1,445 research outputs found

    Supervised feature extraction for tensor objects based on maximization of mutual information

    Get PDF
    a b s t r a c t Several supervised feature extraction methods for tensor objects have been proposed recently, with applications in recognition of objects, faces and handwritten digits. However, the existing methods usually use only second order statistics of the data, typically through calculation of the within-and between-class scatters. Here we propose a method for supervised feature extraction for tensor objects based on maximization of an approximation of mutual information. In this way we utilize information contained in the higher order statistics of the data. Several experiments show that the proposed method results in highly discriminative features

    Semi-Supervised Fine-Tuning for Deep Learning Models in Remote Sensing Applications

    Full text link
    A combinatory approach of two well-known fields: deep learning and semi supervised learning is presented, to tackle the land cover identification problem. The proposed methodology demonstrates the impact on the performance of deep learning models, when SSL approaches are used as performance functions during training. Obtained results, at pixel level segmentation tasks over orthoimages, suggest that SSL enhanced loss functions can be beneficial in models' performance

    A Novel Hybrid Dimensionality Reduction Method using Support Vector Machines and Independent Component Analysis

    Get PDF
    Due to the increasing demand for high dimensional data analysis from various applications such as electrocardiogram signal analysis and gene expression analysis for cancer detection, dimensionality reduction becomes a viable process to extracts essential information from data such that the high-dimensional data can be represented in a more condensed form with much lower dimensionality to both improve classification accuracy and reduce computational complexity. Conventional dimensionality reduction methods can be categorized into stand-alone and hybrid approaches. The stand-alone method utilizes a single criterion from either supervised or unsupervised perspective. On the other hand, the hybrid method integrates both criteria. Compared with a variety of stand-alone dimensionality reduction methods, the hybrid approach is promising as it takes advantage of both the supervised criterion for better classification accuracy and the unsupervised criterion for better data representation, simultaneously. However, several issues always exist that challenge the efficiency of the hybrid approach, including (1) the difficulty in finding a subspace that seamlessly integrates both criteria in a single hybrid framework, (2) the robustness of the performance regarding noisy data, and (3) nonlinear data representation capability. This dissertation presents a new hybrid dimensionality reduction method to seek projection through optimization of both structural risk (supervised criterion) from Support Vector Machine (SVM) and data independence (unsupervised criterion) from Independent Component Analysis (ICA). The projection from SVM directly contributes to classification performance improvement in a supervised perspective whereas maximum independence among features by ICA construct projection indirectly achieving classification accuracy improvement due to better intrinsic data representation in an unsupervised perspective. For linear dimensionality reduction model, I introduce orthogonality to interrelate both projections from SVM and ICA while redundancy removal process eliminates a part of the projection vectors from SVM, leading to more effective dimensionality reduction. The orthogonality-based linear hybrid dimensionality reduction method is extended to uncorrelatedness-based algorithm with nonlinear data representation capability. In the proposed approach, SVM and ICA are integrated into a single framework by the uncorrelated subspace based on kernel implementation. Experimental results show that the proposed approaches give higher classification performance with better robustness in relatively lower dimensions than conventional methods for high-dimensional datasets

    Rethinking the compositionality of point clouds through regularization in the hyperbolic space

    Get PDF
    Point clouds of 3D objects exhibit an inherent compositional nature where simple parts can be assembled into progressively more complex shapes to form whole objects. Explicitly capturing such part-whole hierarchy is a long-sought objective in order to build effective models, but its tree-like nature has made the task elusive. In this paper, we propose to embed the features of a point cloud classifier into the hyperbolic space and explicitly regularize the space to account for the part-whole hierarchy. The hyperbolic space is the only space that can successfully embed the tree-like nature of the hierarchy. This leads to substantial improvements in the performance of state-of-art supervised models for point cloud classification

    Weakly supervised human skin segmentation using guidance attention mechanisms

    Get PDF
    Human skin segmentation is a crucial task in computer vision and biometric systems, yet it poses several challenges such as variability in skin colour, pose, and illumination. This paper presents a robust data-driven skin segmentation method for a single image that addresses these challenges through the integration of contextual information and efficient network design. In addition to robustness and accuracy, the integration into real-time systems requires a careful balance between computational power, speed, and performance. The proposed method incorporates two attention modules, Body Attention and Skin Attention, that utilize contextual information to improve segmentation results. These modules draw attention to the desired areas, focusing on the body boundaries and skin pixels, respectively. Additionally, an efficient network architecture is employed in the encoder part to minimize computational power while retaining high performance. To handle the issue of noisy labels in skin datasets, the proposed method uses a weakly supervised training strategy, relying on the Skin Attention module. The results of this study demonstrate that the proposed method is comparable to, or outperforms, state-of-the-art methods on benchmark datasets.This work is part of the visuAAL project on Privacy-Aware and Acceptable Video-Based Technologies and Services for Active and Assisted Living (https://www.visuaal-itn.eu/). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 861091
    • …
    corecore