosurgery, Vol. 84, No. 1, pp. 

46-55, 2006. 

[88] A.X. Falcao, J.K. Udupa and F.K. Miyazawa. An ultra-fast user-steered image 

segmentation paradigm: live wire on the fly, IEEE Transactions on Medical 

Imaging, Vol. 19, No. 1, pp. 55-62, 2000. 

[89] A. Lundervold, N. Duta, T. Taxt and A.K. Jain. Model-guided segmentation of 

corpus callosum in MR images, Proceedings of IEEE Conference on Computer 

Vision and Pattern Recognition, pp. 231-237, 1999. 

[90] M. Bello, T. Ju, J. Carson, J. Warren, W. Chiu and I.A. Kakadiaris. Learning-

based segmentation framework for tissue images containing gene expression data, 

IEEE Transactions on Medical Imaging, Vol. 26, No. 5, pp. 728-744, 2007. 

[91] D. Seghers, D. Loeckx, F. Maes, D. Vandermeulen and P. Suetens. Minimal shape 

and intensity cost path segmentation, IEEE Transactions on Medical Imaging, 

Vol. 26, No. 8, pp. 55-62, 2007. 

[92] H.P. Ng, K.W.C. Foong, S.H. Ong and W.L. Nowinski. Watershed transform for 

the segmentation of MRI images, Proceedings of the 2nd International 

Conference Advanced Digital Technology in Head and Neck, Paper No. 82, 2005. 

 



 183 

[93] H.P. Ng, S.H. Ong, K.W.C. Foong, and W.L. Nowinski. An improved watershed 

algorithm for medical image segmentation, Proceedings of the 12th International 

Conference on Biomedical Engineering, 2005. 

[94] H.P. Ng, S.H. Ong, K.W.C. Foong, P.S. Goh and W.L. Nowinski. Medical image 

segmentation using K-means clustering and improved watershed algorithm, 

Proceedings of the 7th IEEE Southwest Symposium on Image Analysis and 

Interpretation, pp. 61-65, 2006. 

[95] H.P. Ng, S.H. Ong, K.W.C. Foong, P.S. Goh and W.L. Nowinski. Masseter 

segmentation using an improved watershed algorithm with unsupervised 

classification, Computers in Biology and Medicine, 2007. (Accepted) 

[96] H.P. Ng, S.H. Ong, P.S. Goh, K.W.C. Foong, and W.L. Nowinski. Template-

based automatic segmentation of facial muscle using prior knowledge, 

Proceedings of the 7th IEEE Southwest Symposium on Image Analysis and 

Interpretation, pp. 208-212, 2006. 

[97] H.P. Ng, S.H. Ong, K.W.C. Foong, P.S. Goh and W.L. Nowinski. Automatic 

segmentation of muscles of mastication from magnetic resonance images using 

prior knowledge, Proceedings of the 18th International Conference on Pattern 

Recognition, pp. 968-971, 2006. 

[98] H.P. Ng, S.H. Ong, Q. Hu, K.W.C. Foong, P.S. Goh and W.L. Nowinski. Muscles 

of mastication model-based MR image segmentation, International Journal of 

Computer Assisted Radiology and Surgery, Vol. 1, No. 3, pp. 137-148, 2006. 

[99] H.P. Ng, K.W.C. Foong, S.H. Ong, J. Liu, P.S. Goh and W.L. Nowinski. Shape 

determinative slice localization for patient-specific masseter modeling using 

shape-based interpolation, International Journal of Computer Assisted Radiology 

and Surgery, Vol. 2, Suppl. 1, pp. 398-400, 2007. 

 



 184 

[100] H.P. Ng, K.W.C. Foong, S.H. Ong, J. Liu, P.S. Goh and W.L. Nowinski. A study 

on shape determinative slices for the masseter muscle, Proceedings of the 29th 

Annual International Conference IEEE Engineering in Medicine and Biology 

Society, pp. 5585-5588, 2007. 

[101] H.P. Ng, S.H. Ong, K.W.C. Foong, J. Liu, S. Huang, P.S. Goh and W.L. 

Nowinski, “Salient features useful for the accurate segmentation of masticatory 

muscles from minimum slice subsets of magnetic resonance images”,  Machine 

Vision and Applications, 2007. (under revision)  

[102] H.P. Ng, S.H. Ong, J. Liu, S. Huang, K.W.C. Foong, P.S. Goh and W.L. 

Nowinski, “3D segmentation and quantification of a masticatory muscle from MR 

data using patient-specific models and matching distributions”,  Journal of Digital 

Imaging, 2008. (in press)  

 



 185 

Awards and Publications 

 

Awards 

1. Outstanding Paper Award awarded by 12th ICBME 

H.P. Ng, K.W.C. Foong, S.H. Ong, P.S. Goh and W.L. Nowinski,  

“Moving towards the construction of a highly realistic pre-surgical facial model”, 

12th International Conference on Biomedical Engineering, December, 2005. 

2. Certificate of Achievement awarded by Pattern Recognition and Machine 

Intelligence Association (PREMIA) 

H.P. Ng, S.H. Ong, K.W.C. Foong, P.S. Goh and W.L. Nowinski,  

“Automatic segmentation of muscles of mastication from magnetic resonance 

images using prior knowledge” 

18th International Conference on Pattern Recognition, August, 2006. 

 

International Journal Papers 

3. H.P. Ng, S.H. Ong, Q. Hu, K.W.C. Foong, P.S. Goh and W.L. Nowinski, 

“Muscles of mastication model-based MR image segmentation”, International 

Journal of Computer Assisted Radiology and Surgery, Vol. 1, No. 3, pp. 137-148, 

2006. 

4. H.P. Ng, Q.M. Hu, S.H. Ong, K.W.C. Foong, P.S. Goh and W.L. Nowinski, 

“Segmentation of the temporalis from MR data”, International Journal of 

Computer Assisted Radiology and Surgery, Vol. 2, No. 1, pp. 19-30, 2007. 



 186 

5. H.P. Ng, K.W.C. Foong, S.H. Ong, J. Liu, P.S. Goh and W.L. Nowinski, “Shape 

determinative slice localization for patient-specific masseter modeling using 

shape-based interpolation”, International Journal of Computer Assisted Radiology 

and Surgery, Vol. 2, Suppl. 1, pp. 398-400, 2007. 

6. H.P. Ng, S.H. Ong, K.W.C. Foong, P.S. Goh and W.L. Nowinski, “Masseter 

segmentation using an improved watershed algorithm with unsupervised 

classification”, Computers in Biology and Medicine, Vol. 38, No. 2, pp. 171-184, 

2008. 

7. H.P. Ng, S.H. Ong, J. Liu, S. Huang, K.W.C. Foong, P.S. Goh and W.L. 

Nowinski, “3D segmentation and quantification of a masticatory muscle from MR 

data using patient-specific models and matching distributions”,  Journal of Digital 

Imaging, 2008. (in press)  

8. H.P. Ng, K.W.C. Foong, S.H. Ong, P.S. Goh, S. Huang, J. Liu and W.L. 

Nowinski, “Quantitative analysis of human masticatory muscles using magnetic 

resonance imaging”, Dentomaxillofacial Radiology, 2008. (in press)  

9. H.P. Ng, S.H. Ong, K.W.C. Foong, J. Liu, S. Huang, P.S. Goh and W.L. 

Nowinski, “Salient features useful for the accurate segmentation of masticatory 

muscles from minimum slice subsets of magnetic resonance images”,  Machine 

Vision and Applications, 2007. (under revision)  

 

International Conference Papers 

10. H.P. Ng, K.W.C. Foong, S.H. Ong and W.L. Nowinski, “Watershed transform for 

the segmentation of MRI images”, 2nd International Conference Advanced 

Digital Technology in Head and Neck, Banff, Alberta, Canada, Paper No. 82, 

March, 2005. 



 187 

11. H.P. Ng, K.W.C. Foong, S.H. Ong and W.L. Nowinski, “Towards construction of 

a 3D virtual human head for clinical purposes”, 1st International Conference on 

Complex Medical Engineering, Takamatsu, Japan, pp. 297-301, May, 2005. 

12. H.P. Ng, S.H. Ong, K.W.C. Foong, and W.L. Nowinski, “An improved watershed 

algorithm for medical image segmentation”, 12th International Conference on 

Biomedical Engineering, Singapore, Proceedings on CD-ROM, December, 2005. 

 

13. H.P. Ng, K.W.C. Foong, S.H. Ong and W.L. Nowinski, “Moving towards the 

construction of a highly realistic pre-surgical facial model”, 12th International 

Conference on Biomedical Engineering, Singapore, Proceedings on CD-ROM, 

December, 2005. 

14. H.P. Ng, S.H. Ong, P.S. Goh, K.W.C. Foong, and W.L. Nowinski, “Template-

based automatic segmentation of facial muscle using prior knowledge”, 7th IEEE 

Southwest Symposium on Image Analysis and Interpretation, Denver, Colorado, 

USA, pp. 208-212, March, 2006. 

15. H.P. Ng, S.H. Ong, K.W.C. Foong, P.S. Goh and W.L. Nowinski, “Medical image 

segmentation using K-means clustering and improved watershed algorithm”, 7th 

IEEE Southwest Symposium on Image Analysis and Interpretation, Denver, 

Colorado, USA, pp. 61-65, March, 2006. 

16. H.P. Ng, S.H. Ong, K.W.C. Foong, P.S. Goh and W.L. Nowinski, “Automatic 

segmentation of muscles of mastication from magnetic resonance images using 

prior knowledge”, 18th International Conference on Pattern Recognition, Hong 

Kong, pp. 968-971, August, 2006. 

 

 



 188 

17. H.P. Ng, S.H. Ong, K.W.C. Foong, P.S. Goh and W.L. Nowinski, “Knowledge-

driven 3-D extraction of the masseter from MR data”, 28th Annual International 

Conference IEEE Engineering in Medicine and Biology Society, New York, USA, 

pp. 5294-5297, August, 2006. 

18. H.P. Ng, K.W.C. Foong, S.H. Ong, P.S. Goh and W.L. Nowinski, “Medical image 

segmentation using feature-based GVF snake”, 29th Annual International 

Conference IEEE Engineering in Medicine and Biology Society, Lyon, France, pp. 

800-803, August, 2007. 

19. H.P. Ng, K.W.C. Foong, S.H. Ong, J. Liu, P.S. Goh and W.L. Nowinski, “A study 

on shape determinative slices for the masseter muscle”, 29th Annual International 

Conference IEEE Engineering in Medicine and Biology Society, Lyon, France, pp. 

5585-5588, August, 2007. 

 


	NG HSIAO PIAU 
	 
	 
	 
	NATIONAL UNIVERSITY OF SINGAPORE 
	TitlePage.pdf
	NG HSIAO PIAU 
	NATIONAL UNIVERSITY OF SINGAPORE 

	Acknowledgements.pdf
	 
	Acknowledgements 

	TableOfContents.pdf
	Table of Contents 
	 
	Acknowledgments              i  
	Table of Contents             ii 
	Summary            vii 
	List of Tables              ix 
	List of Figures             x 
	1 Introduction             1 
	2 Data Acquisition             14 
	3 Analysis of CT Data          21 
	4 Segmentation techniques for MR slices        31 
	5 Determining dominant slices for patient-specific masticatory muscles  
	modeling          104 
	6 Segmentation of the masticatory muscles from volumetric data  143 
	7 Conclusion          165 
	Awards and Publications        185 
	       



	ListOfTables.pdf
	List of Tables 

	ListOfTables.pdf
	List of Tables 

	ListOfFigures_new.pdf
	List of Figures 
	1.1 (a) Cephalometric tracings, (b) Lateral cephalogram of patient.     3 


	Chapter 1_new_revised.pdf
	Chapter 1 
	Introduction 

	Chapter 2_new_revised.pdf
	Chapter 2 
	Data Acquisition 

	Chapter 3_new_revised.pdf
	Chapter 3 
	Analysis of CT data 

	Chapter 4_revised.pdf
	Chapter 4 
	Segmentation techniques for MR slices 
	     

	Chapter 5_revised.pdf
	Chapter 5 

	Chapter 6_new_revised.pdf
	Chapter 6 

	Chapter 7_revised.pdf
	Chapter 7 

	Awards and Publications_revised.pdf
	Awards and Publications 

	References_revised.pdf
	References 

	Awards and Publications_revised.pdf
	Awards and Publications 




